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Abstract: This article is a synopsis of our research and highlights the outcomes and its impact.
It was conducted for the development of a sustainable approach to protect and sustain large vehicles
in sheltered environment for their enhanced longevity. In this research, various modes of failures
linked directly or indirectly to the structural ageing of large vehicles were identified, measured,
and analysed. Based upon the research conducted, a frame-work with an objective to prolong the
structural longevity cost effectively and to retard structural failures has been proposed.
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1. Introduction

In this article, the term large vehicles refers to military tanks, one such example is shown in
Figure 1, and only considers research conducted on such vehicles. These large vehicles are complex
objects with a wide variety of interacting components, materials, designs and are manufactured for
a specific life span. However, during and beyond their service life, these vehicles start to endure
structural ageing, mainly attributed to materials and component degradation through corrosion
and wear.
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Figure 1. Corrosion damage in Russian T 55 IMR recovery vehicle stationed outside the shelter. 
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vehicles. These large vehicles were exposed to extreme working and operating conditions in 
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The Tank Museum at Bovington United Kingdom owns a considerable fleet of high-value,
large vehicles. These large vehicles were exposed to extreme working and operating conditions
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in battlegrounds during their service life and therefore display structural degradation influenced
by corrosion and wear. The exact location and duration of their operation is not known and the
information is not documented. Corrosion has a strong impact on these high value vehicles and
the development of a framework to protect and sustain these high value vehicles against structural
degradation is needed.

This article represents the synopsis of our wider research, which was designed to understand
the prevailing failure mechanisms, measure and monitor the identified issues, establish their
cause impact, in an effort to achieve an optimised approach to sustaining and protecting large
vehicles sustainably and cost effectively beyond their original design life [1–15]. This is the first
evidence-based research carried out in this field and is directly linked to the development of a
new sustainable sheltered facility incorporating environmental and corrosion condition monitoring
systems, to produce further research and research grants.

During the overall project, a five-fold research pattern based on the concept of identifying,
measuring, analysing, monitoring and protecting against structural defects was adopted.
First, advanced scientific means were utilised for the identification of failures, this was followed
by measurement and analysis of failure in materials and paint-systems. Secondly, a framework
to monitor the environment and minimise environmental variations (i.e., temperature and relative
humidity) was implemented. Third, an in-situ corrosion condition monitoring system has been
deployed and useful data are collected. Finally, an empirical model to help design a life expectancy
programme and to model materials and paint-system failures for the vehicles stationed in the shelters
is proposed.

The five-fold research pattern approach helped to initiate restructuring of the storage, operation
and maintenance mechanisms for large vehicles considered in our research.

In this article, some examples of the corrosion damage analysis, component failures,
environmental analysis, the initiation and development of an optimised framework for vehicles
protection and the research impact are provided. Vehicles presented in this article are stationed in
Bovington, United Kingdom.

2. Research Findings

In this research, corrosion damage, un-sustainable environmental conditions, paint system
failures and component failures were identified as major structural integrity menaces in the
large vehicles.

2.1. Vehicles’ Corrosion

Risks of failures due to corrosion are high and pose significant danger to the structural integrity
of large vehicles considered in our research. The magnitude of corrosion is different in every vehicle,
which could be the result of their operating environment in different terrains and/or the current
environmental/operating conditions. The overwhelming phenomenon of corrosion is shown in
Figures 1 and 2. Figure 1 is of a Russian T55 IMR that is stationed outside the shelter and is structurally
corroding. Figure 2 shows the severity of the corrosion problem in Togg II, a vehicle stationed inside
the shelter. The mechanism of structural degradation was dictated by various modes of corrosion
working alone and/or together. In this article, damage due to surface corrosion has been reported
briefly. Results of other forms of corrosion, i.e., stress corrosion cracking and pitting, are published
elsewhere [2,4,5].
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Figure 2. Corrosion damage to Tog II vehicle stationed inside the shelter. 

Corrosion Damage Evaluation 

Surface corrosion damage was evaluated through the advanced surface analysis techniques of 
ultrasonic scanning. Corrosion surface morphology, and surface contaminants were characterised 
by using a scanning electron microscopy and an energy dispersive X-ray spectroscopy. In the first 
phase of the research, six vehicles the, Russian BTR-60, Centaur A27L, Sherman M4A1, Tank 
Destroyer M10, Tiger 1 and King Tiger, were considered. Results from BT-R 60 are presented here 
briefly. 

Ultrasonic scanning method is a novel technique for measuring the thickness of the metal 
non-intrusively. An ultrasonic scanning system consists of a transducer, pulser receiver, receiver, 
transmitter and a display monitor. The system utilises sound waves within the frequency range of 
0.1 to 15 MHz rather than radiation. The transducer creates sound waves that travel through the 
metal which when these waves strike against a defect or the back wall are then reflected back. The 
reflected sound wave signal is converted into an electrical signal to a display device. In our research, 
such information were extrapolated to measure the remaining thickness of the metal component 
[16,17]. 

Scanning Electron Microscopy (SEM) was used for micro-structural characterisation of the 
surface and sub-surface defects. To identify surface contaminates on the selected samples, Energy 
Dispersive X-ray Spectroscopy (EDS) was performed. Both SEM and EDS are advanced and 
established techniques utilised for the aforementioned analysis. 

Brone-Transporter BTR 60 

Brone-transporter 60 (BTR-60) was manufactured by Gorkovsky Avtomobilny Zavod in the 
former USSR during 1960–1976. It is one of the most widely used personnel carriers. It remained in 
production till 1976 [18]. This vehicle was captured during the First Gulf War. This vehicle is parked 
outside the shelter currently and is exposed to an uncontrolled environment. This vehicle is severely 
corroding; a sample of the compartment cover was collected for corrosion mapping shown in Figure 
3 with the corresponding ultrasonic scan. 

Corrosion mapping results of the five lowest and highest remaining thicknesses’ are provided 
in Table 1. A difference of 1 mm material loss was recorded on the sample selected for the corrosion 
mapping between the maximum and minimum remaining thicknesses. A consistent decrease in the 
component thickness was observed. 

The purpose behind measuring material loss due to corrosion in five vehicles was to obtain a 
benchmark. Results showed considerable material loss due to corrosion in all samples collected from 
the vehicles. The benchmark of the remaining thicknesses will help draw an empirical model to 
predict the life expectancy programme for the vehicles inside the shelters under specific 
environmental conditions. 

Figure 2. Corrosion damage to Tog II vehicle stationed inside the shelter.

2.1.1. Corrosion Damage Evaluation

Surface corrosion damage was evaluated through the advanced surface analysis techniques of
ultrasonic scanning. Corrosion surface morphology, and surface contaminants were characterised by
using a scanning electron microscopy and an energy dispersive X-ray spectroscopy. In the first phase
of the research, six vehicles the, Russian BTR-60, Centaur A27L, Sherman M4A1, Tank Destroyer M10,
Tiger 1 and King Tiger, were considered. Results from BT-R 60 are presented here briefly.

Ultrasonic scanning method is a novel technique for measuring the thickness of the metal
non-intrusively. An ultrasonic scanning system consists of a transducer, pulser receiver, receiver,
transmitter and a display monitor. The system utilises sound waves within the frequency range of 0.1
to 15 MHz rather than radiation. The transducer creates sound waves that travel through the metal
which when these waves strike against a defect or the back wall are then reflected back. The reflected
sound wave signal is converted into an electrical signal to a display device. In our research, such
information were extrapolated to measure the remaining thickness of the metal component [16,17].

Scanning Electron Microscopy (SEM) was used for micro-structural characterisation of the
surface and sub-surface defects. To identify surface contaminates on the selected samples, Energy
Dispersive X-ray Spectroscopy (EDS) was performed. Both SEM and EDS are advanced and
established techniques utilised for the aforementioned analysis.

2.1.2. Brone-Transporter BTR 60

Brone-transporter 60 (BTR-60) was manufactured by Gorkovsky Avtomobilny Zavod in the
former USSR during 1960–1976. It is one of the most widely used personnel carriers. It remained
in production till 1976 [18]. This vehicle was captured during the First Gulf War. This vehicle is
parked outside the shelter currently and is exposed to an uncontrolled environment. This vehicle is
severely corroding; a sample of the compartment cover was collected for corrosion mapping shown
in Figure 3 with the corresponding ultrasonic scan.

Corrosion mapping results of the five lowest and highest remaining thicknesses’ are provided
in Table 1. A difference of 1 mm material loss was recorded on the sample selected for the corrosion
mapping between the maximum and minimum remaining thicknesses. A consistent decrease in the
component thickness was observed.

The purpose behind measuring material loss due to corrosion in five vehicles was to obtain
a benchmark. Results showed considerable material loss due to corrosion in all samples collected
from the vehicles. The benchmark of the remaining thicknesses will help draw an empirical
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Figure 3. BTR-60 (a) sample’s image and (b) ultrasonic scan. 

Table 1. BT R-60 samples’ scan results for 5 highest and lowest thicknesses. 

Russian BT—R 60
Maximum Armour Thickness: 14 mm 
Minimum Armour Thickness: 5–7 mm 

Sample’s Dimension
Length: 290 mm Width: 160 mm 

S. No Remaining Thicknesses in mm No of Occurrences 
1 5.00  16 
2 5.10 46 
3 5.20  123 
4 5.30  322 
5 5.40  420 
6 6.10  17 
7 6.20  5 
8 6.30  3 
9 6.40  4 

10 6.50  3 
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2.2. The Environment

Environment has a strong influence in the initiation and propagation of corrosion in metal
structures; therefore study of the environments both inside and outside the shelters where the vehicles
are stored has been conducted to relate corrosion activity within the context. It was observed
that fluctuations in temperature and relative humidity inside the building are not viable for the
structural health of the vehicles and presents a significant challenge for the vehicles’ protection
against structural deterioration sustainably.

2.2.1. Environment inside the Shelter

Inside the building, no measures are in place to control relative humidity during the year.
However, temperature is kept between 18 ˝C to 22 ˝C during winter. It was observed that during
the months from December–February, the relative humidity measured as high as 100%. Analysis of
the environment inside the shelter has pinpointed endless cycles of surface wetting and drying due
to temperature and relative humidity variations.

The environmental variations in the shelter and atmospheric pollutants accumulated during
operation plays a vital part in metal corrosion. Condensation happen on metal surface when
temperature surpass 0 ˝C, at relative humidity ě80%, this result in longer time of wetness (TOW) and
ultimately cause atmospheric corrosion. In similar environmental conditions, a degree of corrosion is
expected in the vehicles stationed inside the shelter [19–24].

2.2.2. Environmental Analysis of Bovington

Bovington is on the southwestern coast of England and is around seven miles from the English
Channel. In Bovington, for 18 days of each month, considerable precipitation, fog, and rain are
reported [25]. The relative humidity averages around 80% for most of the year, however in some
months of the winter relative humidity reaches up to 100% [26]. The average high and low
temperatures for the last 30 years (1981–2010) were 14.03 ˝C and 8.11 ˝C, respectively, the average
temperature fluctuations observed during 1981–2010 were between 7 ˝C to 22 ˝C in summers and
2 ˝C to 12 ˝C in winters [25,27].

Vehicles stationed outside the shelters in open environment are enduring a wide variety of
environmental conditions, such as soils, rain water, condensation, temperatures fluctuations and
relative humidity deviations. All these dynamics create an atmosphere for vehicles’ corrosion.

2.3. Paint System Failures and Surface Contaminations

The most common and effective methods of protection against corrosion is the application of
paint system on metal surfaces. However, there are conditions under which the paint system starts
to degrade, although failures in the paint system do not cause structural failures, they are, however,
linked indirectly to the promotion of component failures through corrosion. When the paint system
starts to fail, it allows the permeation of moisture to the substrate, which as a result causes corrosion,
one of the major causes of structural degradation. Paint system failure was observed in many vehicles,
as shown in Figures 4 and 5.
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Figure 4. Challenger 1 failures in surface protection. 

 
Figure 5. Centurion-stridsvagon 104 paint system following a corrosion attack. 

It was identified that the phenomenon of corrosion was also influenced by the presence of 
surface contaminants and sub-surface defects such as slags, sulphide inclusions and corrosive pits. 
These factors alone and/or in combination were observed to be a serious issue. Sulphur, sodium, 
calcium and chlorine were identified on the vehicles’ surfaces; these are classified as surface 
contaminants and result in accelerated corrosion, even at lower relative humidity [2]. 

2.4. Component Failures 

Component failure is not only the cause of vehicles’ malfunction but replacement is also a huge 
financial burden. Brief results of component failures from King Tiger and Tiger 1 are presented here; 
inadequate component replacement was also identified in this research [1]. 

2.4.1. King Tiger 

Sd Kfz 182 Panzerkampfwagen VI Ausf B was the official German name for King Tiger and is 
also known as Tiger II. King Tiger was designed/Manufactured by Henschel & Son during 1943–
1945 in Nazi Germany. Its first place of action was Normandy in July 1944. The King Tiger was one 
of the most powerful tanks to be deployed during the 2nd World War; together with the Panther, it 
formed the lead of the German offensive in Ardennes [18,28]. 

The Gear Box of the King Tiger was disassembled after almost fifty years for corrosion 
investigation, as shown in Figure 6. The gearbox showed various types of corrosion in many of its 
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Figure 5. Centurion-stridsvagon 104 paint system following a corrosion attack.

It was identified that the phenomenon of corrosion was also influenced by the presence of
surface contaminants and sub-surface defects such as slags, sulphide inclusions and corrosive pits.
These factors alone and/or in combination were observed to be a serious issue. Sulphur, sodium,
calcium and chlorine were identified on the vehicles’ surfaces; these are classified as surface
contaminants and result in accelerated corrosion, even at lower relative humidity [2].

2.4. Component Failures

Component failure is not only the cause of vehicles’ malfunction but replacement is also a huge
financial burden. Brief results of component failures from King Tiger and Tiger 1 are presented here;
inadequate component replacement was also identified in this research [1].

2.4.1. King Tiger

Sd Kfz 182 Panzerkampfwagen VI Ausf B was the official German name for King Tiger and is
also known as Tiger II. King Tiger was designed/Manufactured by Henschel & Son during 1943–1945
in Nazi Germany. Its first place of action was Normandy in July 1944. The King Tiger was one of the
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most powerful tanks to be deployed during the 2nd World War; together with the Panther, it formed
the lead of the German offensive in Ardennes [18,28].

The Gear Box of the King Tiger was disassembled after almost fifty years for corrosion
investigation, as shown in Figure 6. The gearbox showed various types of corrosion in many of
its components. Although the King Tiger does not operate anymore, it is, however, structurally
degrading due to corrosion.
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Figure 6. Corrosion problem in King Tiger’s Gear Box Planet Gear. 
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enhanced wear resistant properties. The replacement pistons were used as a substitute in the Tiger 1 
engine, which failed catastrophically during normal operation. This failure could be attributed to 
inadequate material composition. 

Tiger 1 operates occasionally; when it is stationary, there is the possibility of corrosion build-up 
in the engine, such an example is shown in Figure 7. Corrosive-wear has a detrimental impact on the 
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2.4.2. Tiger 1

Tiger 1 was designed by Henschel & Son in Nazi Germany. Panzerkampfwagen Tiger Ausf. E
was the official German designation and it is commonly known as Tiger 1. Tiger 1 participated in
the 2nd World War against the former USSR and Allied Forces. This vehicle was captured in Tunisia.
Ostensibly, it is the last operating Tiger 1 in the World and is classified as a high value vehicle [18].

The Tiger 1 original and replacement engine pistons were evaluated for failures due to wear [1].
It was identified that the original pistons, which were manufactured during 2nd World War, had
enhanced wear resistant properties. The replacement pistons were used as a substitute in the Tiger
1 engine, which failed catastrophically during normal operation. This failure could be attributed to
inadequate material composition.

Tiger 1 operates occasionally; when it is stationary, there is the possibility of corrosion build-up
in the engine, such an example is shown in Figure 7. Corrosive-wear has a detrimental impact on the
engine performance in particular and on the Tiger 1 as a whole.
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3. Research Impact

This research has led to the initiation and development of condition monitoring and protection
framework of large vehicles against structural deterioration. This is the first evidence-based research
that has been performed in this field and is directly linked to the identification of prevailing
failure mechanisms, measurement and analysis of the failures, development of a new sheltered
facility incorporating relative humidity and temperature control, installation of the environmental
monitoring system and in-situ corrosion condition monitoring framework. Building upon the
theoretical advances in the development of Condition Health Monitoring Programme CHM-PM and
its success in modelling a wide range of complex failure parameters has attracted increasing interests
from defence, oil and gas, automotive and aerospace industries [8–15].

3.1. Environmental Monitoring and Control

Relative humidity and temperature monitoring sensors are now installed in the shelter at
10 locations, where the relative humidity and temperatures are constantly monitored. In addition
to this, based upon the recommendations from this research, a new conservation facility shown
in Figure 8 was recently built where temperature and relative humidity variations are kept to
a minimum.

Keeping the occurrences of sharp rises and falls in relative humidity to a minimum, and ideally
achieving an optimum level (35%–45%), is an important factor with respect to keeping the vehicles
protected. This can be achieved through better ventilation, dehumidification and air conditioning.
Optimum scale of relative humidity and temperature will help mitigate corrosion, thus achieving
extended life for large vehicles and effectively retarding environmental assisted damage.
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an unnecessary burden [31]. 

In the initial stage, sensors are installed on two valentine vehicles. One of the valentines is 
permanently stationed inside the shelter, whereas the other operates sporadically. Data are collected 
regularly in order to monitor the structural degradation of these two vehicles in real time. The data 
acquired enables delivery of a critical evaluation of the structural health, which is useful in terms of 
predicting corrosion failures. This framework provides an opportunity to protect the vehicles 
sustainably [32]. 

Figure 8. Collection of large vehicles that are now stored within a controlled environment in a
new facility.

3.2. In-Situ Corrosion Condition Monitoring

A framework of in-situ condition corrosion monitoring based upon micro-linear polarisation
resistors [29,30] shown in Figure 9 is developed and installed on the vehicles. This framework is able
to detect materials degradation through corrosion in large vehicles in its early stages. This is one of
the novel systems to provide the opportunity to detect material degradation through corrosion in its
early stages cost effectively and non-intrusively. It can be defined as condition-based maintenance
(CBM), rather than scheduled-based maintenance (SBM), for corrosion mitigation before it becomes
an unnecessary burden [31].

16458



Sustainability 2015, 7, 16451–16464

In the initial stage, sensors are installed on two valentine vehicles. One of the valentines is
permanently stationed inside the shelter, whereas the other operates sporadically. Data are collected
regularly in order to monitor the structural degradation of these two vehicles in real time. The data
acquired enables delivery of a critical evaluation of the structural health, which is useful in terms
of predicting corrosion failures. This framework provides an opportunity to protect the vehicles
sustainably [32].Sustainability 2015, 7, page–page 
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Figure 9. Three electrode corrosion sensors. 
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One of the main reasons for paint system failures in large military vehicles is edge delamination 
or the gradual removal of paint system from the metal surface in time. This phenomenon is showed 
in Figure 10a. Research was conducted to develop a holistic model [12] for paint system failure 
predictions because of edge delamination as shown in Figure 10b. An advanced model to 
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Figure 9. Three electrode corrosion sensors.

3.3. Empirical Modelling of Paint System Failures

One of the main reasons for paint system failures in large military vehicles is edge delamination
or the gradual removal of paint system from the metal surface in time. This phenomenon is showed
in Figure 10a. Research was conducted to develop a holistic model [12] for paint system failure
predictions because of edge delamination as shown in Figure 10b. An advanced model to understand
the cathodic delamination mechanism was developed. The model contains system and blocks, inside
the blocks there are three interdependent parallel processes; Process of Cation Transport Modelling
(Proc. CTM), Process of Delaminated Coating Modelling [Proc. DCM] and Process of Interfacial
Propagation Modelling (Proc. IPM) as shown in Figure 10c. These processes represent (a) cation
formation (b) reduction of oxygen and (c) mechanism of cation transportation. Every process in
the model is a discrete algorithms with an ability of inter-communication. This communication
is facilitated through duplex channels transmitting signals r2, r3, r5 and r6, which represents a
discrete delamination parameter. The interdependency of several parallel processes makes the study
and understanding of quantitative agreement among delamination parameters easier. The obtained
results are in close agreement with the experimental data, its interpretation and numerical analyses
which have been reported recently [12]. The proposed delamination prediction model will be a useful
resource for future research.

Blistering is another reason why paint systems degrade in large vehicle that are in continuous
operation in severe environmental conditions. An example of blistering in the paint system of a large
vehicle is shown in Figure 11a. Research has been conducted to develop, model and predict initial
paint system failure linked to blistering [8,9,14]. Both fracture mechanics classical theory approach
and diffusion concepts have been incorporated through a generalised meso-mechanics modelling
techniques to analyse blister initiation and propagation in two distinct stages. Diffusion concept have
been deployed to represent the transport of corrosive species towards the interface of paint system
and substrate, and facture mechanics concept to show blister growth in the form of circular crack
propagation. A simple criterion is identified by using a developed interfacial toughness equation,
which however does not include blister propagation on wider scale. The model has been validated
using experimental methods showing a good qualitative agreement between the two.

The previously mentioned blistering model was further modified in order to predict paint system
failures due to unstable propagation of circular blisters in the form of worm-like patterns as a result
of the development of compression and diffusion induced stress in harsh environments, as shown in
Figure 12a. Paint system de-bonds from the substrate due to sufficiently large delamination, giving
rise to blister, which consecutively induces the driving force on crack tip at interface. The crack tip
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driving force decides the interface toughness, higher driving force account for low interface toughness
and vice versa. The predictive model shown in Figure 12b presents non-axisymmetric perturbation of
blister in to branching, which eventually results in worm-like pattern. The model was validated using
detailed experimental study on a palladium-coated steel substrate, which allows the visualisation
of delamination of paint system under the influence of both compression and diffusion of species.
The investigation suggests that non-axisymmetric instabilities would develop at the crack tip during
the propagation of blister, which eventually results in worm-like patterns, the patterns often observed
in the delamination of thin paint systems.
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3.4. Public Engagement

Results from this research aims to extend the life of these high value vehicles through sustainable
conservation methods. This could mean that the general public and future generations will be able to
enjoy British and other engineering legacies for a longer time.

Public interaction includes a large YouTube following (over one million) about the Tiger Tank
(2nd World War, German made, restored in Bovington) with concerns relating to durability and public
value of experiencing high value vehicles in operation. Tiger 1 is the last working example and
demonstrated during displays at Bovington.

3.5. Further Research and Grants

This project has attracted immense attention from academia and industry within the United
Kingdom and across Europe. The research also has been perceived by the general public as a high
quality collaborative study, which has been focusing on the protection of high value vehicles with
significant cultural and historic biographies in Great Britain and across the World.

Large vehicles that are currently used by industries, defence and the public sector display the
same modes of failures over a specific time. Through an understanding of this research, there
will be an opportunity to phase-out degradation problems that may not be predictable through
conventional methods.
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Findings from this research helped to secure further grants including £2,560,600 for new
conservation facility at Bovington, £20,000 for research into flow assisted corrosion failures, £23,000
for in-situ corrosion condition monitoring and £24,000 for corrosion health monitoring using wireless
sensor technologies.

4. Conclusions

The outcomes from this research indicate wide ranging contributions in-terms of identifying
failure mechanisms, finding solutions to the increasing problems in large vehicles, and implementing
an optimised approach of protecting and sustaining large vehicles. Although the past working
environment and operating duration of the vehicles is very complex to track, the damaged caused
due to corrosion has been recorded. Figure 1 displays the magnitude of corrosion and the possible
consequences if preventative measures are not taken.

During this research, factors linked directly or indirectly to structural failures such as
environment, component and paint-system failures were analysed. It was revealed that environments
outside and inside shelters were not sustainable for the longevity of the vehicles. Variations in
environmental parameters play a pivotal role in material degradation.

Paint-system failures were found to be linked to structural damage and a major concern for
vehicles’ durability. Vehicles are exposed to the outside environment from time to time, which may
result in the accumulation of surface contaminants. In the likelihood of an inadequate paint-system,
atmospheric corrosion could occur, even when vehicles are stationed inside the shelters.

Close proximity of Bovington to the English Channel results in rain, wind, temperature,
relative humidity variations and airborne salts contents. For vehicles parked outside the shelters,
it is important that adequate paints system is in place on the surfaces for protection against
such conditions.

The development of the framework to monitor temperature and relative humidity in shelters as
a result of this research provides an opportunity to keep the environmental variation to a minimum
when needed. Through better environmental control systems and condition monitoring techniques,
the durability and longevity of the large vehicles can be enhanced.

The research helped to identify component failures attributed to corrosion, inadequate material
composition and design.

Data obtained as a result of in-situ corrosion condition monitoring technique are important in the
context of monitoring structural reliability in real time. This is a condition-based approach rather than
a scheduled-based approach. This framework also provides the opportunity to look into materials
behaviour under certain environmental conditions.

The proposed empirical model provides a foundation for continued research within
paint-systems failures.

Through a five-fold research pattern of identifying, measuring, analysing, monitoring and
protecting large vehicles against structural failures, a framework of an optimised approach to protect
and sustain large vehicles against structural failures is initiated.

Apart from contributing to research community and museums, this research has shown its
impact on various sections of society, like the automotive industry. This research provides a model to
protect and sustain large historic vehicles as valuable assets for the current and future generations.
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