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Abstract: An integrated environmental and economic assessment of land use for food, 

energy and timber in the UK has been performed using environmental Life Cycle 

Assessment (LCA) and economic Life Cycle Costing (LCC), to explore complementary 

sustainability aspects of alternative land uses. The environmental assessment includes 

impacts on climate change, ecosystem services and biodiversity, all of which include soil 

carbon emissions. The systems explored include all processes from cradle to farm ‘gate’. 

The crops assessed were wheat and oilseed rape (under both organic and conventional 

farming systems), Scots Pine, and willow and Miscanthus. Food crops, particularly 

conventional food crops, are shown to have the highest climate-changing emissions per ha, 

whereas energy and forestry crops show negative net emissions. To a lesser extent, the 

same situation applies to impacts on ecosystems and biodiversity, with carbon storage in 

biomass playing a larger role than carbon in soils. The energy and forestry crops in this 

study show an overall beneficial environmental impact, in particular due to soil carbon 

sequestration, making these land uses the lowest contributors to climate change. 

Combining this with the non-renewable CO2 emissions displaced will mean that energy 

crops have an even lower impact. Economically, conventional food crops present the 

highest costs per ha, followed by organic food crops, energy and forestry crops. Integrating 

the results from LCA and LCC shows that the climate impacts per monetary unit of all land 
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uses are dominated by soil management and, in the case of food production, also by 

fertilisation. Taxes or incentives such as “carbon charging” will encourage changes in 

practice in these areas to improve the sustainability of land management, mainly by 

building up Soil Organic Carbon (SOC). 

Keywords: life cycle assessment (LCA); life cycle costing (LCC); land use; agriculture; 

silviculture; energy Crops; bioenergy 

 

1. Introduction 

Throughout human history, land use has become progressively more intensive in order to support 

the demands of an extraordinary human population growth, particularly since the industrial revolution 

when fossil energy resources replaced their bio-based counterparts. Increases in the productivity of 

land have even led to a view, almost certainly transient, that land availability is not a constraint on 

human activities, a view encouraged by general improvements in technology which have resulted in 

increased production per unit of land. However, high growth rates of the human population emphasise 

that land is a finite resource with a limited carrying capacity, a potential problem first articulated by 

Thomas Malthus [1]. Global average yield increases for the three most important staple food crops 

(wheat, rice and maize) increased between 1961 and 2008, despite some inter-annual fluctuations (see 

Figure 1), but yield growth rates now seem to be declining, indicating the possibility of a “peak” in the 

near future at which the maximum rate of global food crop production will be reached and after which 

it may decline (see Figure 2). 

There is a tension between the Malthusian view and the "cornucopian" view [2-4], exemplified by 

many optimistic biofuel studies [5], that the growth in productivity illustrated by Figure 1 and Figure 2 

can provide sufficient food and fuel. This view seems to be unfounded, since positive yield growth 

rates cannot be sustained indefinitely by technological progress. In addition, all the best land is already 

under production and, therefore, it is perfectly arguable that marginal yields will be lower than  

current yields. 

Alternative or complementary views about “environmental factors and security” include 

Neomalthusianism (resource scarcity leads to conflict), Political Ecology (the issue of security lies in 

the distribution of resources), Cornucopianism (there is no inherent resource scarcity), Institutionalism 

(cooperation overcomes scarcity), Resource Curse (resource abundance is the problem). 
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Figure 1. Global average yield of maize, rice and wheat between 1961 and 2008 [6]. 
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Figure 2. Cereal yield growth rates (Note: Data represent the average annual percentage 

increase in yield between successive rolling five-year periods (e.g., data for 1970 refer to 

the increase in average yield comparing 1966–70 with 1961–65) [6]. 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

1970 1974 1978 1982 1986 1990 1994 1998 2002 2006

Year

C
h

an
g

e 
in

 y
ie

ld

Maize

Rice, paddy

Wheat

 
 

In addition to the demand for food to feed an increasing human population, land is increasingly 

required to provide other materials and energy. A multitude of underlying and interrelated  

factors—such as demographic growth and affluence, and the overall increase in supply made possible 

by yield increases—contribute to the general increase in the quantity of land products demanded, 

exemplified by increasing consumption of meat and dairy produce in China and India. Conversely, in 

recent years, supply shortages have led to an increase in food commodity prices. Shortages of food 

supply have partly been created by increased demand for biofuels, as land that is used for energy will 

not be available for food production. Competition for land between food and energy crops is therefore 

a serious issue because it might decrease the potential for food production but, most importantly, it 

will raise the price of food. In fact, the price of food is arguably a more determinant factor of food 

security than food availability per se. A policy research working paper for the World Bank [7] 

concluded that the most important factor behind the rapid rise in food prices was the large increase in 

biofuel production in the US and the EU. The production of first generation biofuels ought to be 

questioned due to its potential negative effect on food security—a basic human need. 
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Concerns over global climate change, decreased provision of ecosystem services and biodiversity 

loss have led to interest in using land in ways that mitigate these threats (e.g., forests, biofuels and 

bioenergy), particularly in using various forms of bioenergy to displace fossil fuels or to  

sequester carbon.  

Superficial examination suggests that biomaterials and bioenergy should be associated with lower 

emissions of GHGs than their fossil counterparts, since they form part of the renewable carbon cycle: 

the CO2 released on combustion or disposal was originally removed from the atmosphere by the 

growing plants. However, such a superficial analysis can be misleading, especially for transport 

biofuels [8]: it is necessary to examine the complete life cycle of the bioproduct. When this is done, 

not all bioproducts show improved environmental performance [9-11]. 

Although the primary source of rising atmospheric CO2 is the use of fossil fuels, historical land use 

and land-use changes (LULUC) which release carbon from terrestrial ecosystems as CO2 have 

contributed more than one-third of the increase in atmospheric concentration of carbon dioxide, the 

principal Greenhouse Gas (GHG) [12]. Because the global terrestrial stock of carbon in both 

vegetation and soils represents three times as much as the atmospheric stock [13], those land uses and 

management practices that influence carbon and other GHG flows are of potentially high importance 

in climate-change mitigation strategies. Righelato and Spracklen [14] have gone so far as to suggest 

that “the carbon sequestered by restoring forests is greater than the emissions avoided by the use of the 

liquid biofuels” due to the C sequestered in the soil and in above-ground biomass, and therefore argue 

for reforestation and forest maintenance. It is clear that, in contrast to annual crops, perennial cropping 

systems tend to accumulate Soil Organic Carbon (SOC) and some energy crops, such as Short Rotation 

Coppice (SRC) willow, can also serve for remediation of contaminated soil [15,16].  

Furthermore, indirect effects can be highly significant in the life cycles of biofuels. In addition to 

the food vs. fuel dilemma, unintended consequences arising from indirect land-use changes (iLUC) 

provide a further argument against the adoption of these fuels. This phenomenon refers to the potential 

release of additional carbon emissions due to land-use changes around the world induced by the 

expansion of croplands for biofuel production in response to increased global demand. As farmers 

worldwide respond to higher crop prices, pristine and set-side lands are converted to new cropland to 

replace the feed and food previously grown on land now elsewhere to biofuels production [17-22]. 

These lands may have a high density of carbon bound in soils and vegetation which, upon conversion, 

is released to the atmosphere. Consequently, the “carbon debt” [23] of biofuels may be very high and, 

in some cases, their carbon payback time may be as high as 2,000 years [19,21,24]. The original policy 

targets [25] of the European Commission on the use of biofuels may have to be revised following the 

concern expressed by one of its Directorates-General, the Joint Research Centre, that the effects of 

iLUC may negate any GHG savings from replacing fossil fuels with biofuels [17].  

In addition to carbon, the release of nitrous oxide (N2O), mainly due to fertiliser use, is a major 

concern [26,27] due to the high potency of this GHG, whose Greenhouse Warming Potential (GWP)  

is 298 times that of CO2 on a 100-year timeframe [28]. 

The high variability in the impacts of bioenergy has led to the development of standards for 

sustainable bioenergy ([29]). The potential GHG savings from bioenergy and biofuels are not clear and 

vary widely according to: 
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 the system delimitation in which the reference systems for land and non-renewable fuels are 

displaced [18,30,31],  

 the crop/feedstock chosen and how it is used (power, heat, CHP, or ethanol and biodiesel for 

transport), and  

 the amount of agrochemicals used [26].  

Despite current well-deserved attention to climate change, it is equally important to acknowledge 

impacts on ecosystems, which are at the base of all bioproducts and many important processes. Indeed, 

the biological productivity of land-based (i.e., terrestrial) ecosystems is just one of several “services” 

upon which human existence and welfare depend. The Millennium Ecosystem Assessment [32] 

identified a range of services provided by ecosystems: “food, water, timber, and fibre; regulating 

services that affect climate, floods, disease, wastes, and water quality; cultural services that provide 

recreational, aesthetic, and spiritual benefits; and supporting services such as soil formation, 

photosynthesis, and nutrient cycling”. Pressure on ecosystems through changes in land cover and use 

has led to a decrease in the number and size of habitats for non-human species, but also to a decrease 

in soil quality. Land use is recognized as the main driver of soil degradation, although soil quality may 

also be enhanced depending on land management practices. Intensive land use has resulted in 

biodiversity loss and in an impairment of the ability of ecosystems to function (i.e., to support 

biodiversity and to provide the above services)—which has led in some cases to desertification [33]. 

This is a major concern due to the decreasing amount of fertile land per person [34,35]. SOC content is 

a key component of soil quality, determining several ecosystem services [15,32], and its loss is a major 

cause of soil degradation [36-39]. However, degradation of soil carbon has not been properly and 

consistently addressed in the environmental assessment of land-use activities, in particular agriculture 

and forestry. 

In view of the competing demands on multifunctional land—a limited and scarce resource—to feed 

people adequately, sustain biodiversity and ecosystem services and mitigate climate change, there is a 

clear need for a systematic basis for allocating land use with respect to economic and environmental 

objectives. The purpose of this paper is to set out an integrated environmental and economic 

sustainability assessment, covering the gaps identified above, for comparison of different land-use 

systems. LCA is used for the environmental assessment, concentrating here on GHG balances as the 

contribution to global climate change with special emphasis given to establishing a life-cycle approach 

to assessing land-use impacts on ecosystems. A parallel economic assessment is integrated with LCA, 

also using a life cycle perspective that covers all activities in the supply chain up to the farm gate. This 

work contributes to the development of an integrated environmental and economic sustainability 

assessment method to explore sustainability impacts of alternative forms of using land. 

2. Methods 

This study forms part of a larger consequential assessment and comparison of the sustainability 

impacts associated with different land-use systems for food, forestry and energy production in the  

UK [40]. It uses a combination of LCA and LCC. In this paper, an attributional approach is followed. 

LCA is a systems analysis tool that provides information on the full environmental effects of a 

product, service or system from its cradle (extraction of raw materials) to its grave (waste 
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management). It gathers information on all the inputs to and outputs from a product system including 

releases to the environment, and assesses the potential environmental impacts associated with these 

inputs and outputs [41-46].  

The particular method for accounting for the impacts on ecosystem services and biodiversity is 

described in the section 2.7. Impact Assessment. 

LCC is a complementary tool which provides an economic analysis of the operations making up the 

supply chain providing a product or service, concentrating on the economic cost at each stage. There 

are three types of LCC: conventional, environmental and societal [47], the latter two including a 

varying degree of the different types of externalities. Conventional cradle-to-gate LCC was applied 

here and includes the assessment of all costs associated with the life cycle of the crops specific to each 

land use that are directly covered by the land manager (i.e., farmer or forester). The exposition here 

follows the steps in LCA identified in the relevant international standard [48], with the corresponding 

steps in LCC introduced in parallel. 

The relationship between environmental impact and economic value or cost, quantified by ratios 

termed ecometrics [49], can be used to identify products or processes associated with environmental 

impacts disproportionate to their economic cost and therefore to be targeted for environmental 

improvement [50]. Applying the principle of Environmental Justice which is a concern for 

sustainability [51], disproportionate environmental impact in part of a supply chain—usually primary 

production [52]—indicates lack of equity and therefore unsustainability in the supply chain [53], 

because an operator is either suffering local environmental damage without economic compensation or 

causing impacts, such as climate change, affecting others without compensating for the “externalities”. 

The Fair Trade movement [54] is one of the most conspicuous attempts to improve sustainability by 

achieving more equitable distribution of benefits and impacts along supply chains. This approach is 

applied here by integrating the results of LCA and LCC. However, the focus on land use limits the 

assessment to the first part of the supply chain, i.e., up to the farm gate. The analysis, therefore, will 

not indicate inequality in terms of the distribution of value along the supply chain, but rather the 

relationship between the environmental impacts and economic costs of management practices  

(e.g., soil management, fertilisation, harvesting and storage) for each land use. 

2.1. Goal and Scope 

The focus of this study is the environmental and economic impact of the cultivation of food, energy 

and forestry crops, to inform policies on land use to produce food and energy crops. The scope covers 

the ‘cradle-to-gate’ part of the supply chain, from extraction of raw materials, through agricultural 

activities and cultivation, to harvesting and preparing the crop for transport from the “farm gate” in an 

“attributional” approach. The overall aim is to compare different options for using and managing 

agricultural land. The specific objectives are: 

 To characterize, compare and contrast, environmentally and economically, the main supply 

chains of the products arising from land use for biotic production of food, energy and timber 

in the UK; 
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 To determine which life cycle stages of the different products contribute most to overall 

GHG emissions from each system, and to the impacts on the provision of ecosystem 

services and on biodiversity. 

 To compare the environmental and economic performance of different product systems and 

investigate the relationship between them as a guide to sustainability.  

Given the aim and objectives, the basis for comparison (known as the functional unit in LCA) is 

one hectare of land for one year, rather than the more common basis of a unit of product. The focus is 

on the foreground agricultural activities, including drying and storage, although production and use of 

fertilisers and pesticides are included. The activities covered comprise: soil management, fertilisation, 

weed, pest and disease management, harvesting, storage and drying. The inputs considered include 

agrochemicals, cuttings/setts, liquid fuels, lubricating oil and machinery/spares plus softwood, 

cuttings, steel and preservatives used for fencing (see Figure 3). The systems described are averages to 

represent typical UK practice, e.g., crop yield, rate of agrochemical input use, electricity grid mix, 

other inputs and outputs, and management practices. The LCC assessment is focused on real, internal 

costs without end-of life or use costs as these are borne by others (i.e., non-land managers) in the post 

farm-gate stages of the life cycle of the land-use products. The perspective is, therefore, that of one 

market actor: the producer. Economic returns to the farmer are excluded from the analysis because 

they do not relate to particular stages of the cradle-to-gate analysis, although this consideration is of 

vital importance in decision-making regarding land use.  

Figure 3. Flow Chart for the Production of Land-use products from 1 ha of land. 
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are represented by five crops: wheat (Triticum aestivum), oilseed rape (Brassica napus), Miscanthus 

(Miscanthus x giganteus), willow short-rotation coppice (Salix viminalis) and Scots Pine  

(Pinus sylvestris). Food crops are further represented by both organic and non-organic  

(or conventional) management regimes. No allocation of environmental burdens between co-products 

(grain and straw; sawlogs, roundwood and forest residues) is needed because it is the land use, not the 

products, that is being assessed. 

The total land under agricultural cultivation in the UK is 18.8 Mha [55], representing 77% of total 

land area, the rest being divided roughly equally between forests and urban areas. Land use for food is 

represented by two crops under two management systems: conventional and organic wheat and oilseed 

rape, although it is recognized that these crops may also be used for liquid biofuel production (and, 

hence, would be consider under an energy land use). According to the Forestry Commission [56], 

forestry occupies 2.8 Mha in the UK; Scots Pine is considered here as a popular forestry crop. Willow 

under a short-rotation coppice (SRC) regime and Miscanthus are adopted as these energy crops are 

suitable for UK conditions. Their current proportion of agricultural land use is insignificant (<0.01%) 

but will grow substantially if the market for energy crops develops [18].  

2.3. Land Use for Food: Wheat and Oilseed Rape 

Food cropland accounts for one-third of the total agricultural area [55]. The most widely-produced 

crop in the UK is wheat (Triticum aestivum), accounting for some 1.8 Mha (~10% of agricultural land) 

representing 40% of arable land and 58% of cereal land [55] of which 99% is dedicated to 

conventional production [57]. In terms of land use, oilseed rape follows wheat and barley (which is 

mainly used for feed), occupying 0.6 Mha. Therefore, the representative food crops considered are 

wheat and oilseed rape, under both conventional and organic [58] types of management in order to 

reflect different levels of intensity of production. Extensive wheat production is based on  

organic wheat. 

Organic crop production is an alternative to conventional fossil-resource reliant intensive 

production, focused mainly on the production stage of the chain. Organic, or ecological, farming 

differs from conventional farming in the production stage of the supply chain by having higher 

environmental and animal welfare standards, and specifically by using rotations, leys and green 

manures to achieve nutrient self sufficiency at farm-level. In spite of its higher use of farm machinery 

for weed control (which releases carbon dioxide to the atmosphere), organic farming relies on organic 

matter inputs (such as straw, manure and compost) to maintain soil fertility, and thereby both increases 

soil organic carbon levels and avoids the GHG emission associated with production and use of 

agrochemicals, mainly nitrogen fertiliser. 

The life-cycle environmental impacts may be less intensive than their conventional counterparts per 

unit of land area. However, per unit of output e.g., metric tonne, the difference may be reversed as 

those same input restrictions for organically-managed land often result in lower yields [59], thus 

requiring more land to produce the same amount of products (which are typically more expensive than 

their conventional counterparts).  
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Despite aiming at increasing the sustainability of food systems, the lower intensity of an organic 

system results in lower yields and therefore lower land-efficiency. The relatively low environmental 

impacts (from not using synthetic fertilisers) may, thus, be offset by lower yields [57]. 

Oilseed Rape (OSR) is chosen because of its popularity in UK as a non-cereal arable crop, using 

some 13% of arable land (and 95% of oilseeds land) in the UK [55]. OSR is an annual crop, farmed 

primarily for its vegetable oils, used in human food. However, OSR is becoming increasingly popular 

for production of biodiesel due to its high oil content. The proportion of land devoted to organic 

production is slight, at 0.02%.  

The assumed yields and inputs of wheat and OSR are shown in Table 1. Here, organic production of 

wheat and OSR is some 42% and 47% lower, respectively, due to much lower fertiliser inputs. 

Table 1. Selected input data for UK oilseed rape for food (extrapolated from [57]). 

 
Conventional Organic 

Wheat Oilseed Rape Wheat Oilseed Rape 

Grain yield (t ha−1 yr−1) 7.68 3.20 4.12 1.71 

N fertilisation (kg N ha−1 yr−1) 219 204 10.5 10.5 

Main source of N Ammonium Nitrate Compost 

P fertilisation (kg P ha−1 yr−1) 20.7 16.9 13.4 9.6 

Main source of P Triple Superphosphate Rock Phosphate 

K fertilisation (kg K ha−1 yr−1) 39.1 25.6 45.2 12.6 

Ca fertilisation (kg Ca ha−1 yr−1) 96.6 241.2 70.4 171.6 

Diesel fuel in field operations (litres ha−1 yr−1) 228.2 216.9 136.0 187.1 

Fuel for drying and storage (MJ ha−1 yr−1)* 973 473 522 254 

* MJ refers to the total primary energy used. 

2.4. Land Use for Energy: Miscanthus and Willow SRC 

The ligno-cellulosic crops considered Miscanthus and willow under a short-rotation coppice (SRC) 

regime, as these are the most relevant for UK conditions. Miscanthus and Willow SRC are the most 

popular biomass crops in the UK due to their high biomass yield and their attractive GHG balance 

[18]. Energy crops occupied 13.22 thousand hectares of agricultural land in 2007, of which 9.8 

thousand ha (or 67% of the total area dedicated to biomass crops) were occupied by Miscanthus [60]. 

Their current proportion of agricultural land use is relatively insignificant (<0.1%) but would grow 

substantially if recommendations by the Royal Commission on Environmental Pollution [61,62] are 

followed and the market for energy crops develops [18].  

Growing these biomass crops results in no crop co-products since all the biomass harvested is used 

for electricity and/or heat production. Table 2 shows the input data for the production of Miscanthus 

bales and wood chip from willow SRC.  

Miscanthus, also known as elephant grass, is a C4 perennial energy and fibre crop. Alternative uses 

include animal bedding, paper making, biopolymer manufacture, and biodegradable products 

production (e.g., flowerpots). Miscanthus is indigenous to Africa and Asia but is now grown 

commercially in the UK [61,63-66]. Miscanthus is propagated vegetatively from rhizomes or by 

micro-propagation, from commercially-available materials which can be planted with existing 
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machinery used for more conventional crops. It takes one year for establishment; weed control and 

fertiliser inputs are essential at establishment but not subsequently. It is harvested annually in winter 

by cutting and baling into Heston bales containing 500–600 kg, and stored outside until dispatch to the 

end user. Miscanthus is a low-input energy crop but yields a commercial output more rapidly and is 

therefore associated with lower barriers to introduction. It typically has a useful cropping cycle  

of 15–20 years, yielding up to 20 oven-dry tones [67] per hectare and year (odt ha−1 yr−1) after a 

maturing period of two to three years [68,69]. However, improved cultivation practices and cultivars 

can give higher yield or enable lower quality land to be used [70,71].  

Table 2. Selected input data for UK biomass for fuel from Miscanthus and Willow  

SRC [72,73]. 

Input Miscanthus Willow SRC 

Net yield at traded moisture content (t ha−1 yr−1) 18 14 

Traded moisture content (%) 30 50 

Yield of biomass (odt ha−1 yr−1) 12.6 7 

N fertiliser (kg N ha−1 yr−1) 5.26 0 

Type of N fertiliser Ammonium Nitrate N/A 

P fertiliser (kg P ha−1 yr−1) 4.82 0 

Type of P fertiliser  Phosphate N/A 

K fertiliser (kg K ha−1 yr−1) 5.07 0 

Lime (kg C ha−1 yr−1) 157.89 0 

Diesel fuel consumption in cultivation (MJ ha-1 yr-1) 477 440 

Diesel fuel consumption in harvesting (MJ ha-1 yr-1) 1,158 308 

Diesel fuel consumption in handling (MJ ha-1 yr-1) 847 39 

The analysis here is based on the assumption of an effective annual yield of 12.6 odt ha−1 yr−1  

over 15 years following establishment (18.0 t ha−1 yr−1 at 30% moisture content) allowing for 10% 

losses during harvest and baling [74], 3% losses in transport, 15% in drying and storage and 3% during 

the last transport stage to the plant [68,69,72,73,75]. Data on yield, inputs, outputs, and carbon 

sequestration have been obtained from the literature [72,73,76-81]. 

Short-rotation coppice (SRC)—as opposed to the traditional ‘long-rotation’ forestry management—

refers to the practice of managing plantations of fast-growing perennial woody crops, such as Willow, 

in order to maximise its biomass productivity and harvest potential for energy purposes. Coppicing 

involves the regular harvest of wood from the same tree or shrub. When harvested, chipped and dried, 

it can be used as a fuel for heat and power generation. There are, currently, around 3,420 ha of SRC in 

the UK [60,82]. 

Like Miscanthus, willow is propagated vegetatively using commercially-available cuttings. Pest and 

weed control are essential in the first two years. After two years to establish growth, the crop is 

harvested every three years. The productive period of willow is 15 to 30 years [66,72]. The annualised 

average yield of current cultivars is typically around 10 odt ha−1 yr−1 [72], but yields are rising with the 

introduction of improved strains and can be in excess of 20 odt ha−1 yr−1 (Forest Research, [83]).  

A 23-year rotation averaging 7 odt ha−1 yr−1 is assumed here, although rotations can last for 30 years. 

Biomass yields for the whole rotation are therefore assumed to be 161 odt ha−1. 
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There are different harvesting techniques: combined harvesting and baling, and stick harvesting and 

baling. The latter was assumed here as it is common practice in the UK [72]. The harvested crop is 

commonly stored on-farm as billets. It can then be chipped or processed into granules [84].  

Wood chips are combusted for the production of power, heat or CHP. 

2.5. Land Use for Timber: Scots Pine 

Commercial forestry and forests are a major land-use in the UK, occupying 2,841 ha (12.5% of 

total) [56]. Scots Pine is considered here as a popular forestry crop in the UK. 

Typical forestry practice in the UK is represented in this work by production of Scots Pine, based 

on Elsayed [72]. A 63-year rotation is assumed here. According to the BSORT model [85], the total 

harvest is based on yield class 8 (i.e., 8m3 ha−1 yr−1 stem volume production over the rotation), 

resulting in a total yield of 97 odt ha−1 of sawlogs, 75 odt ha−1 of roundwood, 63 odt ha−1 of roots,  

45 odt ha−1 of branches, 20 odt ha−1 of foliage, 12 odt ha−1 of stem tips, and 5 odt ha−1 of stump, over 

the course of the rotation [85], as shown in Figure 4. 

Figure 4. Total biomass production from a 63-year Scots pine rotation [85]. 
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2.6. Inventory Analysis 

Inventory Analysis refers to the process of compiling quantitative data on the inputs to and 

emissions from the supply chain under study. The activities covered comprise: soil management, 

fertilisation, weed, pest and disease management, harvesting, storage and drying. The inputs 

considered include agrochemicals, cuttings/setts, liquid fuels, lubricating oil and machinery/spares plus 

softwood, cuttings, steel and preservatives used for fencing (see Figure 3). 

UK-specific technical, economic and environmental data based on common practice in the field in 

the UK have been used, which were collated from various studies [64,66,72,86]. Generic LCA data 

used for various operations include fuel and electricity (UK generating mix). Nutrient-related 

emissions from soil (N2O; CH4) have been obtained from literature values [72]. Effects of land 

management on SOC were estimated from Smith et al. [87], Smith et al. [88] Grogan and Matthews 

[89,90], Arrouays et al. [91], Guo and Gifford [92], Bradley et al. [93], Dawson and Smith [76] and 

the final values adopted are shown in Table 3. All C captured as SOC is assumed to come from 

atmospheric CO2 through photosynthesis, with all SOC degraded emitted to atmosphere as CO2. 
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For LCC, the equivalent data refer to economic values. In this work, they were obtained from the 

Farm Management Pocketbook [66]. 

2.7. Impact Assessment 

Conventionally, the next phase in LCA, termed Life Cycle Impact Assessment (LCIA), is to 

classify the inputs and emissions to express their significance in terms of contributions to a recognized 

set of environmental impact categories. As explained in the Introduction, two impact categories were 

selected for specific attention: climate change and provision of ecosystem services and biodiversity. 

Contributions to climate change were estimated using IPCC’s Global Warming Potential (GWP) 

method [28] but extended to include carbon released by loss of SOC. The impact on ecosystem 

services and biodiversity has been accounted for using the concept of Ecosystem Carbon Stock (ECS). 

These developments are explained below.  

Table 3. Carbon stocks and flows in different land uses in UK (cold temperate, wet) in soil 

and biomass (extrapolated from [76,77,94,95]). 

 
Average carbon stocks

(t C ha−1) 

Average carbon flows 

(t C ha−1 yr−1) 

Land-use type Soil Biomass Soil Biomass 

Native Ecosystem (Temperate Forest) 95.0 123.4 0.300 5.6 

Conventional Wheat  65.6 3.0 –0.400 6.0 

Organic Wheat  77.4 2.0 0.250 4.0 

Conventional OSR 65.6 1.7 –0.400 3.3 

Organic OSR 77.4 1.3 0.250 2.5 

Miscanthus 83.2 16.6 0.620 7.5 

Willow SRC 79.5 15.2 0.136 4.2 

Scots Pine 95.0 95.5 0.320 5.0 
a Negative value indicates C-emission to atmosphere. 

For the climate change impact—measured with GWP—it is assumed that all SOC released is 

converted to CO2. 1 kg C stored in soil (a positive value in Table 3) is equivalent to the GWP  

of −3.67 kg CO2-eq. (based on the conversion of 44 kg CO2/12 kg C), whereas 1 kg C released to the 

atmosphere from SOC degradation has a GWP of 3.67 kg CO2-eq. The results will refer to total net 

GHG emissions over one year from the different cultivation systems. However, important 

considerations for carbon footprinting that are not accounted for here include the progressive and 

cumulative build-up of carbon, primarily in the soil, and the length of its storage [96-101]. In addition 

to long-term carbon sequestration, even delayed release of carbon as GHGs reduces the contribution to 

Greenhouse Warming Potential over the conventional 100-year accounting period [101-105]. Allowing 

for this delayed release would further improve the net GHG of those activities which increase carbon 

in biomass and soils; i.e., energy crops and forestry.  

The indicator for impact on ecosystem services and biodiversity is based on an extension of the 

concept of impact on soil quality through changes in SOC as defined by Milà i Canals et al. [35]. The 

impacts of production systems on the ability of ecosystems to provide services and support 

biodiversity have not traditionally been included in LCA, or indeed in environmental assessments in 
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general. Many ecosystem services are dependent on the ability of the soil to function ecologically  

(i.e., soil quality), which in turn is correlated with the amount of organic matter present [106]. Soil 

organic matter is measured as density of SOC. Biomass is also important as it harbours and feeds 

biodiversity, in addition to protecting the soil. In particular, above-ground biodiversity depends on 

biomass for both food and shelter, while below-ground biodiversity is intrinsically linked with SOC 

content [107,108]. The relationship and overlap between carbon stocks and biodiversity is explored by 

Strassburg [109], who found a strong association between carbon stocks and species richness. They 

calculated the Spearman’s rank (rs) correlation coefficients for the relationship between carbon and 

several biodiversity indices. The resulting rs = 0.82 suggests a strong correlation. 

The magnitude of the change in carbon stock levels in both biomass and soil organic matter is 

therefore proposed as a proxy indicator for impacts on ecosystem services and biodiversity within 

LCA of land-use systems: an increase in the carbon stock due to the land management practices 

implies a benefit, whereas any decrease is accounted as a damage to the system. The total of SOC and 

carbon in biomass is termed Ecosystem Carbon Stock (ECS). The impact on ecosystem services and 

biodiversity is measured as a carbon deficit (or credit, expressed by negative values) with the unit ‘t C 

year’, referring to the extra amount of carbon temporarily present or absent from land due to the 

system studied, when compared to a reference system. The reference system is the potential land cover 

which, in this case, is assumed to be the natural cover for the UK (i.e., temperate forest). This indicator 

includes the carbon foregone as a result of removal of land cover through land-use change, regardless 

of the length of time into the past it actually happened.  

The general formula used to calculate characterization factors (CF) for the different crops is shown 

in Equation 1; see Figure 5 for an illustration of the formula’s parameters.  

         
 inifin

fininiinirelaxinirelaxinipot

tt

ECSECSttttECSECS
yrhayrCtdeficitC




 2

1
11    (1) 

Here ECSpot is the potential level of ECS if land is left undisturbed (as temperate forest); ECSini is 

the ECS level at the start of the land use studied; ECSfin is the ECS level at the end of the cultivation 

period; tini is the moment when the studied land use starts; at tfin the land use finishes; at trelax, the 

carbon stock has reverted to the level prior to land use; and trelax,pot is the time when the system reaches 

its potential level. trelax may be calculated from the relaxation rate R (see below). The equation assumes 

very simplified evolution of provision of ecosystem services and biodiversity. The first component of 

the numerator refers to the impacts due to the postponed relaxation of the system (blue area in  

Figure 5), whereas the second component is the “triangle” in red, referring to the impacts due to the 

change in provision of ecosystem services and biodiversity during the occupation. The denominator 

serves to express the characterization factors per ha-yr (all the ECS values are expressed per ha). 

The following assumptions have been made: 

 As justified above, the magnitude of the difference between the actual and the potential 

amounts of carbon in both biomass and soil is proportional to the impairment of the ability 

of ecosystems to provide services and to the impact on biodiversity, since these are directly 

and indirectly affected by the presence of carbon in biomass and soils.  
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 There is no change in the ability of land to provide ecosystem services and to support 

biodiversity in the reference system.  

 The potential levels of carbon in soil and vegetation for UK is 96 and 57 t C ha−1 (temperate 

forest) [110] 

 Changes in ECS due to land use have been assessed relative to a situation where this activity 

is not undertaken. The relaxation rate (R) has been estimated as 0.45 t C ha−1 yr−1 for soil 

carbon ([91], pp. 160, 171] and 3.20 t C ha−1 yr−1 for biomass carbon [110]. 

Figure 5. Calculation of impacts on ecosystem services and biodiversity measured by ECS, 

adapted from [111]. 

 

3. Results and Discussion 

3.1. Environmental Profile  

Global Warming 

Figure 6 shows total GHG emissions over one year from the different cultivation systems, including 

releases due to loss of soil carbon, distinguishing between the different life cycle stages. Emissions are 

clearly dominated by changes in SOC due to soil cultivation and by fertiliser use, primarily due to field 

emissions of greenhouse gases, mainly N2O from soil, with additional emissions of CO2 and N2O from 

fertiliser production. For Miscanthus, willow SRC and forestry, SOC sequestration more than 

compensates for the emissions (see Table 3). 
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Figure 6. Total GHG emissions arising from different land management strategies, 

including release of CO2 from land (soil management phase). 
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3.2. Ecosystem Services and Biodiversity 

The effect of the different land-uses on ecosystem services and biodiversity is shown in Figure 7, 

which is based on the differences between average carbon stocks of the different land uses and that of 

the reference undisturbed ecosystem (see Table 3).  

Figure 7. Land use impacts on ecosystem services and biodiversity at the cropping  

stage—C deficit (t C yr ha−1 yr−1). 
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Figure 7 shows that the food crops have a relatively high impact, in particular due to the 

appropriation of biomass that would have covered the land had it been left to “relax”, i.e., the land 

cover is restored by spontaneous plant succession in the absence of human intervention. This reference 

land cover is appropriate for an attributional approach comparing different options in relation to land 

not devoted to human use. Alternatively, in a consequential approach to assess the results of increased 

crop production, an appropriate reference land use would be that displaced by production of the crop 

under study.  
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Organic arable crops show a slightly lower net impact because they maintain higher levels of SOC, 

counter-balancing their slightly lower biomass production. Energy and, particularly, forestry crops 

show the lowest impact on ecosystem services and biodiversity due to the relatively high amount of 

carbon they accumulate in both biomass and soil.  

3.3. Integration of Economic and Environmental Profiles 

Table 4 and Figure 8 show the economic costs of the land management activities. For food crops, 

costs are dominated by post-harvest processing—storage, drying and cooling—and, particularly in 

conventional cereal production, weed, pest and disease management. Other land uses present  

lower costs. 

Table 4. Economic costs of land uses (collated from [59,66,112]). 

 Wheat 

(con) 

Wheat 

(org) 

OSR 

(con) 

OSR 

(org) 
Miscanthus 

Willow 

SRC 

Scots 

Pine 

Soil management 86.5 97.9 83.3 92.2 23.5 2.4 8.6 

Planting and establishment 43.0 85.0 30.0 60.0 100.0 51.7 14.4 

Fertilization 113.5 62.5 124.6 71.9 8.1 0.0 2.7 

Weed, pest and disease 

management 

186.2 0.0 175.7 0.0 1.6 68.8 35.4 

Harvesting 82.5 82.5 74.4 82.0 19.5 100.0 5.2 

Storage, drying and cooling 333.9 179.2 143.3 76.9 2.4 0.0 0.0 

Total 845.7 507.1 631.3 382.9 155.0 222.9 66.3 

Figure 8. Total costs arising from different land management strategies. 

 

Figure 9 to Figure 13 show the relationship between GWP and economic cost of the land-use 

management activities. This form of plot provides a visualization of the relationship between LCC and 

LCA results: a high gradient on any activity of the curve shows that the environmental impact for that 

part of the supply chain is disproportionately large compared to its economic significance [50].  

Figure 9 and Figure 11, referring to the two conventional food crops, show the kind of shape 

commonly encountered: the early stages in the supply chain—soil management and fertilization in 
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these cases—are associated with disproportionately high GHG emissions, whereas the emissions from 

the other stages in the supply chain show comparable emissions per economic cost. Therefore soil 

preparation and fertilization are the operations to be targeted for environmental improvement, for 

example non-tillage preparation to reduce emissions from soil carbon and use of fertilisers whose 

production is associated with much lower GHG emissions (e.g., by applying carbon capture and 

storage to fertiliser production). Put differently, introduction of significant emission taxes will impact 

disproportionately on these operations. By contrast, the overall GHG emissions for organic food 

production (Figure 10 and Figure 12) are much lower, mainly because soil management in these 

systems sequesters carbon rather than releasing it, at the expense of slightly higher costs. Thus high 

taxes for GHGs could change the economics to favour organic production, even though fertilization is 

also a dominant source of GHG emissions even for organic production, although to a lesser extent. 

With the current cost structures, different stages dominate the economics for the different crops. 

Weed, pest and disease management, stage 4, represents one of the main costs for conventional wheat 

and oilseed rape, as well as for Willow SRC and Scots Pine, all with relatively low impact in terms of 

GWP. Storage, drying and cooling also presents one of the larger costs for the food crops, again with a 

relatively small impact in terms of GWP.  

 
 

 

 

 

Figure 9. Conventional Wheat. 
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Figure 10. Organic Wheat. 
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Figure 11. Conventional Oilseed Rape. 
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Figure 12. Organic Oilseed Rape. 
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Figure 13. Miscanthus. 
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Figure 14. Willow Short-Rotation Coppice. 
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Figure 15. Scots Pine Forest. 
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Overall, other than fertilization of conventional food crops, soil management has the greatest 

influence over positive or negative GHG emissions although the economic significance of this part of 

overall cultivation is relatively small. Harvesting (stage 5) and storage, drying and cooling (stage 6) 

are associated with the smallest contribution to climate change per unit of economic value. This 

parallels a trend already noted for manufactured goods, where the later processes in the supply  

chain—assembly and finishing—tend to be associated with high added value but relatively low 

environmental impact. However, the steps in the supply chain are all interdependent; thus the curves in 

Figure 9 to Figure 15 show the relationship between them but individual steps cannot be addressed in 

complete isolation. Indeed, the importance of each step in the attainance of high-output marketable 

crops cannot be underestimated, and neither can the gross margins that the farmers or other  

land-managers get, which is a decisive factor in the allocation of land to alternative crops (see Table 

5). Gross margins refer to the difference between revenues from crop sales and the variable costs 

related to the activities identified above (e.g., seeds and agrochemicals). 

Table 5. Economic gross margins (£) of land uses (collated from [59,66,112]). 

Wheat (con) Wheat (org) OSR (con) Miscanthus Willow SRC Scots Pine 

359 505 248 75 115 166 

4. Conclusions 

This study has shown that, for assessing the environmental sustainability of agricultural activities, it 

is useful to extend the impacts considered in Life Cycle Impact Assessment to include changes to both 

above- and below-ground carbon as an indicator of impacts on ecosystem services and biodiversity. 

Combining LCA with LCC reveals the relative environmental and economic significance of different 

stages in the cultivation of food and energy crops. Although both environmental and economic factors 

depend on local conditions and management practices, the differences found between different land 

uses are so large (in the general rather than the statistical sense) that they are revealed by considering 

representative cases and may be considered significant. 

Despite the small differences, of the seven land uses studied food crops show the biggest impacts on 

ecosystem services and biodiversity (measured in terms of foregone ecosystem carbon) because use of 

land for arable crops causes the greatest reduction in ECS relative to land in an uncultivated state  

(see Figure 5). It should also be noted that land use impacts are multi-faceted, including effects on  

e.g., water quantity and quality [35,70,113-115]: ECS does not indicate all possible impacts on 

ecosystem services and biodiversity, so that complementary indicators may be required in  

specific cases. 

Changes in SOC and field emissions due to soil management and fertilization dominate the GHG 

emissions. It is thus important to consider changes in SOC in LCA studies of land-use products, and 

challenge the results of those studies not including them. However, it must be noted that estimates of 

changes in SOC are highly dependent on the input data for the initial SOC level and on the reference 

system used for comparison [116]. Furthermore, SOC evolution depends strongly on management 

practices and location so values to be used in analysis must be determined with care and properly 

justified. In this work, the estimates are all derived from literature values.  
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The differences in the magnitudes of the carbon stocks associated with the different land uses is 

substantial and worth exploring as an aid to the development of an overall strategy for reducing the 

concentration of greenhouse gases in the atmosphere. It is probable that the economic performance of 

the land uses would be affected if farming were subject economic incentives related to carbon 

emissions and storage (e.g., a carbon levy, sequestration subsidy, emission permits). In particular, the 

perennial and non-food land uses would benefit from carbon pricing. Even organic farming would be 

relatively compensated as a food land use with lower carbon emissions than its conventional 

counterpart per unit of land area, but the comparison may be reversed when based on equal quantities 

of product. Energy crops, particularly perennials, are generally associated with lower impacts per unit 

land area than food, but this simple comparison does not allow for the displacement of food production 

to other areas. 

Before dedicating land to energy, it is worth exploring the current energy resources that are  

under-utilized, in particular those related to waste. The optimization of land use and of the use of 

agricultural waste, in particular, needs to be explored more deeply as their interaction is complex and 

the potential to displace other products is crucial but generally not clear. Similarly, alternative land 

uses for energy, such as solar and wind, may well provide a more efficient use of land than the options 

reported in this paper [117], despite their currently prohibitive cost. 

The sustainability assessment of land-use activities benefits from an integrated approach, 

combining environmental and economic (and, eventually, social [118]) analyses, an example of which 

has been given here showing which stages have an environmental significance disproportionate to their 

economic significance. The land uses analysed here show that cultivation, rather than harvesting and 

subsequent processing, is associated with disproportionately high GHG emissions, due to field 

emissions from fertiliser use and from oxidation of soil carbon. This suggests that modifications to 

farm practices, such as cultivation without tilling, may be the most cost-effective ways to reduce 

environmental impacts. 

Integrating the results of LCA and LCC reveals the trade-offs between cost and environmental 

impact which may complicate decision-making for policy. However, it also identifies which activities 

of the cradle-to-gate part of the supply chain should be targeted for environmental improvement, even 

at the expense of increased cost. 

Analysis of competition for land between food, energy crops and other uses requires further 

assessment, using a “consequential” LCA and LCC approach [42] and allowing for the subsequent 

stages of the life cycle (gate-grave). The former will require estimation of land-use changes [40,119]. 

If food consumption is constant, food production displaced by energy crops will be replaced by 

imports so that any net environmental gain will be reduced. Such displacement effects need to be 

identified and their environmental consequences included in a holistic assessment of land use for 

energy and other functions [40] along with the net energy yield associated with the land uses. This net 

energy yield is needed to estimate the avoided GHG emissions and other impacts from alternative 

energy sources, since energy crops displace other types of energy, mainly fossil-based. 

Overall, this work demonstrates that the analysis of the economic and environmental impacts of 

different land uses is essential for sustainability policy. Given the diversity of impacts involved, it 

leads inevitably to the conclusion that some form of structured political decision process that includes 

a multitude of considerations, such as Multi-Criteria Decision Analysis, will be helpful.  
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