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Abstract: The primary objective of this study is to formulate a comprehensive digital and physical
model, at a scaled level, for a social housing unit utilizing the open-source Wikihouse system.
The construction industry is currently grappling with the dual challenges of a real estate crisis
and climate change. In response to this scenario, the integration of industrialized methods in
construction processes is advocated to enhance the overall quality of the end product, streamline
construction timelines, and curtail production costs. The algorithm developed for this purpose
leverages Rhino and Grasshopper programs, thereby optimizing material efficiency when compared
to traditional individual pieces. Noteworthy among the features of the Wikihouse system is its
remarkable versatility, allowing implementation in diverse locations. This flexibility stems from its
efficient assembly characteristics, which liberate it from the constraints of rigid modular structures,
contributing significantly to architectural design flexibility. The paramount finding of this research is
the demonstrated efficiency of the proposed system, requiring 44% less time compared to conventional
construction practices and exhibiting a commendable 29% reduction in costs. These outcomes
position the Wikihouse-based approach as an appealing and competitive alternative within the real
estate sector.

Keywords: modular; open-source; digital tools; sustainable construction; Wikihouse

1. Introduction

The construction industry in Peru is currently immersed in a complex scenario marked
by challenges stemming from the real estate crisis and climate change [1]. The main drivers
of climate change are human activity and high levels of greenhouse gas emissions in the
atmosphere [2]. Moreover, it is primarily attributed to the construction sector’s activity [3].
It is estimated that by the year 2021, this sector will consume about 40% of the available
energy worldwide, contributing to approximately one-third of global greenhouse gas
emissions during the construction and operation of buildings [4,5]. Based on this, industry
efforts are focused on reducing energy demand and the environmental impact of buildings,
improving the design phase, and implementing energy conservation measures [6].

The real estate crisis has impacted financial stability and investment in projects, gener-
ating uncertainty in the market [7]. On the other hand, climate change presents additional
challenges, as Peru experiences extreme climatic phenomena, such as floods and droughts,
directly affecting the planning and execution of construction projects [8,9]. The need to
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adopt more sustainable and resilient practices has become imperative, with the indus-
try facing the task of finding innovative solutions to address the real estate crisis while
strengthening the resilience of constructions against the impacts of climate change in the
Peruvian context [10,11]. This scenario demands integrated strategies and collaboration
among various industry stakeholders to effectively address these challenges and build a
more sustainable sector adapted to changing climatic conditions.

In Peru, around 10 million individuals, equivalent to approximately one-third of the
total population of the country, reside in informal urban settlements characterized by a
lack of essential services, such as infrastructure, public spaces, and adequate equipment, in
addition to deficiencies in urban planning design [12]. This figure represents approximately
half of the urban population and, in some cities in the Peruvian Amazon region, the
proportion exceeds 80% [13]. It is evident that the urban population’s growth and the
construction rate surpass the state’s capacity to develop cities, highlighting significant
historical deficiencies in the urban planning process and approach [14].

In recent years, technological progress has enabled the automation of processes in
various economic sectors. The construction industry has not been immune to this transfor-
mation, widely adopting digital tools in its environment. This change began in the 1990s
with the introduction of CAD version 1.0 software, replacing manual methods of drawing
plans. Likewise, project management has evolved, gradually incorporating collaborative
work principles, displacing traditional management [15].

The use of digital tools in the field of architecture is currently necessary for their
application in the development of various projects, such as digital fabrication, through a
set of techniques that use machines to create physical objects directly from computational
designs [16]. Therefore, promoting their application in the development of architectural
concepts is sought [17]. Knowledge of these tools is essential for future interior designers
and architects to engage with various techniques and technologies during their education,
making it a priority to experiment with a wide variety during the teaching process [18].
This application is implemented in different systems, where the representation of complex
architectural elements has been significantly improved thanks to digital tools, allowing
greater precision and detail in their representation [19]. Among the most widely used
modular construction systems supported by digital tools is the prefabricated system, which
is a method of producing elements or parts of a construction on an industrial scale, using
environmentally unfriendly materials, such as concrete, which is estimated to be responsible
for 90% of CO2 emissions in industrial processes [20]. This system prioritizes cost efficiency
in design and construction, and its availability is limited to large cities and surrounding
areas, excluding more remote populations where access is limited [21].

Within prefabricated systems, the PPVC steel modules (Prefabricated and Finished
Volumetric Construction) stand out, which propose bioclimatic strategies, such as the
installation of thermal solar collectors on the module and structural resistance at great
heights; however, this system entails a cost of 21,260.00 euros for a built area of 25 m2.
Additionally, the system considers factors such as costs, labor, time, and pollution [22].

Another prefabrication system on a smaller scale, used for the development of this
research, is Wikihouse. It operates with a system for the creation of plywood modules
manufactured through digital technology and open-source code. Created by Alastair
Parvin and Nick Ierodiaconou in 2011, they claim that this system is efficient, robust, and
carbon-neutral [23]. Additionally, despite its application being limited to orthogonal ge-
ometry and the need to create new pieces to fit the design models and regulations of a
specific location [24], the system has been recognized for its fundamental role in the devel-
opment and execution of buildings using subtractive digital fabrication equipment [25].
Consequently, many modular projects remain in the conceptual stage due to the need for
expensive licenses or permits for physical development. In this context, the presence of
groups promoting the use of open-source software has facilitated cooperation and informa-
tion exchange. The use of these open-source software tools has also had a positive impact
on reducing license costs, contributing to the overall cost reduction of solutions [26].
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On the other hand, each location has a set of requirements and design strategies for the
development of a proposal. In this sense, the Wikihouse system allows mass production
through the development of an algorithm created by each serving entity of the open-
source system. This open-source software creation culture fosters online collaboration, the
integration of diverse disciplines, the importance of practical experimentation, and informal
approaches to knowledge creation, research, and innovation [27]. The research approach
is based on the integration of two fundamental ideas: “coexistence” and “openness.” The
purpose of this research is to delve into the relationship between these concepts and their
connection to existing literature on “Global Design, Local Manufacturing” [28].

Regarding housing in Peru, it presents a series of challenges depending on the location,
and often not receiving much attention when designing a proposal for optimal user comfort.
In this sense, the system can develop short-term modular housing production based on
parameterization that uses comfort strategies [29]. This comfort is achieved through
principles that prioritize the conscious use of materials [30].

Modular developments in these systems are created through similar pieces that can
be assembled into a composition. There are different types or, alternatively, if we use
the theory of polyominoes, which is based on the use of the cube as the main element,
we are already establishing a composition method. This is because these forms have a
modular structure that allows the creation of interesting three-dimensional solid spaces [31],
in addition to the implementation of mechanisms related to the use of wind turbines in
architectural structures and hybrid systems to create energy conversion modules [20]. One
of the benefits of using this system is its modularity, which employs a parametric design
methodology that discards any form that does not fit predefined parameters and, instead,
focuses on developing forms that meet those criteria. This design approach provides several
advantages compared to traditional methods, which are often more linear and systematic,
such as concrete and steel, which have a significant environmental impact. By reducing the
time needed to create models, more time can be dedicated to exploring and experimenting
with the environmental comfort challenges presented by each intervention site, leading to
a higher degree of refinement in the desired shapes and designs [32]. These designs focus
on enabling open-source strategies in architecture [33].

Like the systems used in different specialties, designing based on modular forms is
an application that seeks to optimize and improve design in contemporary architecture,
both locally and globally. It requires designers to adopt an innovative approach when
addressing projects, paying special attention to the concept of pragmatism [34]. The location
of a housing project using the Wikihouse system has the necessary potential to meet the
physical needs and conditioning requirements of the user according to the environment and
climate of its location. In terms of housing typology, due to its flexibility, it can offer greater
possibilities for design strategies and can adapt and leverage different ecosystems [35].

The application of digital tools, such as the Wikihouse system, in multi-local social
housing has significant relevance for addressing and reducing the housing crisis in Peru.
The use of digital technologies in the design and construction of houses allows greater
efficiency in processes, which can result in faster and more affordable production of hous-
ing units. The Wikihouse system, being an open-source platform that facilitates digital
manufacturing and the construction of modular homes, offers the possibility of adapting
and customizing designs to the specific needs of marginalized and low-income commu-
nities [36,37]. The implementation of these digital tools in multi-local social housing not
only streamlines the construction process but can also contribute to cost reduction, making
housing more accessible for populations facing economic difficulties [38]. Furthermore, the
flexibility and adaptability of the Wikihouse system allow greater versatility in housing con-
struction that adjusts to the specific conditions of informal settlements, thus contributing to
improving the quality of life of communities affected by the housing crisis in the country.

Some benefits provided by digital manufacturing include adaptability or easier imple-
mentation in different contexts due to the modular design, and the ability to be built with
materials accessible worldwide, such as phenolic plywood.
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• It does not require specialized labor for construction, nor sophisticated tools.
• Connection are made through snap fits without the need for additional fasteners such

as nails or screws.
• It is easy to transport and compatible with any type of foundation.
• In addition to generating fewer emissions in its production than other materials, wood

actually captures and stores carbon from the atmosphere while in use; this is why it is
called carbon-negative.

• On the other hand, its design considers a 30 cm space for thermal insulation that can
be used depending on the climatic conditions of the proposed location.

The socio-environmental benefits derived from the use of parametric design tools,
software-based artificial intelligence, specifically with tools like Grasshopper and the Wiki-
house system, are diverse. Software-based artificial intelligence, like Grasshopper 1.0.0007,
significantly improves design efficiency, allowing faster and more accurate planning of
architectural projects. The software contributes to the optimization of designs, reducing the
use of materials in the manufacturing of modular parts. This has a direct impact on resource
conservation and the mitigation of material shortages. The Wikihouse system stands out
for using eco-friendly materials, such as wood. This not only contributes to environmental
sustainability but also creates a favorable environment for the surroundings and users.
The implementation of technologies like Grasshopper and systems like Wikihouse can
reduce energy consumption in construction, thus contributing to energy efficiency and the
reduction of environmental impact. The efficiency in design and manufacturing, facilitated
by artificial intelligence parametric desing tools like Grasshopperand the Wikihouse sys-
tem, leads to a reduction in costs associated with material manufacturing and processing,
making architectural projects more economically accessible.

Research on the use of the Wikihouse digital tool in social housing can open various
directions and future applications. Here are some possible areas that could be explored as
a continuation of the research:

• Design Optimization: Investigate ways to further optimize the design of houses using
Wikihouse, considering aspects such as energy efficiency, adaptability to different
climates, and ergonomics.

• Long-Term Social and Community Impact: Evaluate the long-term social and commu-
nity impact of houses built with Wikihouse. This could include studies on resident
satisfaction, community strengthening, and the impact on social mobility.

• Sustainability and Innovative Materials: Explore additional options to improve the
sustainability of the Wikihouse system, such as integrating innovative and eco-friendly
materials, as well as the possibility of material recycling.

These future directions and applications can contribute to expanding the understand-
ing and positive impact of Wikihouse implementation in the field of social housing, address-
ing specific challenges and leveraging opportunities for further improvement of efficiency,
sustainability, and accessibility in affordable housing construction.

Based on recent advances in parametric design and digital manufacturing tools, Wiki-
house and OSE Microhouse projects seek to create sustainable, efficient, and self-sufficient
construction structures. They also employ various technologies for the construction of their
main components [39]. These constructions incorporate a modular design that enables the
creation of spaces tailored to user needs and the specific climatic conditions of their location.
Versatility lies in their ability to rotate freely without compromising functionality, meaning
that the only limitation to using the system in different places and achieving adaptation to
the environment lies in the dimensions of the available land [39].

The positive impact of open-source software on reducing license costs is clearly demon-
strated in the context of WikiHouse, an innovative platform in the field of architecture
and construction. Distancing itself from traditional proprietary software with high license
costs, WikiHouse adopts an open and collaborative model, which not only makes design
and construction more accessible but also significantly reduces overall project costs. Build-
ing a 44 m2 house with WikiHouse and second-hand materials can cost approximately
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38,000 euros, much less than traditional methods. This cost efficiency is largely due to the
elimination of design software license expenses, allowing for a better distribution of the
budget for quality materials and energy efficiency [40]. Moreover, WikiHouse encourages a
culture of collaboration and knowledge-sharing in the design and construction community.
Users can adapt designs to their needs and share their modifications, thus promoting
continuous innovation and improvements in designs. This practice not only accelerates the
development of more efficient and sustainable solutions but also builds a community of
practice where knowledge and experiences are freely shared.

Another study complements this view, showing how visual algorithmic modeling in
Grasshopper applied to WikiHouse can generate a wide range of spatial and formal solu-
tions, thereby expanding design possibilities and applications in temporary and modular
architecture. Finally, WikiHouse has a positive impact on sustainability and energy effi-
ciency, reducing the carbon footprint and energy consumption compared to conventional
construction systems [41].

In summary, the aim of this research is to put forth the design of a housing prototype
employing modular techniques and the open-source Wikihouse system. This encompasses
a consideration of economic variables and user comfort through the implementation of
design strategies and algorithms utilizing digital tools.

2. Materials and Methods
2.1. Methodological Phase

This research has an experimental nature. It begins with the compilation of information
from scientific articles, followed by the identification of data related to the topic and its
proper classification. Finally, it allows for the conduct of experimental tests, both physical
and digital, of a proposal that meets the desired objective.

The algorithm played a crucial role in optimizing the efficiency of material usage. One
of its specific functions was the intelligent organization of cutting pieces, achieved through
an advanced ‘nesting’ process. Nesting is a computational technique used to arrange
two-dimensional shapes in a limited space, in this case the material surface, in a way that
minimizes waste. This approach is particularly relevant in the context of WikiHouse, where
component information is provided in 3D and 2D formats.

Adapting this information for CNC laser cutting instead of CNC routers was a signifi-
cant challenge. It required not only readjusting the dimensions and arrangement of pieces
but also optimizing the cutting process for a different type of machine. The adjustable
parameters of the algorithm allowed for modification of design information, from geometry
to specific details for physical prototype production.

The algorithm not only maximized material utilization through effective nesting but
also provided flexibility in parameter adjustments. This allowed adaptation of the design
for different types of machinery and materials, thereby increasing project efficiency and
sustainability. Material waste reduction is not only economically advantageous but also
contributes to a more sustainable and environmentally conscious design practice. Addition-
ally, the ability to quickly adapt the design to different production methods demonstrates
the versatility and power of the algorithmic approach in digital manufacturing and archi-
tectural design.

Figure 1 presents each phase developed throughout the research process, from the
selection of the modular system to the creation of a scale model. The aim of this model is to
verify economic feasibility and assess efficiency in terms of user comfort. The phases include:
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• Phase 1: Selection of the Modular System. The process began with an analysis to select
various modular systems. During this evaluation, various factors were considered,
such as software compatibility with the system, costs and materials needed for con-
struction, circular economy considerations, and the environmental impact associated
with the research outcome. The chosen system for the research was Wikihouse. To
implement this, a detailed analysis of its components (piece connection model and as-
sembly order for an orderly assembly) was conducted, along with familiarization with
them, and then loading and modifying these pieces in the corresponding software.

• Phase 2: Design and Modulation of Pieces. In this stage, the search for the ideal location
to develop the proposal started. This location had to meet specific criteria, such as
varied climatic conditions, geographical isolation limiting access to conventional
construction materials, and the availability of wood as the main raw material for
the Wikihouse system. Simultaneously, progress was made in designing the housing
model, incorporating new pieces. These not only met the rigorous structural standards
of the Wikihouse system but also aimed at generating and developing environmental
strategies that preserve the use of materials and benefit the user. These strategies were
conceived to be comprehensively utilized in the module based on the final algorithm
of the project.

• Phase 3: Construction of the Module. In this final phase, an algorithm was designed
to facilitate the loading of the final pieces, which played a crucial role in both the laser
cutting process and the construction of the physical model at scale. This algorithm
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was developed using Rhino and Grasshopper programs, which sorted and categorized
modular pieces, considering indicators such as area, piece shape, and scale, achieving
notable efficiency in material utilization. Additionally, an estimated projection of both
the required material quantity and the associated cost for the construction of the real-
scale housing module was generated. The housing prototype will be made using wood
due to multiple factors, such as availability and accessibility, as wood is a common
and accessible construction material in many regions worldwide. This facilitates its
acquisition for self-construction projects in different places, due to its lightness and
ease of handling, as it is a lightweight material compared to others. like concrete or
steel. This characteristic facilitates its manipulation during construction, especially in
projects where active participation of individuals building their own homes is sought.
Sustainability: If sustainably sourced from managed forests, wood contributes to the
project’s sustainability. Wood is a renewable resource, and its proper use can help
reduce the ecological footprint of construction. Ease of cutting and assembly: Wood is
a material that can be cut and worked with common tools, facilitating its use in self-
construction projects where specialized construction skills are not required. Energy
efficiency: Wood has natural thermal insulation properties, which can contribute to the
energy efficiency of homes built with this material. Flexibility and design versatility:
Wood is a versatile material that can adapt to various architectural designs.

2.2. Ubication

The location for the social housing prototype with the Wikihouse system was selected
considering different ecosystems in the environment and the economic and social needs
that the analyzed location may have [42]. Figure 2 shows the place designated for the
development of the prototype was:
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Figure 2. Place of study.

2.3. Climate

The city has a warm climate, moderately rainy with moderate temperature fluctuations.
In the case of the solar chart analysis, it was found that the azimuth angle 294.6◦ and the
elevation angle 13.91◦ indicate that the sunlight has a steeper slope [43].

Figure 3 represents the incidence of the solar path on the modular housing, taking into
account the immediate surroundings.
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2.4. Winds and Temperature

The average wind speed per hour in Moyobamba does not vary considerably through-
out the year and stays within a range of approximately 0.3–4.4 km per hour. The predom-
inant wind direction in this region most frequently comes from the east for 5.9 months,
from 1 April to 28 September, with a maximum percentage of 53% on 1 August. The wind
most frequently comes from the north for 6.1 months, from 28 September to 1 April, with a
maximum percentage of 64% on 1 January [22] (Figure 4a).
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Figure 4. Wind Chart (a) and Temperature Chart (b).

The cool season lasts 4.8 months, from 18 February to 11 July, and the average daily
maximum temperature is below 28 ◦C. The coldest month of the year in Moyobamba
is June, with an average minimum temperature of 18 ◦C and a maximum of 27 ◦C [42]
(Figure 4b).

Figure 4 identifies image (a), which represents the incidence of winds in the study
area with an average speed of 5 km/h. Furthermore, image (b) shows the maximum and
minimum temperatures, which vary between 18 ºC and 30 ºC depending on the month.

2.5. Precipitation and Humidity

The rainiest season lasts for 7.6 months, from 29 September to 15 May, with a proba-
bility greater than 29% of any given day being rainy. The month with the rainiest days in
Moyobamba is March, with an average of 13.0 days with at least 1 mm of precipitation [42]
(Figure 5a).
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The wettest period of the year lasts for 8.4 months, from 30 September to 13 June, and
during that time the comfort level is sultry, oppressive, or unbearable for at least 13% of the
time. The month with the sultriest days in Moyobamba is March, with 12.1 sultry days or
worse [42] (Figure 5b).

3. Results
3.1. Proposal

The digital proposal for the modular housing prototype through the Wikihouse system
incorporates a space distribution adapted to the system and the spatiality intended to be
achieved (Figure 6).
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3.2. Climate Indicators

Rooms with only one window will have poor ventilation. In this case, designs are
proposed with spaces adequately ventilated through cross-ventilation, promoting the circu-
lation of fresh air from doors or windows on opposite sides to enhance user comfort [44]
(Figure 7).
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3.3. Economics Indicators

The 57.50 m2 house consists of a series of modular pieces (Figure 8), which, when joined
together, create the basic spaces for a home (living–dining area, kitchen, one bedroom, and
a bathroom). The aim is to benefit the users and their immediate environment in various
aspects, such as comfort, economy, simplicity, etc. [45].
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Figure 8 represents the identification of all modular components of the house.
Development with modular structures offers the advantage of adapting to user needs,

and using wood, compared to materials commonly used in the area, such as steel or concrete,
promotes greater integration of the circular economy, reducing environmental impacts,
lowering energy consumption, and reducing the use of natural resources. Additionally, it
allows for the restoration of natural capital and encourages regeneration for future reuse,
bringing about a comprehensive change in construction design.
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An inventory of the necessary pieces is prepared (Figure 9) for loading into the
corresponding software, allowing for the determination of the material required for each
corresponding modular piece number.
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In Figure 10, the breakdown of in-house manufacturing (b) is assessed and presented
in relation to the pieces provided by the Wikihouse system (a).
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Figure 11 presents the final algorithm, which allows for the modification of indicators,
such as scale, material dimensions, margin of error, minimum separation between pieces,
laser cutting machine factor, etc. All these indicators enable the proper optimization of
the pieces in relation to the laser cutting material. The algorithm is divided into seven
development phases, which are as follows:
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Figure 11. Graph of the use of the algorithm in the modular pieces of SK-TECHO A DOS AGUAS at
a 1/10 scale on a 2 mm cardboard model measuring 965 × 665 mm.

Figure 12 represents Phase 1 of the algorithm, which allows for identification of the
geometry of the modular pieces using the Elefront R6 plugin (a). After that, the area of
each piece is calculated (b), and the external pieces are separated based on the area (c).

Figure 13 represents Phase 2 of the algorithm, which systematically identifies the areas
of each piece and arranges them in ascending order from smaller to larger area.

Figure 14 represents Phase 3 of the algorithm where, once the pieces are identified by
their areas, the respective quantity needed for each piece is indicated (a), using the cutting
plan table as a reference.
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Figure 13. Phase 2 of the development of the algorithm for optimizing modular pieces in laser
cutting material.
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Figure 14. Phase 3 of the development of the algorithm for optimizing modular pieces in laser
cutting material.

Figure 15 represents Phase 4 of the algorithm, where the scale is established for each
piece (a). Subsequently, each piece is assigned a code in an orderly manner (b), facilitating
the assembly of the model.

Figure 16 shows Phase 5 of the algorithm where the material dimensions are loaded (a),
ensuring it does not exceed the maximum dimensions of 1300 × 900 mm accepted by
the laser cutting machine. Additionally, a margin of material utilization at the edges is
established, expressed in millimeters (b).
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Figure 15. Phase 4 of the development of the algorithm for optimizing modular pieces in laser
cutting material.
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Figure 16. Phase 5 of the development of the algorithm for optimizing modular pieces in laser
cutting material.

Figure 17 represents Phase 6 of the algorithm, where all the previous phases are loaded,
allowing us to see the final result of the algorithm. The plugin used for this phase is Open
Nest (a), which allows us to group all the previous actions. Some of the main actions of the
plugin include organizing the pieces in the workspace according to their area and using
them to arrange the codes of each piece.
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Figure 17. Phase 6 of the development of the algorithm for optimizing modular pieces in laser
cutting material.

Figure 18 represents the new layers assigned for laser cutting, identified by cut lines (a),
engraving lines (b), and material edges (c).
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Figure 18. Phase 7 of the development of the algorithm for optimizing modular pieces in laser
cutting material.

3.4. Use of the Material

To verify the efficiency of the algorithm, another algorithm is developed that allows
us to calculate the material usage efficiency based on the pieces arranged by the previous
algorithm (Figure 19).
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Figure 19 shows the comparison of two models of arrangement for the modular pieces.
In the Figure 19a, the pieces were arranged using the algorithm with a processing time of
5 min. In the Figure 19b, the pieces were arranged manually, taking 30 to 45 min to place
them in the most suitable way on the material, with the possibility of making errors in the
quantity of pieces required per module due to the manual process.

The final result of the algorithm in terms of material utilization demonstrated a 20%
higher efficiency compared to performing the same process manually. Additionally, the use
of the algorithm significantly reduces the time needed to organize and code the pieces.

3.5. Model

With the development of the physical 1/10 scale module (Figure 19), the effectiveness
of the algorithm for all modular pieces required for the module was verified. Additionally,
economic savings were also confirmed.

Figure 20 represents the final model of the prototype. Regarding the final model costs,
for its assembly, 25 sheets of material were used (Figure 18) with a total cost of S/.325.00,
where, in most cases, the pieces were manually placed without the use of an algorithm.
Subsequently, all the pieces were loaded onto the material using the algorithm, resulting in
a material utilization of 18 sheets with a total cost of S/.234.00, representing a cost savings
of 28% compared to manually ordering and coding everything.
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4. Discussion

In the realm of multi-local social housing construction, prefabricated steel module sys-
tems, known as PPVC (Prefabricated Prefinished Volumetric Construction), have emerged
as an alternative, addressing both bioclimatic aspects and structural resistance, especially in
high-altitude contexts. However, limitations in these systems have been identified, mainly
related to the connection between volumetric modules and the loads generated by their
own weight. Although techniques and methods exist for the construction of medium and
high-rise buildings [22], the need to improve flexibility and adaptability persists. In this
context, this article highlights the use of the WikiHouse system as an innovative digital tool
that overcomes the aforementioned limitations.

The WikiHouse system features impeccable modular design, allowing the relocation
of doors and windows, as well as the efficient alteration of the design and model, adapting
to the specific conditions of each location. The results obtained during the assembly
process demonstrate the inherent efficiency of the WikiHouse system [46]. The ability to
maintain structural unity while exhibiting flexibility for various design needs highlights
the versatility and adaptability that this digital tool brings to the field of multi-local social
housing construction.
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The WikiHouse system aligns comprehensively with long-term social, economic, and
environmental sustainability [47], specifically with circularity principles in the realm of
housing construction [48]. Through its innovative design and construction approach,
WikiHouse incorporates key aspects of the circular economy by prioritizing resource
efficiency, reuse, and adaptability. The inclusion of new pieces in the housing model not
only meets rigorous structural standards but also strategically aligns with circular economy
principles. In this regard, the use of wood in WikiHouse stands out as a renewable resource
with lower environmental impact, which, when employed, would reduce carbon emissions.
Therefore, it is essential to consider greenhouse gas emissions in the construction sector from
the perspective of life cycle analysis, which would help overcome barriers to implementing
the circular economy in construction [49].

The use of wood in WikiHouse not only promotes sustainability, due to its lower CO2
emission rate and reduced environmental impact compared to steel or aluminum [50], but
also contributes to mitigating climate change. Wood products serve as a carbon storage de-
pot and can replace environmentally harmful sources of materials and energy, such as fossil
fuels. These incentives to increase the use of wood products (Harvested Wood Products,
HWP) are implicit in the Kyoto Protocol, as substituting fossil fuels with wood-based fuels
and energy-intensive materials with wood-based products is a means to reduce carbon
dioxide emissions [51]. Additionally, at the end of their lifespan, wood components in the
WikiHouse system can be reused or recycled, reducing waste compared to conventional
construction and demolition methods. The modular design of the WikiHouse system also
stands out, enabling efficient construction and minimizing material waste. Precision in
CNC (Computer Numerical Control) cutting ensures optimal utilization of each piece,
essential for sustainable resource management.

In Figure 21, the different phases of the circular economy model implemented by
WikiHouse are presented, prioritizing efficiency in resource use, reuse, and adaptability.
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The application of polyomino theory in architectural development has introduced a
modular composition that demands a base measure to facilitate space organization [52].
However, the use of these spatial modules becomes less flexible when faced with the task of
generating irregular environments. In contrast, the WikiHouse system offers the flexibility
needed for the creation of unrestricted spaces, without being limited to a rigid or strict
modular structure, as well as ease of implementation in various locations due to its efficient
assembly feature, enabling a diversity of shapes in its composition.

Figure 22 highlights the system’s flexibility in adapting and adding new spaces over
time, according to the specific needs of the user.
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In the realm of steel structural design, its properties, promoting durability, strength,
and adaptability to various physical needs stand out. Despite the numerous virtues of
steel, manufacturing components for structures in this material involves higher energy
consumption. The main contributors to CO2 emissions in buildings with steel structures are
attributed to 52% for the production of steel beams, with the production of these structures
being the primary factor in energy consumption. Additionally, since manufacturing is
performed in specialized areas, the transportation of elements and tools is part of the total
energy consumption [22]. On the other hand, the use of wood in architectural design
offers greater adaptability, strength, flexibility, and comfort for users, making it a versatile
material for application in different environments, as mentioned in previous paragraphs.
Thus, in Table 1, it is shown that a steel housing prototype has significantly higher costs
due to the amount of energy and the quantity of materials used in its manufacturing. In
contrast, in the case of construction with wood, this stands out as the lower-cost option,
besides being in harmony with its surroundings.
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Table 1. Comparison of steel and wood housing prototypes: Cost and material life cycle.

Housing Prototypes Material Cost Material Quantity Material Life Cycle

Steel Housing Prototype Case 850 EUR/m2

Indefinite
As it is a manufactured
material, it has a greater

possibility of using

Transport 19%

Wooden Housing
Prototype Case 230 USD/m2

Enough
It is regenerated from the

circular economy
Transport 5%

In a community in the Negev Desert in Australia, a methodology was developed
to create a temporary mobile infrastructure with the assistance of the community [28].
However, this cannot be adapted to other parts of the territory because it is a closed-source
system. In contrast, the open-source nature of WikiHouse contributes significantly to
its adaptability and widespread use due to its collaborative development. Being open-
source allows a community of developers, architects, and enthusiasts to collaborate on
the continuous improvement and refinement of WikiHouse. This collective effort brings
diverse perspectives and knowledge, enhancing the system’s adaptability to various needs
and contexts.

The tentative documentation of an emerging production prototype known as “global
design, local manufacturing” or “DGML” [53] has demonstrated the innovative capabilities
of commons as an alternative route for technological development in response to social
needs [54,55]. Constant research into this alternative social perspective could reveal new
opportunities to explore and apply practices that drive more equitable and sustainable
innovation, thus improving the ability to more effectively meet social needs and address
global challenges, such as the climate crisis.

In the context of homes for low-income individuals, quality of life [33] is significantly
affected by bioclimatic concepts, with natural ventilation management being a key component
following a low-cost approach [34]. In the proposal presented in this article, cross-ventilation
is implemented in main spaces as an integral part of this bioclimatic strategy.

This research has thoroughly explored the impact and implications of implementing
the WikiHouse system in the context of multi-local social housing construction. Through
the evaluation of its versatility, sustainability, and adaptability, its crucial role in addressing
identified limitations in other prefabricated systems has been highlighted. The versatility
of WikiHouse has been demonstrated in its ability to efficiently alter the design, adapting to
specific conditions of each location. This distinctive feature, supported by the ongoing col-
laboration of the developer and architect community, as well as the open-source approach,
underscores the transformative potential of commons-based practices and collaborative
innovation. From a sustainability perspective, WikiHouse stands out by incorporating
principles of circular economy, resource efficiency, and material reuse, with a particular
focus on wood as a renewable resource with low environmental impact. This application
aligns comprehensively with long-term social, economic, and environmental sustainability,
marking a significant advancement in the field of sustainable construction.

5. Conclusions

When comparing the versatility of AI-based parametric software and human skills,
it can be concluded that the use of software such as Grasshopper version 1.0.0007 has
significantly improved design efficiency and reduced material usage in the manufacturing
of modular parts for the Wikihouse system. The Grasshopper software version 1.0.0007,
combined with the open-source nature of the system, is key to addressing material scarcity,
reducing energy consumption in construction, and lowering costs associated with manu-
facturing and processing. These tools enable faster and more efficient development and,
with ongoing digitization, systems like Wikihouse are increasingly important due to their
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open-source nature, promoting dissemination and enhancing the viability of executing
architectural projects in various locations.

In the construction system developed in this research, several advantages and dis-
advantages can be identified when considering its application in construction in terms of
the physical environment, climatic conditions, and user comfort needs. In the case of the
Wikihouse system, the use of eco-friendly materials, such as wood, stands out, offering
numerous benefits. Wood not only contributes to maintaining and creating a favorable
environment for both the surroundings and its users but also possesses physical properties
that make it widely accessible and sustainable. Its availability and ease of use make it an
efficiently sustainable option.

The execution of architectural projects involves the need to meet requirements that
cover the complex and specific needs of each project. However, architecture does not
necessarily follow a strictly linear approach. Based on this premise, it can be inferred that
the design of an architectural space should adapt to the environment and specific needs.

Regarding the capabilities of the Wikihouse system, its virtuous ability to be imple-
mented in various locations stands out due to its efficient assembly feature, without being
limited to a rigid or strict modular structure. Therefore, this system provides flexibility in
design, which is a distinctive feature of architectural works.
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