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Abstract: Due to the increasing demand for electricity, the depletion of fossil fuels and the 

increase in environmental consciousness, generating power from renewable energy 

resources has become necessary. How to select the most appropriate site is a critical and 

foremost decision that must be made when setting up a renewable energy plant. This research 

proposes a two-stage framework for evaluating the suitability of renewable energy plant site 

alternatives. In the first stage, a fuzzy analytic hierarchy process (FAHP) is adopted to set 

the assurance region (AR) of the quantitative factors, and the AR is incorporated into data 

envelopment analysis (DEA) to assess the efficiencies of plant site candidates. A few sites 

are selected for further analysis. In the second stage, experts are invited to evaluate the 

qualitative characteristics of the selected sites, and FAHP is used to calculate the priorities 

of these sites. Solar energy is one of the most promising renewable energy sources, because 

of its abundance, inexhaustibility, safety and cleanliness. Based on the proposed integrated 

decision-making model, a case study for selecting the most appropriate photovoltaic (PV) 

solar plant site is examined. 
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1. Introduction 

Energy is essential for socio-economic development and improvement of the quality of life. The use 

of fossil oil and other natural resources has resulted in detrimental impacts on the environment, 

especially through damage to the air, climate, water, land and wildlife [1]. With increasing 

environmental consciousness and global demand for energy, the utilization of renewable and clean 

energy sources is necessary. Although the global economic recession has reduced the demand for energy 

currently, energy generation from renewable resources is still necessary for the environment and for the 

economy in the long term. Solar energy, one of the best renewable energy sources with the least negative 

impacts on the environment, is becoming a promising renewable energy source [2]. 

The setup of a renewable energy power plant is a long process, from the very beginning stage of land 

survey and plant site selection, to the final stage of implementing and starting-up of the plant [3]. 

Selecting a site for a renewable energy power plant is the very first and an important task. Some relevant 

studies are reviewed here. Azoumah et al. [4] listed six parameters for selecting a site for a concentrating 

solar power (CSP) plant: solar resource assessment, availability of water and cooling mode, soil structure 

and geology, land issues, geography and topography of the site, the energy demand profile and a 

grid-connected system. Aragonés-Beltrán et al. [3] used an analytic network process (ANP) to select 

the best photovoltaic (PV) solar power project based on risk minimization. Noone et al. [5] presented a 

tool for locating sites in hillside terrain for central receiver solar thermal plants based on field efficiency 

and average annual normal insolation. The calculation of field efficiency includes three factors: cosine 

efficiency, which is the ratio of the projected heliostat area in the direction of beam insolation to the 

surface area, shading and blocking losses. Halasah et al. [6] employed life-cycle assessment to evaluate 

the energy-related impacts of PV systems at different scales of integration. The input parameters 

included panel efficiency, temperature coefficient, shading losses, ground cover ratio and latitude, and 

the input data included hourly solar radiation, wind speed and temperature. Pavlovic et al. [2] studied 

the possibilities of generating electrical energy from on-grid PV solar systems of 1 kW in the Republic 

of Srpska, and the factors considered included yearly average values of the optimal panel inclination, 

solar irradiation on the horizontal, vertical and optimally-inclined plane, the ratio of diffuse to global 

solar irradiation, Linke turbidity, average daytime temperature and 24-h average temperature.  

Besarati et al. [7] assessed the potential of harnessing solar radiation in different regions of Iran by 

generating solar radiation maps for different surface tracking modes, and the result can be used for 

designing PV and CSP power plants. Phillips [8] evaluated the sustainability for PV solar power plants 

by applying a mathematical model to the results of a qualitative-based environmental impact evaluation 

of the installation and operation of solar power plants. The impact categories include human health and 

well-being, wildlife and habitat, land use and geohydrological resources and climate change. Xiao et al. [9] 

constructed a site selection model for desert PV power plants using an analytic hierarchy process (AHP) 
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and a geographic information system (GIS) in China. The major indices include climate, terrain, land 

cover and location, and each index contains several factors. 

The evaluation and selection of an appropriate renewable energy plant site is a very complicated task, 

which involves the consideration of various qualitative and quantitative factors. In addition, if there are 

many plant sites available, the collection of relevant data from each site can be tedious or even 

impossible. Thus, this research proposes a two-stage evaluation model to evaluate the expected 

performance of renewable energy plant sites. In the first stage, a method that considers quantitative 

factors that are usually collectible is used to extract a number of candidate plant sites from many 

available plant sites. In the second stage, these candidate plant sites are further evaluated to consider 

qualitative factors and/or quantitative factors that are difficult to collect. The most suitable plant site can 

be selected as a result. To accomplish this goal, the comprehensive evaluation model is developed by 

integrating the AHP, data envelopment analysis (DEA), assurance region (AR) and fuzzy set theory. In 

the first stage, the ARs of the inputs and outputs are determined using fuzzy analytic hierarchy process 

(FAHP), and the DEA incorporated with AR is applied to evaluate the quantitative data of different sites. 

Based on the evaluation, the candidate plant sites are extracted.  In the second stage, the FAHP is used 

to consider other qualitative data (or quantitative data that are difficult to collect), and the site with the 

highest priority is recommended for constructing the renewable energy plant. The flowchart of the 

proposed model is depicted in Figure 1. 

Define the renewable energy plant site 
evaluation problem

Step 1

Step 2

Stage 1

Stage 2

Selection of candidate renewable energy 
plant sites 

Select the factors for evaluating renewable 
energy plant sites

Selection of the most suitable renewable 
energy plant site

Candidate renewable energy 
plant sites

Calculate efficiency of each 
site by DEA-Fuzzy AR

Calculate efficiency of each 
site by FAHP

Most suitable renewable energy 
plant site

 

Figure 1. Flowchart of the proposed model. AR, assurance region; FAHP, fuzzy analytic 

hierarchy process. 
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The rest of this paper is organized as follows. Section 2 introduces the methodologies that are used 

for the model for renewable energy plant site selection. Section 3 presents a case study in Taiwan to 

examine the practicality of the proposed model. Some concluding remarks are made in the last section. 

2. Methodologies 

2.1. Data Envelopment Analysis 

Data envelopment analysis (DEA) generates comprehensive performance measurement indexes for 

decision-making units (DMUs) through the evaluation of multiple inputs and outputs without the  

pre-assignment of criteria weights [10]. A DMU is a unit under evaluation, for example a process, a 

product, a polity or an alternative. Generally speaking, a DMU produces outputs and uses up inputs. 

Under DEA, inputs are factors that are smaller the better, while outputs are factors that are larger the 

better. The DMUs that locate on the envelopment, also called the frontier, are considered to be the most 

efficient. The position of a DMU relative to the efficient frontier, the envelopment constituted, is 

measured as efficiency. That is, the efficiency, also called the efficiency score, of a DMU depends on 

the location of the DMU relative to its efficient reference point, which is given by the projection on the 

efficient frontier. Since an efficient DMU is located on the efficient frontier, the reference point of an 

efficient DMU onto the efficient frontier is the DMU itself [10]. 

CCR, developed by Charnes, Cooper and Rhodes [10], is one of most popular DEA models and is 

adopted in this paper. In an input orientation (input minimization), maximal movement toward the 

frontier through proportional reduction of inputs is the focus [11]. 

The DEA ratio form, first proposed by Charnes et al. [10], is designed to measure the DEA efficiency 

of a specific DMU k′ and can be expressed by [12–14]: 
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where 'qkX  is the amount of the q-th input (q = 1,… 'q …,Q) of the 'k -th DMU, 'rkY  is the amount of 

the r-th output (r = 1,… 'r …,R) of the 'k -th DMU, qv  is the weight given to the q-th input, ru  is the 
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weight given to the r-th output, Q is the number of inputs, R is the number of outputs and K is the number 

of DMUs. 

However, the ratio form can yield an infinite number of optimal solutions. For instance, if (u*, v*) is 

an optimal solution, then (γu*, γv*) is also optimal for γ > 0. The transformation developed by Charnes 

and Cooper [15] for linear fractional programming was utilized in the DEA study [10] to define an 

equivalent relation that partitioned the set of feasible solutions into equivalence classes. The transformed 

DEA model can be expressed as the following linear programming (LP) problem [12–14]: 
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The above primal model is difficult to solve, and the dual problem of the LP is proposed [12–14]: 
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kθ  unconstrained, k = 1,… 'k …,K (16)

where ε  is a non-Archimedean (infinitesimal) constant, ,q rs s− +  are the slack variables of inputs and 

outputs, respectively, kλ  is the weight for DMUk and 'kh  is the relative efficiency indicator of the  

k′-th DMU. 
In Equation (10), the optimal *

kh  indicates a DEA efficiency score in a manner that * 1kh =  indicates 

the state of DEA efficiency, while * 1kh <  represents DEA inefficiency. Note that the primal model has 

K + R + Q + 1 constraints, whilst the dual model has Q + R constraints. Since K, the number of units, is 

usually considerably larger than Q + R, the number of inputs and outputs, the primal model has many 

more constraints than the dual model. Generally speaking, the more constraints there are in an LP, the 

more difficult it is to solve. Therefore, the dual DEA model rather than the primal is usually solved. 
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2.2. Weights of Inputs/Outputs in DEA 

Under the conventional DEA, the weights given to inputs and outputs to evaluate a DMU are chosen 

in a manner to maximize the efficiency score of that DMU [16]. That is, the DEA model does not require 

a priori weights on inputs and outputs, and the weights are determined by solving the DEA models, such 

as the models developed by Charnes et al. [10], so-called CCR, when efficient production is 

characterized by constant returns to scale, or by Banker et al. [13,17], so-called BCC (Banker, Charnes 

and Cooper), when variable returns to scale are assumed [18]. Complete input/output weight flexibility 

can result in inappropriate efficiency estimation [18]. Therefore, a DMU may be efficient even if it 

performs best in one input (output) and performs inferior in other inputs (outputs). However, in real-

world problems, some factors may be more important than others, and experts’ subjective opinions on 

the importance of the factors should be incorporated into the methodology. One of the common methods 

to do so in DEA is the assurance regions (ARs) model, in which the upper bound and lower bound of a 
ratio of the weights of two inputs (outputs) are pre-determined [19,20]. For every pair ( xp , yp ) of 

inputs/outputs, the ratio /
x yp pw w  must be bounded by 

x yp pL  and 
x yp pU  as [19–21]: 

/
x y x y x yp p p p p pL w w U≤ ≤  (17)

Even though many works have applied AHP to set AR, another problem with AR is that experts may 

have vagueness or ambiguity in expressing their opinions. Under such circumstances, the fuzzy set 

theory can be incorporated into the DEA/AR model. Liu [14] developed a fuzzy DEA/AR method to 

evaluate the performance of flexible manufacturing system (FMS) alternatives when the input and output 

data contained crisp and fuzzy data. A pair of two-level mathematical programs was formulated to 

calculate the lower and upper bounds of the fuzzy efficiency score of the alternatives based on the 

extension principle [22]. Liu and Chuang [23] applied the proposed fuzzy DEA/AR method to evaluate 

the performance of university libraries. Lee et al. [19] applied FAHP to set the AR of the factors, and 

then, DEA was carried out to assess the business performance of PV firms. That is, FAHP is used to 

extract experts’ opinions on the AR of the factors, which is represented by Equation (17). With the 

addition of Equation (17) to Equations (10) to (16), this DEA/AR method can be used to evaluate the 

performance of the firms. 

In the first stage of this research, FAHP is applied to set the AR of the quantitative factors. The 

calculated AR is incorporated into DEA to assess the efficiencies of renewable plant site candidates, and 

the most suitable candidates are selected for further evaluations. 

2.3. Fuzzy Analytic Hierarchy Process 

AHP, a mathematically-based multi-criteria decision-making (MCDM) tool proposed by Saaty [24], 

has been adopted in various academic fields and in real practice. AHP decomposes a complex problem 

into several factors into hierarchical levels, and each factor can be decomposed into several sub-factors 

at a lower level. The factors (sub-factors) of the same hierarchical level are compared relative to their 

impact on their higher level factor. The incorporation of the fuzzy set theory with AHP, or so-called 

FAHP, has been adopted abundantly in recent years. This is due to the facts that decision-makers may 

not have complete information or a full understanding of all aspects of the problem and that the 
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experiences and judgments of humans are not well defined [25,26]. As a result, pairwise comparison 

under the conventional AHP, which requires the selection of arbitrary values in the process, may not be 

appropriate. Under FAHP, uncertainty can be considered in pairwise comparison values. 

Different models for the FAHP have been proposed by scholars. In this study, the major steps of the 

FAHP are as follows [27–29]: 

Step 1: Define the unstructured problem: The problem should be stated clearly and be put into a broad 

context, including the objectives and the outcomes. 

Step 2: Decompose the problem into a hierarchical structure: The problem is decomposed into a 

hierarchy, like a decision tree, with the overall objective of the problem at the top level and several 

criteria at a lower level. Each next lower level can contain sub-criteria, and the lowest level usually 

contains alternatives. A standard format for an FAHP decision model is illustrated in Figure 2. 

G

Cn

C2

C1

A2

A1

Goal Criteria Alternatives

21w
32W

AK

 

Figure 2. A hierarchy for the AHP. 

Step 3: Employ questionnaires and pairwise comparisons: Experts are asked to pairwise compare the 

elements in a questionnaire using five linguistic levels, as shown in Table 1. The linguistic variables are 

transformed into triangular fuzzy numbers. For example, with pairwise comparison of criteria with 
respect to the objective, a matrix ( eΛ ) for expert e, is as follows: 
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where n is the number of criteria. 

Step 4: Aggregate experts’ opinions and build aggregated pairwise comparison matrices: If there are 

E experts, the geometric average approach is employed to aggregate experts’ responses, and a synthetic 

triangular fuzzy number is obtained: 

( )1/

1 2 ......
E

ij ij ij ijEr a a a= ⊗ ⊗ ⊗     (19)

Each triangular fuzzy number is then defuzzified into a crisp number ijF  by the center of gravity 

(COG) method. The crisp value for a triangular fuzzy number ( )ijijijij umlr  , ,~ =  is [30,31]: 
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Then, the aggregated pairwise comparison matrix is: 
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(21)

Table 1. Membership functions of triangular fuzzy numbers. 

Fuzzy Number Linguistic Variable Membership Function of Fuzzy Number 

 Equally important (1, 1, 3) 

 Moderately important (1, 3, 5) 

 Important (3, 5, 7) 

 Very important (5, 7, 9) 

 Extremely important (7, 9, 9) 

Step 5: Calculate the priority vector for each aggregated pairwise comparison matrix: Derive priority 

vectors for all aggregated comparison matrices by: 

maxλ⋅ = ⋅Λ w w  (22)

where Λ  is the matrix of pairwise comparisons, w is the eigenvector and maxλ  is the largest eigenvalue 

of Λ . 

Step 6: Check the consistency property of each aggregated pairwise comparison matrix: The 

consistency of judgments that experts demonstrate during the pairwise comparisons has an important 

impact on the quality of the outcomes. The consistency index (CI) and consistency ratio (CR) are  

defined as [24,32]: 

1
max

−
−=

n

n
CI

λ  (23)

RI
  
CI

CR =  (24)

where RI is random index, as shown in Table 2 [24]. When CR is exceeding 0.1, it is an indication of 

inconsistent judgment. The experts need to revise the original values in the pairwise comparison matrix. 

The whole process needs to be repeated again. 

Table 2. Random index (RI) [24]. 

Order of Matrix (n) 2 3 4 5 6 7 8 

RI 0.00 0.58 0.90 1.12 1.24 1.32 1.41 

3
~

5
~

7
~

9
~
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Step 7: Calculate the overall rating for alternatives by aggregating the relative priorities of the 

elements: Based on Figure 1, establish the total ranking number, Φ , of the alternatives by multiplying 
the judgment matrix 32W  with the corresponding weight vector, 21w . 

Φ  = 32 21⊗W w  
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2
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(25)

The priority vectors for the aggregated comparison matrices are synthesized to obtain overall 

priorities for alternatives. The alternative with a higher rating is considered to be preferable. 

3. Case Study 

A two-stage evaluation model by integrating DEA and FAHP is constructed to assess various feasible 

sites for a renewable energy plant. In the model, the renewable energy plant site selection problem is 

defined first, and the factors for evaluating the suitability of various sites are selected next. Stage I is a 

plant site screening stage. Among many available plants sites, several candidate plant sites are selected 

by considering quantitative factors. This is done by applying the DEA-fuzzy AR method. In Stage II, 

the candidate plant sites are further evaluated to consider qualitative factors. By applying the FAHP, the 

most suitable plant site can be selected. A case study of the solar plant site selection in Taiwan is carried 

out using the proposed model. 

Step 1: Define the renewable energy plant site evaluation problem: Experts in the renewable energy 

industry are invited to define the problem. 

Step 2: Select the factors for evaluating renewable energy plant sites: A literature review, including 

solar energy conversion and renewable energy site selection, is carried out first [33–40], and experts in 

the solar energy industry in Taiwan are then interviewed to identify critical factors. The critical factors 

are considered and categorized into quantitative and qualitative factors. In Stage I, only quantitative 

factors are considered. As stated before, when applying DEA, inputs are critical factors that are smaller 

the better, and outputs are critical factors that are larger the better. Due to the information accessibility 

of various sites and the importance of various factors, we select two inputs and two outputs for the 

quantitative factors. The two inputs are temperature (I1) and wind speed (I2). The two outputs are 

sunshine hours (O1) and elevation (O2). The definitions of the inputs and outputs are listed in Table 3. 

Because land is abundant and less expensive in southern Taiwan and sunshine is plentiful there, five 

counties (cities) with 15 towns/districts that are most suitable for setting PV solar plant sites are selected, 

namely A1 to A15, respectively. The data for these sites are listed in Table 4. The potential locations are 

shown in Figure 3. 

Stage I: Selection of candidate solar plant sites using DEA-fuzzy AR: The CCR model is first applied 

on the case study. The results are shown in Table 5. Table 5 shows the efficiency and the rank of each 

DMU. The “Peers” column indicates the number of reference points that the DMU used to calculate its 

efficiency, and the “Reference set” lists the reference points to which the DMU is compared. Among the 
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15 DMUs, six of them are efficient with a value of one. For example, A4 is efficient. Thus, it ranks the 

first among all DMUs. Since A4 is located on the efficient frontier, its reference point is itself, and it 

does not have a peer to which to compare. A1 has an efficiency value of 87.13, and it is not efficient. Its 

rank is 10. Its reference set includes two peers, A9 and A11. This means that A1 is found inefficient when 

compared to A9 and A11. 

Table 3. Definitions of inputs and outputs. 

Factors Definition 

Inputs 

Temperature (I1) 

A numerical measure of hot or cold by detection of heat radiation. According to Radziemska [34], 

temperature increases lead to a decrease of the output power and of the conversion efficiency of 

the PV module. That is, the more sunshine a panel receives, the hotter the panel gets, and in turn, 

the conversion efficiency decreases. The heat factor can reduce output power by 10% to 25%, 

depending on the location and the equipment [39]. 

Wind speed (I2) 

Wind is the flow of gases on a large scale. Wind causes small particles to be lifted, and the 

suspended particles may impact the solar panels and equipment, which need to resist wind loads 

and uplift. Wind may cause erosion and operation failures of solar plants. 

Outputs 

Sunshine hours 

(O1) 

A climatological indicator to measure the duration of sunshine in a period (here, a year) for a 

given location, typically expressed as an average of several years. The sunshine duration is the 

period during which direct solar irradiance exceeds a threshold value of 120 W/m² [35]. A longer 

sunshine duration can convert to a larger amount of output power. 

Elevation(O2) 

The height of a geographic location above sea level. A higher elevation means a shorter distance 

for solar radiation to reach the ground and a higher intensity of solar irradiance. A higher intensity 

of solar irradiance converts to a larger amount of output power. 

Table 4. Quantitative data of the solar plant sites. 

County/City Town/District Temperature (°C) Wind Speed (m/sec) Sunshine Hours (h/year) Elevation (m)

Yunlin County 

A1 23.80  1.50  1779.47  31  

A2 23.43  1.73  1915.53  4  

A3 19.90  4.13  1452.00  8  

Chiayi County 

A4 22.67  0.63  1588.63  265  

A5 16.87  0.40  976.43  130  

A6 23.47  3.27  2378.67  12  

Tainan City 

A7 23.43  0.87  1718.00  21  

A8 23.70  4.53  2332.63  7  

A9 23.93  2.60  2320.03  12  

Kaohsiung City 

A10 24.13  0.73  1605.17  51  

A11 23.60  0.23  1719.27  75  

A12 22.80  0.43  1605.20  253  

Pingtung County 

A13 25.17  3.47  2029.70  27  

A14 24.57  0.60  1255.60  28  

A15 24.57  0.10  1560.80  16  
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Figure 3. The potential locations in Taiwan. 

Table 5. DEA performance results. DMU, decision-making unit. 

DMU Efficiency Rank Peers Reference Set 

A4 100 1 0 A4 

A6 100 1 0 A6 

A9 100 1 0 A9 

A11 100 1 0 A11 

A12 100 1 0 A12 

A15 100 1 0 A15 

A8 97.1 7 1 A6 

A2 92.4 8 2 A9, A11 

A7 92.27 9 2 A9, A11 

A1 87.13 10 2 A9, A11 

A10 85.44 11 2 A9, A11 

A13 81.38 12 2 A4, A6 

A5 80.05 13 3 A9, A11, A12 

A3 72.08 14 2 A4, A6 

A14 66.9 15 2 A9, A11 

As mentioned before, the conventional DEA cannot incorporate experts’ opinions on the importance 

of the inputs/outputs; thus, DEA-fuzzy AR is applied next to the case study. The FAHP is used to set 

the ARs for the inputs and outputs first, and then, the DEA/AR is applied to calculate the efficiencies of 

the solar plant sites. Eight experts in the solar industry were asked to pairwise compare the importance 

of the inputs/outputs. A question, such as “which input is more important in selecting the location of the 

solar plant site and how much more?” was asked, and a pairwise comparison with five linguistic terms 
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was used. The comparison matrix for the inputs by the first expert by applying Equation (18) is shown  

as follows: 

1 2
 

1
I1

2

     I             I       

(1, 1, 1) (  3, 5, 7)I
I (1/ 7, 1/5,1/3) ( 1, 1, 1)

 
Λ =  

 


 
(26)

All experts’ opinions are synthesized using the geometric average method, and the fuzzy aggregated 

pairwise comparison matrix of the inputs by applying Equation (19) is: 

1 2
 

1
I

2

     I                           I       

(1, 1, 1) (2.515,4.639,6.293)I
I (0.159,0.216,0.398) ( 1, 1, 1)

 
Λ =  

 


 
(27)

The fuzzy aggregated pairwise comparison matrix of the inputs is transformed into a defuzzified 

aggregated pairwise comparison matrix using the center of gravity (COG) method (Equation (20)). By 

applying Equation (21), the aggregated pairwise comparison matrix is: 

1 2
 

1
I

2

     I     I       

1 4.482I
I 0.223 1

 
Λ =  

   
(28)

By applying Equation (22), the maximum eigenvalue and the eigenvector for the defuzzified 

aggregated pairwise comparison matrix of the inputs are: 

1
I

2

I 0.818

I 0.182
w

 
=  

 
 (29)

maxλ = 2.00 (30)

Because there are only two inputs, the pairwise comparison is always consistent, and the CI and CR 

calculations are not necessary. If the number of inputs is equal to or more than three, the consistency test 

must be performed. 

Two matrices are formed based on the fuzzy aggregated pairwise comparison matrix in Equation (27): 

one contains all low values in the fuzzy matrix, and the other contains all high values in the fuzzy matrix. 

1 2
 

1
I

2

     I         I       

1 2.515I
I 0.398 1L

 
Λ =  

   
(31)

1 2
 

1
I

2

     I         I       

1 6.293I
I 0.159 1U

 
Λ =  

   
(32)

The priorities of the inputs under the two matrices are calculated using Equation (31), and they are: 

1
I

2

I 0.715

I 0.285Lw
 

=  
 

 (33)
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1
I

2

I 0.863

I 0.137Uw
 

=  
 

 (34)

The same procedure is carried out to calculate the priorities of the outputs, and they are:  

1
O

2

O 0.762

O 0.238Lw
 

=  
 

 (35)

1
I

2

O 0.871

O 0.129Uw
 

=  
 

 (36)

For temperature (I1), the priority ranges from 0.715 to 0.863, i.e., I1 = [0.715, 0.863]. For wind speed 

(I2), the priority ranges from 0.138 to 0.285, i.e., I2 = [0.138, 0285]. For sunshine hours (O1), the priority 

ranges from 0.762 to 0.871, i.e., O1 = [0.762, 0.871]. For elevation (O2), the priority ranges from 0.129 

to 0.238, i.e., O2 = [0.129, 0.238]. Based on the AR concept discussed before [21,22,25], the AR for each 

pair of inputs and each pair of outputs can be calculated as shown in Table 6 and Table 7. 

Table 6. Assurance range (AR) for inputs. 

Input Ratio Lower Bound Upper Bound 

wI1/wI2 0.715/0.285 = 2.509 0.863/0.138 = 6.254 

Table 7. Assurance range (AR) for outputs. 

Output Ratio Lower Bound Upper Bound 

wO1/wO2 0.762/0.238 = 3.202 0.871/0.129 = 6.752 

Table 8. DEA-fuzzy AR performance results. 

DMU Efficiency Rank Peers Reference Set 

A12 100 1 0 A12 

A4 94.11 2 1 A12 

A11 91.14 3 1 A12 

A5 76.55 4 1 A12 

A15 54.43 5 1 A12 

A10 53.28 6 1 A12 

A1 39.61 7 1 A12 

A14 35.12 8 1 A12 

A13 34.29 9 1 A12 

A7 32.21 10 1 A12 

A6 20.19 11 1 A12 

A9 19.92 12 1 A12 

A3 14.99 13 1 A12 

A8 12.26 14 1 A12 

A2 7.44 15 1 A12 

Using the ARs in Table 6 and Table 7, DEA is run to evaluate the efficiencies of the solar plant sites. 

As seen in Table 8, the result shows that, considering experts’ opinions on the importance of the inputs 

and outputs, only one plant site, A12, is efficient, instead of six under the conventional DEA. Under the 
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DEA concept, only the DMU with an efficiency of 100% is treated as efficient. Therefore, all DMUs 

except A12 are inefficient. The results are generated from the DEA-fuzzy AR model, and only A12 is 

located on the efficient frontier. The other DMUs, when compared to A12 as a reference point, are found 

inefficient. Two other DMUs that have higher efficiency scores are A4 and A11, with efficiencies of 

94.11 and 91.14, respectively. The efficiencies of all other solar plant sites are less than 77. Because the 

selection of solar plant site cannot only consider quantitative factors, many other qualitative factors need 

to be considered, too. Therefore, in this stage, three plant sites that have higher efficiency scores and 

that outperform others are selected for further analysis. 

The selection of these three plant sites is done arbitrarily by the authors. If there are several DMUs 

that are 100% efficient, they will be automatically selected for the evaluation in the next stage. In this 

case, however, only one plant site is efficient under the first-stage analysis. Since both quantitative and 

qualitative factors should be considered in the problem, the selection of plant A12 is based on only 

quantitative factors, and completing the evaluation process without going through Stage II analysis is 

not recommended. Therefore, more efficient DMUs are selected in this stage. Since the efficiency 

difference between A11 (ranked third) and A5 (ranked fourth) is 14.59%, a rather large number, A5 is not 

selected for the next-stage evaluation. 

Determine the 
most suitable 

solar plant site 

Policies (C1)

 Costs (C2)

Environment 
conditions (C3)

Protection laws (D12)

Service life (D13)

Support mechanisms (D11)

Land cost (D21)

Construction cost (D22)

Equipment cost (D23)

Operation and maintenance 
cost (D24)

Electric power transmission 
cost (D25)

Human well-being (D31)

Wildlife and habitat (D32)

Topography (D33)

Land availability (D34)

A4

A11

A12

Goal Criteria Detailed Criteria Alternatives

 

Figure 4. The hierarchy. 
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Stage II: Selection of the most suitable solar plant site using FAHP: In Stage I, inputs and outputs are 

all quantitative factors. In Stage II, factors that are qualitative in nature or quantitative but difficult to 

measure or collect are considered here. With a comprehensive literature review and consultation with 

experts in the industry, the factors for determining the suitability of solar plant sites are collected, and a 

hierarchy is constructed, as shown in Figure 4. Under the goal, there are three criteria, each of which has 

several detailed criteria. For example, under criterion costs (C2), the detailed criteria are land cost (D21), 

construction cost (D22), equipment cost (D23), operation and maintenance cost (D24) and electric power 

transmission cost (D25). The definitions of the detailed criteria are listed in Table 9. The three solar plant 

sites generated in Stage I are the alternatives. 

Table 9. Definitions of detailed criteria. 

Detailed Criteria Definition 

Support mechanisms (D11) 

Different government policy instruments have been implemented to support solar PV 

power plants. Some incentives include feed-in-tariffs, investment tax credits, subsidies 

and favorable financing. The incentives may be different at different locations. 

Protection laws (D12) 
The existing laws and regulations might constrain the development of solar plants in 

different areas, such as farm land and inhabited areas. 

Service life (D13) 

Expected useful life of PV solar plant. The electricity buy-back period may be 

different, and the weather and geological conditions, such as temperature, humidity, 

salt-laden air, may affect the service life of the solar plant.  

Land cost (D21) The cost of obtaining the land required for setting up the solar plant. 

Construction cost (D22) 
The total cost for constructing the solar plant, including all of the capital expenses 

related to the initial establishment of the plant, such as buildings, roads, etc.  

Equipment cost (D23) Costs for the initial purchase and installation of the equipment and facilities. 

Operation and maintenance 

cost (D24) 

Costs for everyday operation of the solar plant and repair and maintenance, 

including labor, material, etc. 

Electric power transmission 

cost (D25) 

The transfer cost of electrical energy from the solar power plant to electrical 

substations located near demand centers. 

Human well-being (D31) 
The negative impacts of the solar plant on the health of the residents and aesthetics 

in the area. 

Wild life and habitat (D32) The negative impacts of the solar plant on the animal inhabitants and plants in the area. 

Topography (D33) 

A description of relief or terrain, the three-dimensional quality of the surface, and the 

identification of specific landforms of a place. A solar plant needs to be built in a flat 

place where solar radiation can be reached easily. 

Land availability (D34) 
The availability of land for setting up a solar plant with economies of scale and for 

future expansion. 

A questionnaire is prepared, and the eight experts are invited to fill out the questionnaire; the results 

from each expert can then form pairwise comparison matrices. After the calculation, we can obtain the 

priorities of the eigenvectors for defuzzified aggregated pairwise comparison matrices, as shown in 

Table 10. Among the three criteria, costs (C2) have the highest priority with 0.493, followed by policies 

(C1) with 0.269 and environment conditions (C3) with 0.238. This implies that when selecting the most 

appropriate solar plant site, the overall costs for constructing and running the solar plant in a certain site 

are considered the most important criterion by the experts. Under the policies (C1) criterion, service life 
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(D13), with a priority of 0.466, is the most important detailed criterion, followed by support mechanisms 

(D11) with a priority of 0.319 and protection laws (D12) with 0.215. Service life estimates the expected 

useful life of the PV solar plant and ultimately determines the duration and amount of power generation 

of the plant. Therefore, it is a rather important detailed criterion. Under the costs (C2) criterion, operation 

and maintenance cost (D24), with a priority of 0.382, is the most important detailed criterion. Land cost 

(D21) ranks the second (0.190), followed by electric power transmission cost (D25) with a priority of 

0.177 and construction cost (D22) with a priority of 0.171. Operation and maintenance cost (D24) occurs 

continuously as long as the solar plant is under operation. The costs for everyday operation of the solar 

plant and repair and maintenance, including labor and material, depend on the transportation cost and 

the availability of human resources in that area. Therefore, a good plant site can reduce the expected 

long-term operation and maintenance cost. Under the environment conditions (C3) criterion, wild life 

and habitat (D32) has the highest priority with 0.432. Human well-being (D31) with a priority of 0.362 

ranked the second. Due to the rise of environmental awareness, environment impact assessment is 

necessary before a solar plant is allowed to be constructed. Thus, the negative impacts of the solar plant 

on the animal inhabitants and plants and on human well-being in the area need to be considered seriously. 

The synthesized priority of a detailed criterion, which is calculated by multiplying the priority of the 

detailed criterion by the priority of its upper-level criterion, shows the overall importance of the detailed 

criterion. The most important detailed criterion is operation and maintenance cost (D24), with a priority 

of 0.188, followed by service life (D13) and wild life and habitat (D32), with priorities of 0.125 and 0.103, 

respectively. Some other important detailed criteria include land cost (D21) (0.094), electric power 

transmission cost (D25) (0.087), support mechanisms (D11) (0.086) and human well-being (D31) (0.086). 

Table 10. Priorities of factors. 

Criteria Detailed Criteria Priorities Rank Synthesized Priorities Synthesized Rank

Policies (C1) 

(0.269) 

Support mechanisms (D11) 0.319 2 0.086 6 

Protection laws (D12) 0.215 3 0.058 9 

Service life (D13) 0.466 1 0.125 2 

Costs (C2) 

(0.493) 

Land cost (D21) 0.190 2 0.094 4 

Construction cost (D22) 0.171 4 0.084 8 

Equipment cost (D23) 0.080 5 0.040 10 

Operation and maintenance cost (D24) 0.382 1 0.188 1 

Electric power transmission cost (D25) 0.177 3 0.087 5 

Environment 

conditions 

(C3) (0.238) 

Human well-being (D31) 0.362 2 0.086 6 

Wild life and habitat (D32) 0.432 1 0.103 3 

Topography (D33) 0.144 3 0.034 11 

Land availability (D34) 0.062 4 0.015 12 

Table 11 shows the expected performance of the solar plant sites under each criterion. For 

example, under support mechanisms (D11), A11 has the highest priority of 0.626, followed by A12 

and A4, with priorities of 0.231 and 0.143, respectively. The solar plant site that performs the best 

under a sub-criterion is highlighted in gray in Table 11. Solar plant site A4 performs the best under five 

sub-criteria: service life (D13), land cost (D21), construction cost (D22), human well-being (D31) and wild 

life and habitat (D32). Solar plant site A11 performs the best under six sub-criteria: support mechanisms 
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(D11), equipment cost (D23), operation and maintenance cost (D24), electric power transmission cost 

(D25), topography (D33) and land availability (D34). Solar plant site A12 performs the best under one sub-

criterion only, i.e., protection laws (D12). 

Finally, the overall priorities of the solar plant sites are obtained by synthesizing the priorities. For 

example, the overall priority of A4 is calculated as follows: 

0.086 0.143 0.058 0.176 0.125 0.478 0.094 0.557 0.084 0.392 0.040 0.318

0.188 0.267 0.087 0.300 0.086 0.385 0.103 0.447 0.034 0.381 0.015 0.277 0.353

× + × + × + × + × + × +
× + × + × + × + × + × =

 (37)

The priorities of A11 and A12 are 0.402 and 0.245, respectively. The result shows that A11 has the 

highest overall priority. Therefore, A11 should be selected for building the solar plant. 

Table 11. Priorities of solar plant sites. 

Criteria Detailed Criteria Synthesized Priorities A4 A11 A12 

Policies (C1) 
Support mechanisms (D11) 0.086 0.143 0.626 0.231 

Protection laws (D12) 0.058 0.176 0.375 0.449 

Service life (D13) 0.125 0.478 0.333 0.189 

Costs (C2) 

Land cost (D21) 0.094 0.557 0.188 0.255 

Construction cost (D22) 0.084 0.392 0.374 0.233 

Equipment cost (D23) 0.040 0.318 0.465 0.216 

Operation and maintenance cost (D24) 0.188 0.267 0.539 0.195 

Electric power transmission cost (D25) 0.087 0.300 0.425 0.275 

Environment 

conditions (C3) 

Human well-being (D31) 0.086 0.385 0.311 0.304 

Wild life and habitat (D32) 0.103 0.447 0.304 0.250 

Topography (D33) 0.034 0.381 0.394 0.225 

Land availability (D34) 0.015 0.277 0.481 0.241 
Synthesized priorities - - 0.353 0.402 0.245 

4. Conclusions 

To accommodate the increasing demand for electricity while confronting the finite amounts of world 

fossil fuel resources and environmental concerns, many countries are putting a greater effort into 

generating power from renewable energies. To construct a renewable energy plant, the selection of the 

most appropriate renewable energy plant site is the first of a series of stages, and it is a very challenging 

job, since the decision has a great impact on the operation outcome of the renewable energy plant. In 

this paper, an evaluation framework by integrating AHP, DEA, AR and fuzzy set theory is constructed 

to evaluate the suitability of renewable energy plant sites. Because various sites may need to be 

considered, a screening process is necessary to select some candidate sites first. Thus, in the first stage 

of the model, FAHP is adopted to set the AR of the quantitative factors, and DEA with AR is then used 

to select the renewable energy plant site candidates. In the second stage, FAHP is applied to find the 

most suitable plant site from the selected candidates. 

Solar energy, one of the best renewable energy sources, is becoming a prospect of unlimited clean 

and safe energy. The proposed framework is applied to evaluate different districts/towns in Taiwan for 

constructing a PV solar plant. In the case study, A12 is the most efficient plant site in Phase I, which 

applies DEA-fuzzy AR analysis to consider quantitative factors. However, the plant site performs 
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inferior compared to the other two sites in Phase II, which adopts FAHP to consider qualitative factors. 

On the other hand, A11, which passes the Phase I analysis, performs rather outstanding in Phase II. 

Therefore, A11 is the most suitable plant site overall. In the future, a model that can be applied to select 

a specific site in a district/town will be constructed to consider more detailed factors. 

Due to the size of Taiwan, and in this case only southern Taiwan is considered, the data of the inputs 

and outputs may not be representative enough to be decisive factors. For example, the temperature and 

wind speed values are rather similar in different locations. However, if the decision-making is done in a 

larger geographical area, more diverse data may be present, and the model can lead to a more significant 

result in obtaining potential solar plant locations. 
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