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Abstract: Developing intelligent bus control systems is crucial for fostering the sustainability of urban
transportation. Control instructions are produced in real time by the bus control system; these are
important technical commands to stabilize the order in which buses operate and improve service
reliability. Understanding the behavioral intention of bus drivers to comply with these instructions
will help improve the effectiveness of intelligent bus control system implementation. We have
developed a psychological model that incorporates decomposed variables of the theory of planned
behavior (TPB) and other influencing variables to explain the micromechanisms that determine
bus drivers’ behavioral intention to comply with real-time control instructions during both peak
and off-peak-hour scenarios. A total of 258 responses were obtained and verified for analysis. The
results showed that the influential factors in the peak- and off-peak-hour scenarios were not identical.
Female drivers had greater off-peak-hour behavior intention to comply than male drivers, and there
were significant differences in peak-hour behavior intention among drivers of different ages. In both
peak and off-peak-hour scenarios, perceived benefit positively and perceived risk negatively affected
behavioral intention. Perceived controllability positively affected behavioral intention only during
peak hours. Self-efficacy only negatively affected behavioral intention during off-peak hours. Three
antecedent variables (i.e., trust, mental workload, and line infrastructure support) influenced drivers’
behavioral intentions indirectly via the decomposed variables of TPB. These results provide profound
insights for the improvement and implementation of real-time control technology for bus services,
thereby facilitating the development of smart and sustainable urban public transport systems.

Keywords: bus real-time control technology; bus drivers’ behavioral intention; technology acceptance;
influential factors; empirical study

1. Introduction

The development of high frequency buses improves the urban transportation capacity
and ensures the high mobility of urban residents. However, due to random variations
in urban road traffic and to volatility in the distribution of passenger flow demand, bus
bunching often occurs on high-frequency routes [1]; this seriously affects bus service quality
and passengers’ travel experiences [2,3]. Many scholars have proposed real-time control
strategies for buses to solve the problem of bus bunching, including speed control [4,5],
bus holding [3,6], stop skipping [7,8], and boarding limits [9,10], among others, to improve
the reliability of public transport services. The real-time control strategy has been proven
to perform well in simulated environments [9]. Additionally, real-time control technology
developed based on these strategies has been demonstrated to perform effectively under
ideal real-world operating conditions, which can improve the headway regularity in bus
operation and maintain the order of the fleet [11].

Real-time control is a sustainable form of bus operation dispatching method that
reduces human resource consumption, addresses bus bunching issues, and enhances the
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quality of bus services. Therefore, real-time control technology has wide prospects for
application and contributes to the sustainability of urban transportation. Although the
future of the technology is quite promising, there is still a significant gap between the theory
and the practice [12]. In practical implementations, bus drivers are the executors of these
real-time control instructions, and the extent to which they execute those instructions largely
determines the effectiveness of control strategies [11,13,14]. As bus company employees,
bus drivers’ positive attitudes toward real-time control technology and their willingness
to accept it are key to effectively achieving organizational goals [15]. However, existing
studies have shown that bus drivers’ acceptance of such technology is still low [16], which
hinders its implementation and development. Examining priori acceptance before the
introduction of new technology plays a key role in assisting policy makers, implementers,
and technology developers in developing effective interventions to promote technology
acceptance, which is crucial for the large-scale implementation of these innovations [17–21].

This study explored bus drivers’ priori acceptance of technology by measuring their
behavioral intention to comply with instructions. Ajzen (1991) [22] has suggested that
behavioral intention predicts whether a person will engage in a certain behavior, while
Davis et al. (1989) [23] defined behavioral intention as the subjective probability a person
will perform a certain behavior. For respondents, questions asking about their behavioral
intention are more relevant than questions asking about their general acceptance and
attitudes toward a technology or system and are likely to activate more immediate concrete
thinking [24,25].

This study aimed to determine the influence of bus drivers’ personal attributes and
social psychology factors on behavioral intention to comply with instructions in peak- and
off-peak-hour scenarios in which there are differences in passenger and traffic volumes.
This study contributes to the existing literature in both theory and practice. By identifying
key determinants of bus drivers’ compliance with instructions, it enriches the literature
on bus drivers’ acceptance of real-time control technology, offering insights for future
technological improvement and implementation.

2. Related Work

Research on the behavioral intention of bus drivers to comply with instructions is still
in its infancy. Some studies have qualitatively analyzed drivers’ views and willingness to
use real-time control technology via interviews and other forms [16,26]. Other studies have
indirectly analyzed the response of bus drivers to real-time control instructions via testing
the effectiveness of the application of such technologies in the field.

2.1. Bus Drivers’ Perspectives in a Real-Time Control Context

Pritchard et al. (2014) [26] employed in-depth semi-structured interviews and ethno-
graphic fieldwork to explore bus drivers’ perspectives of location-based service (LBS) and
how LBS changed their bus driving careers. They found that the introduction of LBS
fundamentally changed some drivers’ job roles and that drivers sought to avoid sudden
speed changes to provide safe boarding and comfortable riding experiences for passengers.
At the same time, this technology created some unfortunate unintended consequences
for drivers, including increased workload and reduced autonomy, which led to unsafe
driving. Martínez-Estupiñan et al. (2022) [16] used a questionnaire to investigate the factors
that influence bus drivers to use or ignore instructions and to determine how bus drivers
approach the headway control tool (HCT) to help them maintain regular headways. They
found that the acceptance of real-time control technology varied by age. Experienced
drivers were more reluctant to use it, as they relied more on their experience to keep
regular headway, while less experienced drivers recognized the accuracy of the information
delivered and felt it improved their driving performance. However, many drivers reported
that road congestion, limited capacity, the deterioration of some buses, lack of adequate
training, heterogeneous characteristics of other drivers, the drivers’ moods, and the need
to multitask while driving prevented correct execution of instructions. Almost all drivers
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agreed that high congestion levels and a lack of segregated lanes made it extremely difficult
to comply with instructions during peak hours. The study also investigated the HCT
attributes that drivers found valuable.

2.2. Bus Drivers’ Behavioral Responses to Instructions

Argote-Cabanero et al. (2015) [13] conducted holding strategy simulations and inferred
that the simulated results were better than the real results because the bus drivers could
not fully comply with the instructions in reality, and it was hypothesized that longer
holding times increased driver stress and that their compliance improved after training.
Cats (2019) [27] analyzed the performance of a high-frequency line in Stockholm based on
automatic vehicle location and found that drivers adjusted their driving speed based on
the real-time schedule and that driver responses depended on the layout of the timepoint
stops where driving performance was measured, as well as on traffic conditions. Ji et al.
(2014) [28] quantified bus drivers’ responses to real-time schedule adherence and their
impact on transit reliability based on automatic vehicle location data; they found that bus
drivers use real-time information to keep on schedule. Compared to adjusting the bus
dwell times at regular stops, bus drivers are usually more likely to respond positively to
real-time schedule at time point stops or to adjust their speed along the routes to keep
on schedule. Lizana et al. (2014) [11] implemented real-time control software in the bus
services of Transantiago; the software used the bus console or a tablet to send holding,
acceleration, and deceleration instructions to drivers. They found that bus drivers did not
follow the instructions they received mainly due to confusion about which instructions to
follow (i.e., the instructions in the tablet or the existing schedule).

These studies initially identified key factors that influenced drivers’ perceptions and
responses, including perceived usefulness, perceived risk, ability to follow instructions,
personal attributes, mental workload, occupational stress, driving style, and external envi-
ronment. These studies provide a theoretical basis for the study of bus drivers’ behavioral
intentions; however, to the best of our knowledge, no research has been conducted in terms
of developing a theoretical framework and quantitative analysis to explore the behavioral
intention of bus drivers and influential factors oriented to real-time control technology.

Some studies have shown, however, that bus drivers’ acceptance of real-time control
technology varies in different scenarios. For example, during peak hours, bus drivers
consider such technologies as ineffective due to road congestion and high passenger
volume [16], which reduced technology acceptance. The perceptions and responses of bus
drivers to such tools thus appear to be influenced by the application scenarios. However, to
the best of our knowledge, no research group has studied the similarities and distinctions
among the determinants of behavioral intentions during peak and off-peak hours.

Considering that the ultimately applied real-time control technology in the bus transit
system is a comprehensive product formed by one or more control strategies, the main
focus of this study is to explore whether bus drivers are intended to accept the real-time
control instructions in general. Among diverse real-time control strategies, the holding
and speed control strategies have been extensively studied and have also been proven to
perform well in real-world conditions [11,29,30]. Therefore, this study takes the holding
and speed control strategies as the core control strategies used, and refers to the techniques
and algorithms developed by Lizana et al. (2014) [11] and Delgado et al. (2012) [9]. The
technique employs a rolling horizon mathematical programming model to minimize total
passenger waiting times when making each decision. The primary decision variable used
to solve the optimization problem is the duration that buses should hold at a stop. If
a bus should not hold, the model may suggest that the bus adjust its speed to reach its
ideal position, taking into account the realistic constraints of bus speed adjustments. The
optimization model is fed with static data (i.e., the number of bus stops on the line and the in-
route distance between them, the average boarding and alighting times per passenger, and
origin–destination demand matrix) and dynamic data (i.e., the number of buses operating
in the line, their capacity and location within the bus route, speed or travel time between
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consecutive bus stops, passengers waiting at each bus stop and those who have boarded
each bus, and speed of buses). The program estimates travel time between consecutive
stops combining real-time GPS positions with historical observations. Moreover, the current
technology development in China has been combined to make relevant settings for the
technology, including the use of an automatic passenger counting (APC) system to collect
passenger demand information, sending speed adjustment instructions to drivers each
minute while driving, and sending holding instructions to drivers when buses arrive
at stops. The system conveys fuzzy speed adjustment commands through panel icons
indicating acceleration, deceleration, or maintaining speed, without specifying the exact
speed. Drivers are allowed to adjust speed within one minute of receiving instructions
(i.e., the instruction transmission frequency). Holding instructions are presented with a
countdown format indicating the remaining time.

3. Theoretical Framework
3.1. Theoretical Background

The theory of planned behavior (TPB) [22] is a widely used model for predicting and de-
scribing human behaviors and has been applied to many driving-related behaviors [31–35].
The TPB posits that behavioral intentions are jointly determined by attitudes, subjective
norms, and perceived behavioral control [22]. Although TPB has been universally accepted
as a model for conceptualizing social behavior, it has been criticized for failing to offer
operational antecedents of behavioral intention [36]. Many previous studies have further
explored the feasibility of the TPB theory by considering the multi-dimensionality of its
components [37–41]. As a result, the variable setting process is becoming more and more
refined and close to reality.

Attitude refers to the degree to which a person has a favorable or unfavorable evalua-
tion or appraisal of the behavior in question [22]. Based on Fishbein and Ajzen’s (1977) [42]
distinction of attitudes, Hsu and Chiu (2004) [38] decomposed attitudes toward a behavior
into three aspects, namely perceived usefulness, perceived risk, and perceived playfulness.
In this study, we focus on perceived benefit (which is similar to perceived usefulness) and
perceived risk. Perceived benefits are beliefs about the positive outcomes associated with a
behavior in response to a real or perceived threat [43]. Perceived risk is defined as a kind
of subjective expected loss [44]. In this study, bus drivers are not only concerned about
whether real-time control technology can effectively improve the level of bus service, but
also pay attention to potential risks in various aspects, such as passenger satisfaction and
driving safety.

Subjective norm refers to the perceived social pressure to perform or not to perform the
behavior [22]. However, as real-time control technology is still in the research stage and has
only been minimally implemented in certain regions, with no application in most countries
(e.g., China), bus drivers may have difficulty perceiving social pressure regarding the
execution of instructions. Consequently, the concept of subjective norm is not applicable in
this context and is not adopted as predictors of behavioral intention in executing real-time
control instructions in this study.

Perceived behavioral control (PBC) refers to people’s perception of the ease or difficulty
of performing the behavior of interest [22]. PBC can be decomposed into self-efficacy and
perceived controllability [38]. Self-efficacy refers to confidence in one’s ability to perform
it [22]. Perceived controllability refers to the beliefs about the extent to which performing
the behavior is up to the actor [45]. Self-efficacy and perceived controllability jointly reflect
the execution difficulty from internal and external control perspectives, respectively. In the
context of real-time control, some bus drivers explicitly express insufficient capability to
execute instructions and a lack of control over their actions under the influence of external
environmental factors, making it challenging for them to follow instructions [16].

Based on previous exploratory research, perceived benefits and risks, self-efficacy,
and perceived controllability of executing instructions were four crucial antecedents for
behavioral intentions in the current developmental stage in this study. Additionally, we
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explored antecedents of these variables, including trust, mental workload, and line infras-
tructure support. This framework was proposed to explain the behavioral intention to
execute real-time control instructions.

3.2. Perceived Benefit, Perceived Risk, and Behavioral Intention

People construct their beliefs based on perceived benefits and risks when deciding
whether to use a technology [46–50]. In the behavioral decision-making process, this is
known as the risk–benefit paradigm and is seen as a fundamental predictor of behavioral
willingness [49,50].

In the context of real-time control, we defined perceived benefit as bus driver’ beliefs
about the positive outcomes associated with the execution of real-time control instructions.
Compared with private drivers and other professional drivers, bus drivers have a greater
sense of social responsibility and a stronger sense of serving the public. From the drivers’
perspective, the benefits associated with complying with real-time control instructions
primarily refer to the social and personal benefits compliance can achieve, which can include
improving headway regularity, reducing bus bunching, avoiding excessive differences in
the number of passengers carried between buses, and preventing passengers from waiting
too long; these help reduce angry passengers’ mistreatment of the drivers [16].

Some studies have shown that bus drivers acknowledge the benefits of using real-
time control technology and complying with instructions; however, they also express
great concern about the associated risks [16,26]. Following Peter and Ryan’s (1976) [44]
suggestion, we defined perceived risk as subjective expected loss when following real-time
instructions. For bus drivers, there may be dissatisfaction or anger among the passengers on
the bus due to the execution of instructions such as slowing down or holding at stops [26,28].
Pritchard et al. (2014) [26] also pointed out that drivers believe that driving faster to
maintain regular headway is a safety issue, which is of significant concern to bus drivers [51].
Drivers may also be concerned that complying with holding and deceleration instructions
could lead to an increase in overall driving time and a decrease in driving efficiency, thereby
reducing the driver’s rest time. If the space at the stop is insufficient or the holding time
is too long, it could also cause buses from different lines to crowd at the stop, resulting in
road congestion. In this paper, perceived benefit and perceived risk are considered key
factors that affect behavioral intention. We therefore propose the following hypotheses:

H1. Perceived benefit positively affects peak-hour behavioral intention.

H2. Perceived benefit positively affects off-peak-hour behavioral intention.

H3. Perceived risk negatively affects peak-hour behavioral intention.

H4. Perceived risk negatively affects off-peak-hour behavioral intention.

3.3. Self-Efficacy, Perceived Controllability, and Behavioral Intention

In the context of real-time control technology, bus drivers must be able to follow
instructions and perform tasks; this involves two important factors: self-efficacy and
perceived controllability. Self-efficacy [52] is associated with perceptions of control over
internal factors (e.g., perceived ability or confidence to perform a behavior), while perceived
controllability is associated with perceptions of control over external factors (e.g., opportu-
nities and environmental constraints) and reflects whether the behavior depends entirely on
the actor. Many empirical studies have supported this distinction [45,53,54]. Both internal
control factors (e.g., the ability to adjust the bus speed according to instructions in mixed
traffic or the ability to hold their buses at stops according to a given holding time) and
external control factors (e.g., high traffic congestion making it difficult to adjust bus speed
or limited space at bus stops making it difficult to hold the bus there) are important for
complying with instructions [55].
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The theory of self-efficacy proposed by Bandura (1986) [52] defined self-efficacy as
“individual judgments of his capacities to complete a task,” which suggests that an individ-
ual’s self-efficacy affects behavioral choices and persistence. When individuals are more
confident in their ability to complete a task, they are more willing to choose and stick to
completing the task. Numerous studies [56–58] have shown a significant positive correla-
tion between an individual’s self-efficacy and behavioral intention and performance, as has
been observed in studies related to driver behavior, such as intention to use a self-driving
car [59–61] and driver speeding behavior [31,55]. The current study therefore incorporates
self-efficacy into the research model, and in the context of real-time control, self-efficacy
describes the confidence of bus drivers in their ability to respond to and comply with
instructions [62].

Perceived controllability is defined as individual judgments about the availability of
resources and opportunities to perform a behavior [45]. Individuals require certain basic
conditions to complete certain behaviors [63]. Perceived controllability has been shown to
predict behavioral intention in many studies; for example, Elliott (2010) [64] confirmed that
perceived controllability could predict a motorcyclist’s intention to accelerate and explained
much of the variance, together with attitude. Kaye et al. (2020) [32] incorporated theory of
planned behavior and unified theory of acceptance and use of technology constructs into
regression models to predict the intentions to use highly automated vehicles, and the results
showed that perceived controllability was a positive predictor of French drivers’ intention
to use such vehicles. In the context of real-time control, perceived controllability refers to
the degree of control that bus drivers have over their compliance with instructions—that
is, bus drivers’ judgement about whether complying with the instructions is completely
up to them because of the availability of resources and opportunities. When bus drivers
have enough resources to control their behavior, they have enough confidence and are
likely to be more willing to carry out instructions. Based on these findings, we propose the
following hypotheses:

H5. Self-efficacy positively affects peak-hour behavioral intention.

H6. Self-efficacy positively affects off-peak-hour behavioral intention.

H7. Perceived controllability positively affects peak-hour behavioral intention.

H8. Perceived controllability positively affects off-peak-hour behavioral intention.

3.4. Trust and Perceived Benefit/Risk

Trust is a critical factor in interpersonal relationships [65]. Trust is the belief that
the trustee will act cooperatively to achieve the trustor’s expectations without exploiting
vulnerabilities [66]. In the behavioral literature, many scholars have divided the dimensions
of trust, and most scholars assess trust using the three dimensions defined by Mayer
et al. (1995) [67]: ability, benevolence, and integrity. Wang and Benbasat (2004) [68]
extended interpersonal trust to technological artifacts, arguing that trust in technology
is essentially the same as interpersonal trust. Thatcher et al. (2010) [69] divided trust
in IT into three dimensions, in which each technology trusting belief corresponds to an
interpersonal trust belief, where functionality refers to the belief that a system has the
capacity, functions, or features to perform a task; helpfulness refers to the belief that the
system will provide adequate, responsive assistance; and predictability is the belief that a
system acts consistently and that its behavior can be forecast.

Trust in technology is often used by scholars for studies on information systems [47,70,71].
Trust in technology is important for compliance with instructions because bus drivers have
to evaluate whether the information provided by the real-time control technology is valid,
trustworthy, and accurate, as well as providing useful guidance, to decide whether to
execute those instructions. Therefore, we believe that functionality and helpfulness are
the most relevant dimensions in the real-time control environment. However, it should be
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noted that, because most bus drivers have no experience with real-time control technology
yet, trust in it more accurately refers to the initial trust of the bus driver, formed prior to
first-hand experience with another party [72,73].

In the field of human–machine interaction, trust in technology provides a measurement
of the subjective guarantee that technology will bring about the expected benefits or
utility [74]. If bus drivers cannot trust technology, it will be difficult for them to see the
benefits and usefulness of complying with the instructions sent by that technology. In
multiple research fields, trust has been shown to have a significant impact on perceived
benefit [50,75,76]. Therefore, it is assumed that initial trust will have a positive effect on
perceived benefit in this study:

H9. Initial trust in technology has a positive impact on perceived benefits.

Trust can minimize the perceptions of risk and uncertainty in some cases [77,78], and
perceived risk is a major factor associated with trust. Trust in technology helps reduce
uncertainty when using real-time control technology and complying with instructions,
thereby promoting behavioral intention. Studies from multiple research fields have demon-
strated the importance of trust in explaining perceived risk and suggest that higher levels
of trust weaken the level of perceived risk [79–82]. Initial trust in technology enables users
to reduce their risk perceptions, increasing the likelihood that users will rely on technology
to perform tasks and achieve goals:

H10. Initial trust in technology has a negative impact on perceived risk.

3.5. Mental Workload and Self-Efficacy

The concept of mental workload is derived from Miller’s (1956) [83] theory of capacity
limitation in working memory according to which people have a limited capacity and
duration of working memory when processing new information. This also means that
people’s attention resources have a finite capacity, beyond which an increase in demand
will reduce effectiveness [84]. It is therefore necessary to reduce the cognitive load of
working memory and improve the ease of information processing in working memory to
make it easy for people to accept new technologies [85,86]. Mental workload is defined as
the cost incurred by an individual to achieve a specific level of performance on a task with
specific demands [87,88].

The mental workload of drivers has been widely investigated in vehicle driving
research. From the perspective of the drivers, mental workload stems from the work
pressure exerted on the driver by operating the equipment or tools to complete a specific
task; it has been verified to affect their work performance [89,90]. For bus drivers, attention
is mostly used to ensure safe driving in the ordinary work process, and the introduction
of real-time control technology is likely to cause drivers to have to pay extra attention to
comply with instructions [16]. Pritchard et al. (2014) [26] also noted that drivers feel that
such technologies will impose an extra work burden on them, increase their workload, and
generate greater work pressure, which also exacerbates driver dissatisfaction.

Many studies have demonstrated a negative correlation between mental workload
and self-efficacy [91–94]. High mental workload indicates that the formation of schemas
in working memory is not smooth enough, which implies that the schema construction
process associated with completing the task is complex and difficult [85,86]. Conversely,
low mental workload indicates that schemas are formed in an effective and efficient manner,
which leads to a more relaxed feeling when completing tasks [95]. This can also be applied
to bus drivers in the context of real-time control. We believe that when drivers believe that
complying with instructions requires significant extra effort, this means that it is complex
and difficult for them to complete the task, so their confidence in completing those tasks
will decrease. That is to say, mental workload may negatively impact self-efficacy, as
confirmed by Li et al. (2021) [96] in their research on satisfaction with autonomous driving
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technology. Feldon et al. (2018) [97] found that the imposition of greater mental workload
during instruction predicted lower levels of post-instruction self-efficacy. Therefore, our
study proposes the following hypothesis:

H11. Mental workload negatively affects self-efficacy.

3.6. Line Infrastructure Support and Perceived Controllability

Line infrastructure is often considered an important barrier to executing real-time
instructions. The current line infrastructures are still inadequate for bus drivers to carry
out instructions smoothly. The holding strategy may be difficult to implement due to traffic
dynamics and stop capacity constraints [28,98]. Road geometry constraints, high levels of
traffic congestion and the invasion of priority bus lanes make it difficult for bus drivers to
execute the acceleration and deceleration instructions [16,28].

In the field of transport-related technology acceptance and behavioral intention, previ-
ous studies have explored the impact of infrastructure support on driver acceptance, such
as automated vehicle acceptance [99], electric vehicle acceptance [100,101], and transport-
related cycling [102]. Therefore, we decided to include the factor of line infrastructure
support (LIS) in the research model to further study its contribution to behavioral intention.
LIS measures the driver’s perception of how the existence of line infrastructure helps
them execute instructions. Some previous studies have identified significant impacts of
infrastructure availability on perceived behavioral control (PBC) [103,104]. As mentioned
earlier, perceived controllability, as an underlying dimension of PBC, reflects whether the
environment limits or provides opportunities to perform a given behavior, and excellent
line infrastructure would enhance bus drivers’ belief in their control of compliance with
instructions by supporting drivers to execute instructions more smoothly. Therefore, we
propose the following hypothesis:

H12. LIS positively affects perceived controllability.

Figure 1 shows all the factors presented in the current study and the hypothetical
relationships within them. These assumptions form the theoretical framework of this study,
and we tested these assumptions using structural equation models.
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4. Methodology
4.1. Questionnaire

A self-administered questionnaire was designed to collect empirical data for this study.
The questionnaire consisted of three sections. The first part was used to collect five types of
demographic information from the respondents: gender, age, education background, bus
driving experience in years, and bus driving experience on the current route. In the second
part, the respondents were introduced to the technical subjects of this study in the form of
pictures combined with text, which read as follows:

While driving the bus, real-time control technology is used in the background to collect
information about the real-time bus status (e.g., real-time location, number of passengers
on board, number of waiting passengers at the stops, current speed, etc.) using GPS and
APC devices. The travel time between consecutive stops is estimated combining the real-
time information with historical observations, and real-time passenger demand data is
processed. Finally, the program generates a holding instruction (staying at the stop for an
additional period of time) and an acceleration or deceleration instruction every minute.
The corresponding instruction is then displayed on the bus screen, requiring bus drivers to
follow the instructions to avoid bus bunching.

The display screen interfaces for holding, acceleration, and deceleration instructions
were also shown to the respondents. The second part focused on the measurement of the
constructs proposed in our research model. There was a total of 27 items, including both
self-developed and validated items adapted from previous research. These items were
formed after modification based on the results of expert group discussions and interviews
with eight bus drivers. Table 1 provides the final items and sources. All the variables
were measured on a 5-point Likert scale, except for LIS, which was measured on a 7-point
Likert scale.

Table 1. Measurement of constructs and item sources.

Constructs Item Sources

Perceived benefit (PB)

PB1: Complying with instructions can improve the phenomenon of bus bunching.

Self-developed

PB2: Complying with instructions can make buses on the same route arrive at
stops more regularly.

PB3: Complying with instructions can prevent passengers from waiting too long
for a bus.

PB4: Complying with instructions can avoid excessive differences in the number
of passengers carried between buses.

Perceived risk (PR)

PR1: Complying with instructions may lead to dissatisfaction among passengers
on board. Self-developed,

items are from
[26,28]

PR2: Complying with instructions may reduce driving safety.
PR3: Complying with the instructions may cause traffic congestion.

PR4: Complying with the instructions may reduce my work efficiency.

Self-efficacy (SE)
SE1: I have enough driving ability to comply with the instructions.

Modified from [66]SE2: If I wanted to, I would be able to comply with the instructions.
SE3: If I wanted to, I am confident I could comply with the instructions.

Perceived
controllability (PC)

PC1: Whether I can comply with the instructions completely depends on myself.
Modified from [62]PC2: Complying with the instructions is completely under my control.

Trust (TR)

TR1: I believe that the process of generating instructions is professional, scientific,
and reasonable.

Self-developed,
items are from [69]

TR2: I believe that the technology can give accurate instructions according to
actual road conditions.

TR3: I believe that the technology can provide useful guidance in practical
situations.

TR4: I believe that the technology can provide useful guidance on my route.
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Table 1. Cont.

Constructs Item Sources

Mental workload
(MW)

MW1: Mental demand

Modified from [87]
MW2: Physical demand

MW3: Effort
MW4: Temporal demand

MW5: Frustration

Line infrastructure
support (LIS)

LIS1: The infrastructure on my route is generally sufficient to support me in
complying with the speed control instructions successfully.

Self-developed
LIS2: The design of the bus stops along my route (berthing resources, type of stop,

etc.) is generally sufficient to support me in complying with the holding
instructions successfully.

LIS3: The overall infrastructure on my route is sufficient to support me in
complying with real-time control instructions.

Behavioral intention in
peak hours(BIP)

BIP: Assuming I receive instructions from the control center during peak hours, I
would intend to comply with the instructions.

Modified from
[16,105]

Behavioral intention in
off-peak hours (BIO)

BIO: Assuming I receive instructions from the control center during off-peak
hours, I would intend to comply with the instructions.

Modified from
[16,105]

4.2. Procedure and Respondents

Because the studied technology is applicable to high-frequency bus routes and we
wanted to conduct a behavioral intention survey for peak- and off-peak-hour scenarios, we
applied the questionnaires to bus drivers on routes with departure intervals of less than
10 min during peak and off-peak hours to ensure the scientific rationale of the research.
The survey was conducted both online and offline from November 2022 to January 2023,
with respondents from Changsha and Fuzhou, both of which are provincial capital cities
in China. Prior to participation, informed consent has been obtained from all participants.
This ensured that participants fully understood the purpose and procedures of the study
and voluntarily agreed to participate, while also committing to keeping their personal
information confidential. A total of 281 questionnaires were ultimately collected. After
removing invalid questionnaires, including incomplete questionnaires and questionnaires
with obvious defects (e.g., choosing the first option for all questions or completing the
questionnaire within less than 3 min), 258 valid responses remained. Most respondents
were male drivers (89.1%), which is consistent with the demographics of Chinese bus
drivers [106]. The basic information about the respondents (gender, age, education level,
bus driving experience, and current route driving experience) is shown in Table 2.

The sample size of the study is accordant with statistical requirements. Statistical
analysis of the structural equation model (SEM): the recommended sample size is 300 [107],
the acceptable sample size is 200 [108]. Considering the above references, the sample size
(258) is acceptable.

4.3. Analysis Methods

The model was tested using variance-based partial least-squares structural equation
modeling (PLS-SEM), which is based on ordinary least-squares (OLS) regression and has
several advantages that make it an appropriate multivariate analytic technique for our
study [109–112]. First, it is mainly used in exploratory research and can be used for weak
theory verification. Second, compared with covariance-based SEM methods, PLS-SEM is
less demanding in terms of sample size requirements and does not require assumptions
about multivariate normality; third, the PLS-SEM method allows latent variables to be
measured by a single observed variable.
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Table 2. Respondents’ demographic information (N = 258).

Variable Value Frequency Percentage

Gender
Male 230 89.1%

Female 28 10.9%

Educational
Background

Junior high school and below 75 29.1%
High school diploma 95 36.8%

Technical training 84 32.6%
Undergraduate degree and above 4 1.6%

Age

20–29 21 8.1%
30–39 86 33.3%
40–49 111 43.0%
>50 40 15.5%

Bus driving
experience on the

current route/years

<4 124 48.1%
5–9 65 25.2%

10–14 45 17.4%
15–19 12 4.7%
>20 12 4.7%

Bus driving
experience/years

0–4 66 25.6%
5–9 63 24.4%

10–14 64 24.8%
15–19 34 13.2%
>20 31 12.0%

5. Results
5.1. Reliability and Validity Measures

Prior to estimating the structure model, we first examined the reliability and validity
of the data. The internal consistency reliability, convergent validity, and discriminant
validity of the measurement model were assessed. Construct reliability was tested based
on Cronbach’s alpha values and composite reliability (CR), which evaluates internal con-
sistency. For each construct, a Cronbach’s alpha greater than 0.8 is considered ideal and
a CR value greater than 0.6 is acceptable [111]. As shown in Table 3, both the Cronbach’s
alpha and CR scores for all constructs were greater than 0.8, suggesting high internal
consistency reliability.

To ensure convergent validity, the average variance extracted (AVE) value and stan-
dardized factor loadings were evaluated. A standardized factor loading greater than 0.7
for each factor was reliable [107]. The AVE value should be above the minimum threshold
level of 0.5 [110,113]. As shown in Table 3, the factor loadings for all the items and the
AVE values for all of the constructs were greater than the threshold value, confirming
convergent validity.

To satisfy the requirements of discriminant validity, the square root of each construct’s
AVE should be greater than the value of its correlation with any other constructs [114].
The values reported in Table 4 all met these criteria, which indicates that the discriminant
validity of the examined data is acceptable.

To check the multicollinearity, the values for the variance inflation factor (VIF) were
measured, and the VIF values of the constructs were below 5.0, indicating that there was
no obvious multicollinearity. In sum, the results showed that the reliability and validity of
the measurement model were adequate.
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Table 3. Reliability and validity assessments.

Construct Item Factor
Loading Mean(SD) VIF Cronbach’s

Alpha CR AVE

Perceived benefit (PB)

PB1 0.892 3.67(0.86) 3.034

0.928 0.949 0.822
PB2 0.930 3.70(0.83) 4.308
PB3 0.933 3.59(0.91) 4.341
PB4 0.869 3.58(0.87) 2.513

Perceived risk (PR)

PR1 0.796 3.22(0.90) 2.067

0.866 0.907 0.710
PR2 0.733 3.06(0.93) 1.758
PR3 0.855 3.16(0.93) 2.772
PR4 0.905 3.17(0.88) 3.541

Self-efficacy (SE)
SE1 0.911 3.66(0.82) 2.846

0.922 0.951 0.866SE2 0.949 3.65(0.83) 4.548
SE3 0.931 3.64(0.84) 3.865

Perceived controllability (PC) PC1 0.942 3.31(0.94) 2.866
0.893 0.949 0.903PC2 0.958 3.37(0.93) 2.866

Trust (TR)

TR1 0.855 3.59(0.80) 2.362

0.930 0.950 0.827
TR2 0.933 3.57(0.80) 4.372
TR3 0.938 3.66(0.77) 4.984
TR4 0.909 3.58(0.80) 3.703

Mental workload (MW)

MW1 0.723 3.21(1.20) 2.603

0.904 0.915 0.684
MW2 0.760 3.23(1.30) 3.060
MW3 0.807 3.22(1.30) 3.074
MW4 0.917 3.43(1.30) 3.283
MW5 0.911 3.22(1.24) 2.539

Line infrastructure support (LIS)
LIS1 0.919 4.38(1.55) 2.990

0.887 0.930 0.817LIS2 0.877 4.17(1.54) 3.049
LIS3 0.915 4.37(1.58) 2.128

Behavioral intention: peak hours (BIP) BIP 1.000 3.12(1.05) 1.000 1.000 1.000 1.000

Behavioral intention: off-peak hours (BIO) BIO 1.000 3.52(0.93) 1.000 1.000 1.000 1.000

Table 4. Correlation matrix (the Fornell–Larcker Criterion).

PB PR SE PC TR MW LIS BIP BIO

PB 0.907
PR −0.091 0.843
SE 0.580 −0.142 0.931
PC 0.470 −0.123 0.630 0.950
TR 0.742 −0.188 0.642 0.558 0.909

MW −0.227 0.332 −0.258 −0.250 −0.259 0.827
LIS 0.612 −0.244 0.553 0.506 0.604 −0.265 0.904
BIP 0.501 −0.260 0.463 0.456 0.515 −0.254 0.697 1.000
BIO 0.635 −0.171 0.511 0.378 0.651 −0.105 0.598 0.590 1.000

Note: PB, perceived benefit; PR, perceived risk; SE, self-efficacy; PC, perceived controllability; TR, trust; MW,
mental workload; LIS, line infrastructure support; BIP, behavioral intention, peak hour; BIO, behavioral intention,
off-peak hour. The values of diagonal elements refer to the square roots of AVE.

5.2. Testing of Structural Models and Hypotheses

After establishing the reliability and validity of the data, we then examined the
structural model using PLS-SEM with SmartPLS (Ver. 4.0.8.) software. The path coefficients
were estimated, and then a bootstrapping algorithm was adopted to calculate the p values
for the coefficient estimates [115]. The R2 values were also calculated to assess the model
fitting. Cohen (1988) [116] suggests that R2 values of 0.02, 0.13, and 0.26 are the thresholds
to distinguish between small, medium, and large explanatory powers for the model,
respectively. We set the number of resamples to 5000 in the bootstrapping procedure. The
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R2 value for peak-hour behavioral intention and off-peak-hour behavioral intention in the
model were 0.358 and 0.443, respectively, which indicates the strong explanatory power of
the research model in both scenarios.

The results of PLS-SEM showed that all the hypotheses were supported except for H5
and H8, which were rejected. In addition, as high as 55.1% of variance in perceived benefit
was explained by trust, suggesting that trust strongly explains perceived benefit. Mean-
while, trust accounted for 3.5% variance in perceived risk. Mental workload accounted for
6.7% variance in self-efficacy. LIS contributed to the explanation of 20% of the variance in
the perceived controllability.

Comparing the salience of the path coefficients in the different scenarios revealed that
the behavioral intention in different scenarios was not predicted by exactly the same factors.
Factors that were significant in the peak-hour scenario were not necessarily significant in the
off-peak-hour scenario, and vice versa. Table 5 provides the results of the summary analysis.

Table 5. Results of hypothesis testing.

Hypothesis Path Coefficient p-Value Supported?

H1: PB→BIP 0.316 0.000 *** Yes
H2: PB→BIO 0.509 0.000 *** Yes
H3: PR→BIP −0.188 0.000 *** Yes
H4: PR→BIO −0.096 0.035 * Yes
H5: SE→BIP 0.123 0.169 No
H6: SE→BIO 0.202 0.025 * Yes
H7: PC→BIP 0.207 0.007 ** Yes
H8: PC→BIO −0.001 0.997 No
H9: TR→PB 0.742 0.000 *** Yes

H10: TR→PR −0.188 0.009 *** Yes
H11: MW→SE −0.258 0.000 *** Yes
H12: LIS→PC 0.506 0.000 *** Yes

Note: PB, perceived benefit; PR, perceived risk; SE, self-efficacy; PC, perceived controllability; TR, trust; MW,
mental workload; LIS, line infrastructure support; BIP, behavioral intention: peak hour; BIO, behavioral intention:
off-peak hour. * p < 0.05, ** p < 0.01, *** p < 0.001.

5.3. Demographic Differences in Behavioral Intention and Influencing Factors

T-tests and one-way ANOVA were adopted to test differences in demographic vari-
ables based on behavioral intention and influencing factors. Drivers of different genders
(t(256) = −2.136, p = 0.039, Cohen’s d = 0.395) and ages (F(4, 254) = 5.238, p = 0.002,
η2 = 0.058) showed significant differences in BIO and BIP, respectively. There were no
significant differences in behavioral intention based on education, bus driving experience,
or bus driving experience on the current route. As shown in Figure 2, female drivers
(M = 3.82, Sd = 0.772) had significantly higher BIO than male drivers (M = 3.48, Sd = 0.943),
and drivers aged 40–49 had higher BIP than drivers aged 30–39 (p < 0.001) and over 50
(p = 0.017).

Furthermore, it was found that the influencing factors did not differ significantly with
gender, education, bus driving experience on the current route or bus driving experience.
However, our results revealed that the age variable exhibited differences in three influencing
factors: LIS, trust, and perceived controllability. Further multiple least significant difference
(LSD) comparisons revealed that drivers aged 30–39 reported significantly lower scores of
trust compared to those aged 20–29 (p = 0.006) and 40–49 (p < 0.001). The LIS scores for
drivers aged 30–39 were notably lower than those aged 40–49 (p = 0.001). Additionally,
perceived controllability among drivers aged 30–39 was significantly lower than those aged
20–29 (p = 0.006), over 50 (p < 0.001), and 40–49 (p = 0.019), indicating diminished scores
compared to drivers in other age groups.
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6. Discussion

This study examined the effects of demographic variables (gender, age, bus driving
years, current route driving experience, and education) and key factors (i.e., trust, perceived
benefit, perceived risk, mental workload, self-efficacy, perceived controllability, and LIS)
on behavioral intention in peak- and off-peak-hour scenarios. Overall, the respondents
showed a moderate level of behavioral intention in both scenarios, with the average score of
peak hour behavioral intention being lower than that of off-peak-hour behavioral intention.
In the following sections, we discuss our theoretical findings.

6.1. Perceived Benefit, Perceived Risk, and Behavioral Intention

In both scenarios, perceived benefit positively affected behavioral intention and was
the most influential factor. This finding is consistent with the fact that perceived usefulness
(similar to perceived benefit) is closely related to behavioral intention [117–120]. This
showed that drivers who accepted real-time control technology attached great importance
to the benefits brought about by this technology in terms of decreasing passengers’ travel
time and improving the level of bus service. Compared with private drivers, bus drivers
must consider the needs of passengers and serve the public. Bus drivers’ intention to comply
with the instructions was also stronger when they realized that compliance would provide
better service to the passengers. Similarly, perceived risk in both scenarios negatively
affected behavioral intention, which indicates that bus drivers were also concerned about
the risks brought about by the technology and had certain negative views about it. In this
survey, respondents worried that the introduction of the technology could cause passenger
dissatisfaction, which is consistent with many previous surveys [26,28]. Bus drivers believe
that holding buses not only causes dissatisfaction among passengers, but also creates pain
for themselves [28]. Moreover, driving a bus slowly can also cause passenger anger, which
leads to greater emotional labor for drivers [26]. Therefore, stabilizing passengers’ emotions
would be the priority means to reduce the risk perception to promote the implementation
of real-time control technology. Meanwhile, some participants showed a lower intention
to comply with real-time instructions owing to their concern about shortened rest time
and decreased work performance. The execution of real-time instructions may negatively
affect their work performance under the existing work performance evaluation system.
Some transit companies specify daily trip frequencies and maximum trip durations for
bus drivers. Following deceleration or holding instructions may extend their driving
time, resulting in reduced rest intervals between successive driving shifts, and potentially
reducing their work performance due to exceeding stipulated trip durations. Therefore, it
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is crucial for transit companies to revise their work performance evaluation systems that
take into account the impact of real-time control technology on bus drivers.

Compared with perceived risk, perceived benefit was a stronger predictor of behav-
ioral intention. Many studies [75,121–123] have shown that public attitudes toward an
emerging technology are more closely related to perceived benefits than perceived risks.
Therefore, when deciding whether or not to accept a technology, people are more likely
to be driven by the perceived benefits than perceived risks [75], which is in line with the
findings of this study.

6.2. Self-Efficacy, Perceived Controllability, and Behavioral Intention

Perceived controllability predicted behavioral intention during peak hours, but not
during off-peak hours. Self-efficacy predicted behavioral intention during off-peak hours
but not during peak hours. Some empirical studies have shown that self-efficacy is more
influential than perceived controllability in predicting intention and behavior [55,62,124].
Interestingly, this was only supported in the off-peak-hour scenario in our study, contrary to
the results in the peak-hour scenario. This indicated that, in the context of real-time control,
the predictors of behavioral intention to some extent depend on the context of the execution
behavior. It is therefore necessary explore the influencing factors of behavioral intention
in different scenarios. One possible explanation for this result is that, compared with the
off-peak-hour scenario, passenger flow and traffic volume are larger during peak hours,
and road conditions are more complex and changeable; this creates a situation that imposes
greater constraints on bus drivers’ behavior for carrying out instructions. Although drivers
have excellent driving ability, they may not be able to carry out instructions due to external
environmental constraints, resulting in lower behavioral intention. The significance of
external control factors in the peak-hour scenario may be greater than in the off-peak
scenario, which indicates a stronger connection between perceived controllability and
behavioral intention [64]. In the off-peak-hour scenario, on the contrary, the environment
does not impose as many obstacles on the execution of behaviors, thus weakening the
connection between perceived controllability and behavioral intention. In this case, the
driver’s strong driving ability becomes a motivating factor for behavioral intention. The
result suggests that the main hindrance to executing instructions in peak-hour scenario is
the lack of control over the behavior due to the challenging environment, while the primary
obstacle to executing instructions in off-peak-hour scenario is the drivers’ potential lack
of ability to follow the instructions. To reduce the difficulty of executing instructions, it is
crucial to customize specific instructions based on different operational periods.

6.3. Trust and Perceived Benefit/Risk

Perceived benefit and perceived risk were predicted by trust in technology, which
was positively correlated with perceived benefit. It is worth noting that trust explained
55.1% of the variance in perceived benefit, which suggests that trust is a strong predictor
of perceived benefit. This result is similar to those from existing studies on the adoption
of emerging technologies [50,125,126], that have argued trust has a strong direct effect on
perceived usefulness (similar to perceived benefit) or perceived benefit. In addition, trust in
technology had a negative effect on perceived risk, which indicates that a trustworthy real-
time control technology would be expected to reduce uncertainty and associated risks when
complying with instructions. Based on these results, we suggest that trust in technology
is a contributing factor to behavioral intention in real-time control environments. When
real-time control technology is in its early stages, researchers and practitioners are more
concerned about how to increase the initial trust of bus drivers in this technology.

6.4. Mental Workload and Self-Efficacy

Mental workload was found to predict self-efficacy, thereby affecting behavioral
intention during off-peak hours. When drivers think that they only need to pay a small
price to use the technology and comply with instructions, it means that the requirements
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on their driving ability are not very high, so they have greater confidence in their ability
to use the technology and comply with instructions, which in turn enhances behavioral
intention in the off-peak-hour scenario. When developing programs for the adoption of
more efficient driving techniques, the psychological state of bus drivers must be taken
into full consideration as bus drivers are among the groups of professionals that are most
stressed and negatively affected by their work demands and environment [51].

6.5. LIS and Perceived Controllability

LIS was found to positively affect perceived controllability and explained a portion
of the behavioral intention. This means that a high level of line infrastructure increases
the degree of the driver control over the behavior of executing instructions; obtaining
more resource support makes it easier to complete tasks, which leads to higher behavioral
intention. Given the moderate score of LIS reported by our respondents, the inadequacy of
LIS may be one of the main practical obstacles to the large-scale adoption of this technology
during peak hours.

6.6. Demographic Differences in Behavioral Intention

The difference analysis of demographic variables proved that female drivers were
more willing to follow instructions during off-peak hours compared to male drivers. This
may be due to personality characteristics, as female drivers exhibit greater caution in their
driving compared to male drivers during off-peak hours, potentially resulting in irregular-
headway operation. They believe that adhering to real-time control instructions can assist
them in addressing this phenomenon and provide more reliable services by keeping them
informed about their position and performance along the route [16]. However, there was no
significant difference in peak behavioral intention between different genders. Drivers aged
40–49 are more willing to follow instructions during peak hours compared to drivers aged
30–39 and over 50. One possible explanation is that drivers aged 40–49 have experienced
continuous process of technological development empowering public transportation and
perceive the new technology as a strategic and tactical decision [127], leading to stronger
trust in technology. At the same time, they have a higher perception of controllability,
ultimately resulting in a higher intention to follow instructions in the peak-hour scenario.
The average peak behavioral intention score among drivers aged 30–39 is the lowest across
all age groups, possibly due to insufficient trust in technology and lower perceived control
over external factors.

7. Conclusions
7.1. Theoretical Contributions

The theoretical contribution of this study is important, and to our knowledge, it is one
of the first studies to investigate the behavioral intention of bus drivers to comply with
instructions in the context of real-time control.

First, this study developed a theoretical framework and demonstrated through em-
pirical analysis that the model could largely explain why bus drivers would comply with
instructions. We considered the impact of bus drivers’ perceived benefit, perceived risk,
self-efficacy, and the perceived controllability on their behavioral intention as well as in-
cluding trust, mental workload, and LIS as antecedents to more comprehensively and
deeply understand the factors affecting drivers’ intention to comply with instructions. The
research results indicate that the psychological processes experienced by bus drivers in
their decision-making process are multidimensional. They not only attach importance to
benefits and risks but also consider the difficulties of executing tasks.

Second, this study also included various driver demographic factors to discuss the
impact of driver diversity on behavioral intention. We found that gender is the influ-
encing factor of off-peak behavioral intention, and age is the influencing factor of peak
behavioral intention.
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Third, this study explored the importance of various factors on behavioral intention
under different road traffic scenarios and further found that the focus of influencing factors
on behavioral intention varied between peak- and off-peak-hour scenarios. In peak and off-
peak scenarios, both perceived benefits and perceived risks can predict behavioral intention,
and trust can influence behavioral intention by influencing them. In terms of the difficulties
of executing instructions, drivers’ perception of their controllability over the execution
of instructions significantly determine their intention to follow instructions in the peak-
hour scenario, while their own driving ability would be more important in the off-peak-
hour scenario. At the same time, mental workload affects off-peak behavioral intention
through self-efficacy, while LIS affects peak behavioral intention through controllability.
The research results fill a research gap in the study of behavioral intentions of bus drivers
to comply with instructions.

7.2. Practical Implications

Operating companies and developers should recognize that the development and
implementation of real-time control technology cannot be separated from the acceptance
of this technology by bus drivers, especially in the early application stage. A focus on
the shaping of attitudes as well as the barrier of executing instructions could be of great
help here. It is very important to analyze the design of headway control strategies from
the drivers’ perspective and develop specific implementation methods for the technology,
so it is more adaptable to the mental characteristics of bus drivers, thereby improving
performance. In the long run, the development of real-time control technology should
first ensure that the technology can truly improve the reliability of bus service received
by users in real traffic environments and minimize the risk perception of drivers. Making
instructions easier to execute is also crucial.

Developers should improve the accuracy of the instructions themselves and be able
to consider complex situations on the road to provide practical and useful guidance [16],
such as improving the accuracy of real-time information about passenger flow and traffic
conditions. In this regard, building technical capabilities within operating companies is
crucial for monitoring and improving service reliability [12]. Developers should also design
control strategies that consider real-world environmental factors. For example, in the
practical application of bus speed optimization methods, it is important to consider the
driver’s ability to adjust bus speeds under constantly changing road conditions [28].

In terms of implementation, operating companies could promote and popularize
the real-time control technology to bus drivers, emphasize the work and social benefits
that the technology can bring, increase drivers’ understanding and trust in technology,
cultivate their professional pride, and enable drivers to establish the concept of serving
passengers, thereby generating positive opinions. Second, companies should introduce
relevant regulations to encourage drivers to use the device, such as setting a performance
evaluation system that is suitable in the context of real-time control to prevent drivers
experiencing job performance anxiety caused by the technology. At the same time, to
avoid the risk of dissatisfaction among passengers, it is necessary to explain the existence
of the technology to passengers and provide them with relevant information to improve
public transportation services, such as installing an on-board screen to display the current
operating status of the bus.

At the same time, ensuring the executability of following instructions is crucial, requir-
ing careful consideration of the specific bus operation scenarios. During off-peak hours, the
focus should be on enhancing drivers’ internal capabilities, while in peak-hour scenarios,
the emphasis should shift towards providing external resources and support. To enhance
self-efficacy, operating companies should focus on and monitor the psychological states
of the drivers and minimize their mental workload when using the technology. While
ensuring the effectiveness of control strategies, they should try to reduce drivers’ mental
workload by setting an appropriate transmission frequency of instructions, among other
strategies. To fully ensure driving safety, the process of reading and understanding in-
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structions should not excessively occupy the driver’s attention and should not distract
the driver’s attention when it is required for safe driving. Taking such human factors
in the design and implementation will enable the technology to be more driver friendly.
Operating companies could also provide training on real-time control technology for bus
drivers to enhance their comprehension of how the system works and train them in using
the device [51]. At the same time, attention also needs to be paid to driving issues [16]
by, for example, guiding drivers to adjust their driving style according to the situation,
thereby improving their own ability to execute instructions. To enhance drivers’ percep-
tion of controllability, the government and operating companies should also establish a
cooperative relationship, and traffic authorities must provide LIS for the implementation
of technology when there are limited road resources, especially during peak hours with
high passenger and traffic volumes. Establishing relative infrastructure for various control
strategies is particularly important. For example, if a speed control strategy is adopted, the
difficulties of executing instructions could be reduced by reasonable bus lane design. If a
holding control strategy is adopted, bus stops should be designed to accommodate a certain
number of buses. It should be noted that even with sufficient LIS, that infrastructure may
not be fully functional due to the invasion of other traffic participants. Relevant regulations
should therefore be formulated to ensure the availability of infrastructure.

Bus drivers must be proficient in technology and adept at addressing diverse road
conditions and passenger needs to ensure passenger comfort and safety. They should
maintain open communication with the dispatch center, promptly reporting any issues
encountered during driving to mitigate potential risks.

Finally, when specifically implementing the technology, operating companies could
adopt differentiation strategies based on the gender, age, and perceived characteristics of
the bus drivers. For instance, focusing on cultivating trust in technology and enhancing
perceived controllability among drivers aged 30 to 39 is deemed an effective strategy.
Meanwhile, bus drivers with different attributes can be reasonably allocated based on
the basic situation of bus lines and traffic conditions, thereby providing better service
and maximizing benefits. For example, during off-peak hours, more female drivers can
be arranged on duty. A preference for scheduling more drivers aged 40 to 49 may be
considered during peak hours or other more challenging road scenarios.

8. Limitations

As one of the few studies in this field, the experience and methods of this study
provide valuable insights for the study of bus driver behavioral intention in the context of
real-time control, but there are limitations that should be addressed in future research.

First, as this study did not provide a real experience of real-time control technology,
bus drivers lacked practical experience in its use. Their perceptions were based on prospec-
tive judgments and their imagination. Future research could provide drivers with real
experience of the technology and evaluate the perceptions and behavioral intentions of bus
drivers who have experienced this technology in the real world.

Second, considering that the development and application of control strategies needs
to be adapted to specific conditions and that control strategies are diverse, this study
did not specify or describe to drivers the range of speed adjustment and holding time
during the investigation. Instead, survey respondents were provided with the technology’s
definition, function, and types of instructions. With the development and improvement of
this technology, future work could explore bus drivers’ behavioral intention based on more
specific technologies or instructions.

Third, the gender distribution of the respondents in this study was uneven, as
they were primarily male drivers, so survey results may lean towards the perspective
of male drivers.

Finally, the samples used in this study primarily came from two cities in China. Al-
though they meet the sample requirements for this study, the universality of the conclusions
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should be treated with caution. We call for cross-regional or cross-national research to
strengthen the universality of the conclusions.
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