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Abstract: Traditional construction planning, which depends on historical data and heuristic
modification, prevents the integration of managerial details such as productivity dynamics. Specifically,
the distance between planning and execution brings cost overruns and duration extensions. To minimize
variations, this research presents a Building Information Modeling (BIM)-integrated simulation
framework for predicting productivity dynamics at the construction planning phase. To develop
this framework, we examined critical factors affecting productivity at the operational level, and then
forecast the productivity dynamics. The resulting plan includes specific commands for retrieving
the required information from BIM and executing operation simulations. It consists of the following
steps: (1) preparing a BIM model to produce input data; (2) composing a construction simulation at
the operational level; and (3) obtaining productivity dynamics from the BIM-integrated simulation.
To validate our framework, we applied it to a structural steel model; this was due to the significance
of steel erections. By integrating BIM with construction operation simulations, we were able to create
reliable construction plans that adapted to project changes. Our results show that the developed
framework facilitates the reliable prediction of productivity dynamics, and can contribute to improved
schedule reliability, optimized resource allocation, cost savings associated with buffers, and reduced
material waste.

Keywords: productivity dynamics; building information modeling; computer simulation;
Just-In-Time; lean construction; data reuse

1. Introduction

Due to the increasing size and complexity of construction projects, traditional construction
planning is no longer sufficient for producing workable plans that incorporate all necessary project
details, such as design complexities, learning curves, and the coordination process. Such traditional
construction methods require construction managers to utilize data from previous projects and make
heuristic adjustments to establish on-site construction plans. However, with the radical shifts now
being seen, construction planning that refers to previous projects’ data cannot ensure the predicted
level of productivity. Since construction projects have become more complex [1], managers’ heuristics
cannot encompass all of the necessary managerial and operational details. On-site work now suffers
from constant modifications and changes to project conditions [2]. Such inadequate planning can
result in delays [3] and cost overruns stemming from on-site operational problems.

This variability between planned and actual performance results in managerial inefficiency and,
ultimately, lower-quality outcomes. Such differences lead to the supply of materials not coinciding
with demand on the construction site; construction managers must then wrestle with an excess or lack
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of materials. If the actual performance is greater than expected, materials become scarce and labor and
equipment are wasted. On the other hand, if the actual performance is lower than expected, materials
become excessive; construction costs then increase due to interest accrual and inventory management.
Thus, reliable planning is extremely important to managerial efficiency and waste reduction. However,
since construction projects are inherently dynamic and complex, the work productivity on site can
vary daily, according to the type and number of mitigating factors [4,5]. Productivity dynamics can
proliferate such variations between planned and actual production, resulting in an exacerbation of
on-site problems.

Since productivity on construction sites is dynamic, it is challenging to develop sufficiently reliable
construction plans. Each construction project is unique and complex. First, projects include numerous
risks and uncertainty [6]. For instance, developments differ in location, design, level of skilled labor
required, and team composition. The newness of the construction environment also adds unknowns
to the execution process, so that planning based on historical data cannot guarantee the expected
performance. This persistent newness results in frequent modifications to the planned schedule. Also,
a variety of operational and managerial factors influence productivity. Construction work involves
multiple processes and the complex interactions of a wide variety of components that are connected
by nonlinear relationships [5]. Moreover, since a construction project involves numerous stakeholders
(including owners, designers, contractors, and the government), coordination of all of the relevant
participants can be challenging [7]. Finally, construction projects operate under numerous constraints,
in dynamic environments, and require the coordination of multiple tasks [8]. Such complexity adds
unpredictability, and prudent planning is required.

Reliable predictions of productivity at the operational level minimize uncertainties, facilitate
efficiency, and decrease waste in terms of time, cost, and materials. However, “construction
companies still lack the ability to properly plan, estimate, and execute projects in a consistent,
efficient, and reliable manner” [2]. Existing planning and control techniques are insufficient for
predicting reliable and adequate on-site performance. However, computer simulations can be used
to improve a plan’s reliability, by explicitly incorporating performance factors and mutual causal
relationships. Such simulations can be utilized to quantify and validate the efficiency of the construction
process [6]. In addition, simulation models represent the: (1) overall logic of the multitude of activities
required to construct a building; (2) resources involved in performing the work (e.g., labor, equipment,
management, etc.); and (3) environment in which the project is being built (e.g., site conditions, labor
pool, market situation, etc.) [9]. Using computer simulation tools allows construction managers to
build consistent plans that consider critical productivity factors.

Furthermore, computer simulations automate the planning process, allowing for the integration
of Building Information Models (BIM) that contain all of the information necessary for development.
BIM design applications are more than just design tools; most BIM design applications also interface
with other applications, allowing for energy analyses, cost estimations, and so on [10]. With the
increasing amount of information available and BIM’s improved process annotations, information
visualization has become central to the overall construction process [10]. In this context, integrating
construction operation simulations with BIM would facilitate time and cost efficiency, and generally
streamline the process.

In this regard, our research developed a BIM-integrated simulation framework for predicting
reliable productivity dynamics by considering the factors that affect productivity at the operational
level. Our BIM-integrated planning framework alleviates the difficulties that currently plague
reliable construction planning, and allows for managerial efficiency as well as technical advancement.
Above all, since BIM is a digital representation of the functional and physical characteristics of
a building [11], it allows for the early incorporation of the unique characteristics of a building into the
planning process. Also, since simulation models represent the comprehensive production process,
including the dynamic and complex interaction of sub-processes [12], our framework allows us to
synthetically consider diverse factors and repeatedly run construction project in a virtual space,
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without risk. In the BIM-integrated simulation framework suggested here, simulations were fed
data on the building elements that had already been generated by the BIM tool. The complete
simulation performed the construction operation in a virtual world, and generated accurate forecasts
of productivity dynamics that were more reliable than those developed by traditional methods.

2. Literature Review

This chapter reviews current studies on the use of computer simulation in construction,
lean construction practices, and BIM applications used in our BIM-integrated simulation framework
for Just-In-Time production planning. First of all, whereas computer simulation techniques can now be
combined with advanced tools to analyze construction projects, difficulties with modeling simulations
and unreliable data usage continue to inhibit the application of simulations in the construction
management field. Additionally, while the construction industry has improved in many ways ranging
from management practices to technical developments, to apply lean principles, lean construction
should be emphasized (including all parties along the supply chain). While BIM’s benefits to the
construction industry are clear, its utilization in the construction management domain remains narrow.

2.1. Computer Simulation in Construction

Increasingly, simulation models are being used as problem-solving and decision-making tools
in many industries, especially manufacturing [13]. Simulation has also long been an established
method for analyzing both production and logistics [14]. Particularly, the manufacturing industry
has successfully implemented simulations to improve production processes [15]. The popularity of
simulation stems from its ability to make models of complex systems [16]. Simulations offer realistic
representations of the interactions among a variety of systems’ diverse components [16]. Despite these
advantages, in the construction industry, the use of simulation for planning purposes has been largely
limited to academic research. This is because simulation modeling is a time-consuming and error-prone
process [12,17,18].

Certain researchers have argued that 4D simulations should be considered appropriate for
use in the construction industry. However, 4D simulations only allow for the visualization of
construction schedules [19]. In this research, we used 4D models instead of 4D simulations; references
to “simulations” should be understood as including discrete-event simulations, system dynamics,
agent-based simulations, and multi-method simulations. Currently, schedules used to establish 4D
models are created via traditional construction planning methods, using historical data and heuristic
adjustments. Thus, 4D models cannot offer either optimal or reliable plans; they remain on the level
of visualization, not planning. If schedules are not developed in a reliable manner, construction
managers can only use 4D models as visual communication tools and not as facilitators of planning,
analyzing, and decision-making. To address the current limitations in this area, we have employed
computer simulations as a means of developing construction plans and providing reliable schedules to
4D models.

There has been a substantial body of research on applying computer simulation technology to the
construction field. The first simulation approach developed in this area was called CYCLONE [20],
which can be used to model simple cyclic networks. For example, micro-CYCLONE simulations were
used to analyze concrete batch plant operations according to resource combinations and distances [21].
However, this system was too simple to accurately model recourses, and thus tended to manipulate
them in the model [9]. Then, with the development of object-oriented process simulation, simulation
tools were improved to create more practical models with better user interfaces and the flexibility
to adjust the model’s scope; as a result, reliability improved. AbouRizk and Hajjar [22] introduced
Simphony as a simulation language. Exploiting the possibilities of this new simulation tool, researchers
suggested a production-based framework using simulations to establish ideal project execution plans;
they also discussed the requirements for extending the scope of such simulations [2]. Subsequently,
researchers have attempted to integrate simulation technology with other tools [9]. One example
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was the integration of 3D-CAD (Computer-Aided Design) with computer simulations to support
decision making during construction [23]. Other researchers used discrete-event simulation for
planning by designing construction operations and then visualizing the simulated operations in
3D [24]. With the advancements that have been made with modeling tools, the potential applications
of computer simulation have increased [9]. For instance, simulation models can now simulate and
analyze construction operations, and then support construction scheduling. Ultimately, they can
predict the utilization of resources and identify logistics bottlenecks [25].

However, to utilize computer simulations in the construction industry, we first need to solve
limitations such as difficulties with modeling from simulations and unreliable use of data. This research
is an effort to minimize the effects of these limitations and convince practitioners of the merits of using
simulations in the construction industry. If researchers built standard simulations of each construction
operation’s work, practitioners could use those simulations for planning by only modifying the
parameters salient to the particular project. Additionally, by using BIM-provided information and
integrating BIM with simulations, the reliability of the simulation’s data usage would be greatly
improved. Therefore, this research suggests a new methodology for establishing reliable construction
plans via a convenient and practical BIM-integrated simulation framework.

2.2. Lean Construction

Lean production, which tries to eliminate any waste of materials, time, or effort from a production
process, was developed by Toyota (a Japanese car manufacturing company) [26,27]. It stemmed
from the need to create a system of production that responded to customers’ orders (i.e., not mass
production). This approach greatly increased Toyota’s productivity. Consequently, many industries
have attempted to adopt the concept. In the construction industry, lean production was introduced in
the mid-1990s [27]. The major aims are the minimization of waste and maximization of value. Various
tools, methods, and techniques are employed to accomplish these goals. Applying lean thinking to
the construction field has led to the development of a variety of planning and control systems [28].
For example, Mao and Zhang [3] established a construction re-engineering process that combines lean
principles and computer simulation techniques. Based on such principles, their research classified
construction activities into conversion and flow activities instead of the value-added/non-value-added
classification system that was standard; the resulting re-engineering process avoids confusion in
classification [3]. In this context, the application of lean principles in the construction field can improve
the efficiency of construction planning.

The most important lean principle is the minimization and eventual elimination of wasted time,
money, equipment, etc. [29,30]. On construction sites, there are many kinds of waste, such as the
time crews spend waiting to begin a project or reworking incorrectly completed tasks, and inefficient
handling of materials, inventory and workspace [28]. According to parade game theory [31], these
types of waste increase with variations in flow, which in construction affects the entire supply chain.
Specifically, variations in the actual and expected outcomes result in the need for buffers to manage
variability in orders. However, buffers mean wasted resources spent on management and control, even
when the buffers are not absolutely necessary. These, the buffers increase the production cycle and
extent of the project’s duration and budget [31,32]. If managers fail to reliably predict production in the
field, they cannot help but accept an excess or lack of stock. The alternative is to control their inventory
by change-orders. As a means of preparing for this type of situation, suppliers employ some number
of buffers to shield against change-orders. If this unreliable and unpredictable situation continues,
participants along the supply chain cannot achieve suitable levels of cost- and time-efficiency; efficiency
along the entire extent of the supply chain fails. Reliability in production allows all contractors to
manage their work with a minimum of buffers, and implement Just-In-Time production. Reliable
production achieves minimum waste by delivering the right quantity at the right time, maximizing the
value for the client by minimizing cost overruns and duration extensions.
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Reliable construction planning is essential to eliminating waste in construction projects. However,
it is difficult to accurately predict the needs of a particular project, because of their inherent uniqueness
and complexity. In addition, productivity cannot be predicted at a normal or static rate because it
involves dynamic interactions and complicated variables that come together in a variety of complex
systems [33]. Productivity dynamics generated from new labor, a unique learning curve, or changes
in the site’s conditions can all lead to waste. Therefore, construction managers should consider
such variables when planning. To accomplish this goal, we developed a BIM-integrated simulation
framework. This framework will assist in the prediction of productivity dynamics, contribute to
minimizing inventory on site, and increase reliability with regards to orders. The result will be
a decrease in buffers and a realization of the key principles of lean construction.

2.3. Application of BIM

BIM is a remarkable technology regularly employed in the Architecture/Engineering/Construction
(AEC) industry [34]. It was developed as a tool for engineers to use to generate and manage building
information and facilitate three-dimensional design [35]. BIM applications are rapidly becoming more
common in the construction industry because they are useful for reducing cost and time, and enhancing
project quality [36]. The major merit of this technology is the visual enhancements it provides, which
are useful means of facilitating communication among stakeholders. In addition to providing a means
of visualizing 3D geometric expressions, BIM incorporates a variety of process data useful for analyzing
constructability. Furthermore, in BIM, architectural design is integrated with energy simulations to
efficiently and accurately apply simulation input [34]. Geometric information is also integrated into
structural simulations to analyze structural safety; detailed models are produced that reflect the
uniqueness and authenticity of a building without excessive geometric simplifications [37]. Likewise,
BIM is utilized in many other aspects of construction, such as analyses of building energy, structure,
and constructability.

Rapid improvements in BIM technology have made building performance evaluations easier and
quicker to complete; for example, energy consumption [34,38] and structural design analyses [37],
and structural evaluations during construction [39] use BIM data to obtain the details necessary for
a thorough investigation of a building’s performance. Construction management also uses BIM to assist
in visual communication among all key parties, the integration necessary to obtain new managerial
knowledge, and automation that improves managerial efficiency. Yet in spite of these important uses,
in the construction management field BIM data continue to be utilized for only simple and partial
purposes. For instance, according to a study on project scheduling via the integration of BIM with
construction process simulations [1,19], researchers only used BIM data to obtain the quantities of
materials needed. Although quantity takeoff data is necessary when determining the duration of the
construction process [25], on its own it is not sufficient for reliable construction planning. Specifically,
operational and managerial data are needed, such as workable hours, amount of skilled labor, level of
difficulty, and so on.

3. Methodology

3.1. Productivity Dynamics

In the past, scheduling for the construction industry has been based on average historical data
collected from similar projects and heuristic adjustments made by construction managers. Construction
managers multiply the quantity of materials by unit of time, based on historical data, and then calculate
the total duration of the work. Then, the quantity of materials is multiplied by duration; as a result,
daily production and productivity is established. Afterwards, managers heuristically adjust their
construction production plans in accordance with initial delays, learning effects, and the need for
re-work. In actuality, though, such plans tend to be quite different from execution. Since construction
work follows an outdoor, project-based production process, the environment cannot be controlled and
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variability is prevalent [40]. This variability leads to cost overruns and on-site delays (see Figure 1).
For instance, if production is greater than expected, resources are wasted; this waste leads to
unexpected costs and work delays (see Figure 1). On the other hand, if production is lower than
expected, established buffers are unnecessary; this extra inventory leads to unexpected managerial
costs and non-value-adding activities that waste resources [40] (see Figure 1). The goals of lean
construction can be achieved by reducing or reliably predicting output variability [40]. Thus, in order
to minimize the cost overruns and delay extensions caused by differences in plan and execution, this
research paper presents a BIM-integrated simulation framework for reliable production planning.
This research will lead to all parties along the supply chain achieving the expected level of efficiency
and reliable production plans for the construction site; as a result, the waste of time, money, equipment,
and materials will be minimized.
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3.2. BIM-Integrated Simulation Framework

Above, we explained why reliable production planning is important to achieving lean
construction; it increases the efficiency of all parties involved in the construction project. Consequently,
in this work we argue for the use of computer simulations as a production process assessment tool and
BIM as a reliable data source. In the following section, we will present a BIM-integrated simulation
framework for construction planning. Subsequently, we will demonstrate the methodology’s
usefulness in establishing accurate productivity dynamics.

3.2.1. Design of BIM-Integrated Simulation

Construction managers usually develop their construction plans according to historical data and
heuristic adjustments (see Figure 2).
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Since construction projects often differ in terms of design, site, and environment, historical
data cannot guarantee the expected level of performance. Also, because a considerable number of
factors influence construction productivity, managers’ heuristics cannot incorporate all managerial and
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operational details. Therefore, this traditional construction planning method cannot produce reliable
plans that properly consider a project’s uniqueness and complexity. To remedy this, we have designed
a set of BIM-integrated simulation procedures that can be customized to produce accurate synthetic
planning (see Figures 2 and 3).Sustainability 2016, 8, 1106 7 of 25 
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First, we prepared a BIM model that included building information such as materials, geometry,
size, and so on. Then, we developed commands using BIM Application Programming Interface
(API) (C#) to extract the BIM data and translate that information into resource data for the computer
simulation. These data were then input into the construction operation simulation. Finally, we obtained
productivity dynamics and used them in our production planning, scheduling, and resource allocation.

3.2.2. BIM-Integrated Simulation Framework

We developed a BIM-integrated simulation framework for predicting productivity dynamics
and facilitating reliable production management. BIM offers reliable data for construction process
simulations. By developing commands using the BIM API, we were able to extract BIM data and
translate it into building data that could then be input into the simulation. Using BIM will allow
construction managers to consider construction projects’ unique characteristics such as materials, geometry,
and quantity and quality of work needed. This will save construction managers both time and money.

The simulation consisted of the overall construction work process, critical factors affecting
productivity, work resources, BIM data, and managerial setting information. By using Anylogic 7
(Anylogic Company: St. Petersburg, Russian, 2013), a remarkable simulation technology already in use
in many industries, we were able to synthetically consider the complex conditions of a standard
construction project and a substantial amount of data. By using this BIM-integrated simulation
framework, construction managers will be able to develop reliable productivity dynamics from accurate
data (see Figure 4); as a result, variations between planned and actual production will be minimized.
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4. Development of BIM-Integrated Simulation

In this section, we explain the specific procedures for applying a BIM-integrated simulation to
a construction project.

4.1. Preprocessing a BIM Model

BIM models contain construction information such as a building’s geometry, size, type, and
so on shown in Figure 5. To generate the BIM model for this research, we used Autodesk Revit
2015 (Autodesk: San Rafael, CA, USA, 2015). Autodesk Revit provides powerful .NET API, which
we employed to extend the information embodied in the BIM model. We then retrieved the input
data relating to the construction process simulation by programming the .NET framework in the C#
programming language.
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4.2. BIM2SIM Approach

We developed commands to extract and change BIM data in order to input the resource data
needed for the construction process simulation. We used the .NET framework language C# to compose
the BIM2SIM commands. These commands first accessed the BIM information and extracted the BIM
data; then, they translated the BIM data into simulation input data. The BIM2SIM approach is depicted
in Figure 6. The following procedures were required to extract the BIM data for our construction
operation simulation.

• Produced a pre-built BIM model
• Developed code for extracting data from BIM
• Constructed a dataset sorted for the simulation
• Translated that dataset into simulation input data
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4.3. Construction Operation Simulation

After preparing a pre-built BIM model and composing commands using BIM’s API, we developed
a construction operational simulation shown in Figure 7. To build a reliable simulation, we first
scrutinized various construction processes by conducting a thorough literature review, interviewing
practitioners, and analyzing textbooks. Then, we identified the critical factors that influence operational
work productivity. Using the information collected from our analysis, we built a conceptual simulation
model as a scheme, listed the critical productivity factors, and developed an operational simulation
using the Anylogic software. The resulting simulation tool is the first and only instrument to bring
together discrete events, system dynamics, and agent-based simulations in one model development
environment. Using the Anylogic simulation tool, we followed the steps listed below to develop and
conduct the final construction operation simulation.

• Defined the work procedures for the construction operation
• Determined the critical factors affecting work productivity
• Developed the simulation
• Extracted the building data from BIM to conduct simulation
• Implemented the computer simulation
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5. Application for BIM-Integrated Simulation Method

In this section, we discuss the application of the BIM-integrated simulation method to a steel
erection project, in order to examine the applicability of the method for actual construction projects.
Steel erection is one of the most important processes on the construction site; it has critical effects on
a project’s duration and cost. Consequently, steel erection work is one of the most actively-managed
areas; accuracy is essential to reliable production planning. Therefore, by applying this method to
steel erection work, we were able to validate the applicability of the method and minimize any excess
money and time that would need to be spent on this step of the construction.

5.1. Preprocessing BIM Data Used for Planning

We prepared a steel-structure BIM model for an actual construction project in Seoul. The building’s
area was approximately 390 m2, and the site area was approximately 650 m2. The building had
a basement and four above-ground floors. The structure was steel-reinforced concrete. We only
modeled the steel elements of the structure to test our method for steel erection work (see Figure 8).
The BIM model offered all of the necessary information, such as the number of columns and beams, size,
type of each material, geometric location, and so on. These data were then used for the construction
simulation model.
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5.2. Implementing Commands Using BIM’s API to Extract Building Information

After preparing the BIM model, we developed commands using BIM’s API and the C# .NET
framework languages; these commands were imported using the add-in tool from Autodesk Revit
2015. The commands allowed engineers to obtain the required information embodied in the BIM
model. The commands translated the extracted building information into input resource data for use
in the construction operation simulation. The procedures used to retrieve the building information
can be found in Figure 9. This process saved time, money, and effort that would otherwise have been
needed to reproduce the building data already in the BIM model.
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5.3. Development of the Construction Operation Simulation

We composed a steel erection work simulation via a discrete-event simulation approach because
steel erection work is generally performed as a sequence of events over time. However, we noticed
that steel construction requires installed location factors such as height; thus, we interpreted steel to
be a simple agent. We also conducted a literature review, expert interviews, and a textbook analysis
to determine a reliable construction operation process and appropriately used the retrieved building
data in the simulation environment. To properly express the steel erection work process, we first
composed a simulation outline to serve as a blueprint. Then, we identified critical factors affecting
work productivity by scrutinizing this type of work, interviewing experts, and reviewing the relevant
literature. The Anylogic software was used to build the model. We arranged the simulation libraries
and parameters into processes and resources, according to their properties. In the following section,
we present our process for developing a steel erection work simulation on a construction site.

5.3.1. Composing the Simulation Outline

After a literature review, interviews with experts, and a textbook analysis, we built our scheme
for steel erection work on a construction site (see Figure 10). The work was divided into four sectors
and fifteen operational processes. The first sector involved transporting materials to the construction
site. The second was the temporary erection of the columns. The third sector was the temporary
erection of the beams. The final sector included installation of all erection materials. There were
four processes included in the first phase: (1) transporting the steel to the site; (2) moving the steel to
the stockyard; (3) unloading the steel; and (4) maintaining the steel in the stockyard. In the second
phase, there were also four processes: (1) preparing the columns to be lifted; (2) the lifting columns;
(3) arranging the columns to be correctly placed; and (4) temporarily erecting the columns. In the third
phase, there were five processes: (1) installing the safety device; (2) preparing the beam materials to be
lifted; (3) lifting the beams; (4) arranging the beams to be correctly placed; and (5) temporarily erecting
the beams/girders. The final phase was divided into two processes: (1) gauging the verticality; and
(2) erecting all materials.
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5.3.2. Finding the Factors Critical to the Construction Operation

We identified the critical factors that influence the productivity of steel erection work on
construction sites. To verify the reliability of our conclusions, we analyzed textbooks, interviewed
specialists, and reviewed the relevant literature on the topic. According to research in this field,
the factors that impact steel work productivity are extremely complex and diverse, and include the
constructability and completeness of the design, responsibility of the workers, surrounding conditions,
construction period, site size, structure type, supply of the materials, height of the work, and so on.

Among these and other factors, we found six that were repeatedly stressed by the experts. (1) The
number of workable days. Workable days are days in which it is possible to further the construction
project; this exclude days with bad weather or during which unexpected accidents occur. This factor
has a significant impact on productivity; it is directly connected to the time resource input value;
(2) Variety of erection materials used in the same area. The more materials needed in a single area, the more
time the project consumes; (3) The capacity of the stockyard. This factor influences the materials’ supply
cycle; (4) The height of the project. If the steel erection work is performed above the fifteenth floor, logistics
of placement become so complex and the time spent lifting becomes so prolonged that productivity
is always reduced; (5) Access to a tower crane. Steel erection work requires the use of a tower crane.
Thus, easy access is a critical factor to productivity; (6) Workers’ level of skill. Workers are diverse and
unpredictable, and their efficiency and knowledge is critical to productivity.

5.3.3. Steel Erection Work Simulation

Using Anylogic, we created a simulation model based on a simulation outline and the
above-discussed critical factors. The model was prepared as a discrete-event simulation (see Figure 11).
Associations among the critical factors and simulation libraries were organized according to their
relation. As mentioned above, we divided the steel erection work into four sectors and expressed
each as a different line in the simulation model (see Figure 11). However, the specific simulation
processes went far beyond the defined steps in the simulation outline, due to the dummy steps
necessary to meaningfully control the flow of materials. The critical factors were defined as:
‘schedule’, ‘numbersOfErect’, ‘capaOfStockYard’, ‘heightOfErect’, ‘availableTC’, and ‘workersSkill’,
which translated to workable days, number of erection materials, capacity of the stockyard, height of
the project, access to a tower crane, and skill of the workers, respectively. The schedule and parameter
simulation components in the Anylogic software were used to incorporate these factors into the
simulation model.
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Figure 11. Steel erection work simulation model in Anylogic.

Labor and equipment were defined as resources in Anylogic (see Figure 12). We initially divided
labor into five categories: one foreman, two bolting workers, three welding workers, one worker
to support the hooking materials, and one signal man to support the lifting. The initial number of
workers was determined by analyzing the standard crew used in steel erection work. Additionally,
we included one forklift, one tower crane, and small tools used for bolting. A forklift is used to move
steel materials under 30 tons; however, it was not used in our simulation because the capacity of the
forklift was not considered critical to productivity. A tower crane moves one steel beam at a time.
Small tools are dummy resources and were included only to illustrate that tools were required for the
bolt workers.
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5.3.4. Simulation Libraries and Parameters

We determined that a number of components and parameters were necessary for steel erection
work on a construction site. Both ‘Source’ and ‘Sink’ were essential to building the process model
because ‘Source’ provided a starting point and ‘Sink’ an end point. Despite the volume of steel
materials included in the process model, the ‘carrying materials’ sector was expressed as a single entity
because it was all loaded onto a single truck. To bind the steel to a single entity, we used the ‘Batch’
component. ‘MoveTo’ was used to express a truck entering into a stockyard space. When the steel
materials arrive at the stockyard, workers must spend time unloading them; we expressed this step as
a ‘Delay’ component. To allocate a forklift before and after the unloading process, we added ‘Seize’
and ‘Release’ components. If materials needed to be detached from their delivery truck, we identified
them individually via the ‘Unbatch’ component. We used the ‘Queue’ component to demonstrate
when steel remained in the stockyard until it was required for erection.
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In the second sector, the ‘temporary erecting column’ task, we selected the columns among the
inventory in the stockyard via the ‘Pickup’ component. The columns could then be hooked to the
lift, lifted, arranged in the correct spot, and temporarily erected. In the third sector, the ‘temporary
erecting beam’ task, we followed a similar process. We first selected the beam materials via the ‘Pickup’
component, and then installed the safety equipment, hooked the beams to the lift, lifted the beams,
arranged the beams on the correct spots, and then temporarily erected them.

Finally, the ‘erecting all materials’ sector followed a relatively simple set of two steps: checking
the verticality of all of the materials, and firmly erecting all of the installed steel materials. In order to
erect the beams after the columns were installed, we added a ‘Hold’ component between the first and
second sectors. The blocking condition for ‘Hold’ was whether the number of columns in the batch
was the same as the number of beams in the batch. From this component, we were able to prevent
steel materials from jumping onto a ‘temporary erecting beam’ sector before the columns were erected.
In Table 1, the specific simulation components and our process of naming are described.

Table 1. Simulation steps for steel erection work.

Simulation Components Naming Description

Source source Starting point of the process model

Batch batch Binding steels to one entity because requested steels are entered in one truck

MoveTo truckEnter Entering a truck

MoveTo driveToUnload Moving truck to a stockyard space

Seize seizeSt Allocating steels to forklift for unloading

Delay unloading Unloading step

Release releaseSt Releasing steels from forklift after unloading

Unbatch unbatch Detaching steels from a truck

Queue managSt A stockyard to load steals

Hold hold Holding steel entities to pass to erecting beams before erecting columns
are completed

Pickup pickupCol Selecting the number of columns planned to be erected

Unbatch unbatchCol Selected one entity is divided to individual columns.

Service hookCol Hooking/Wiring column to tower crane

Service liftColumn Lifting columns one by one

Service erectCol Arranging columns on right point and erecting columns temporarily

Batch batchCol Binding erected columns as one entity to move onto next step when columns
stretched to three stories are erected

Pickup pickupBe Selecting the number of beams planned to be erected

Unbatch unbatchBe Dividing selected one entity into individual beams.

Delay equipSafety Preparing safety materials

Service hookBeam Hooking/Wiring beam to tower crane

Service liftBeam Lifting beams one by one

Service erectBeam Arranging beams on right point and erecting beams temporarily

Batch batchBe Binding erected beams as one entity to move on next step when beams
are erected

Delay checkAll Checking the vertical states of temporary erected materials

Service erectAll Installing all erected materials permanently

Sink sink Ending point of the process model

We presumed that 1 s in the simulation equated to 6 min in real time. We then defined the
simulation input values and assumptions for each simulation step. Among these steps, we determined
those directly related to productivity: ‘hookCol’, ‘liftColumn’, ‘erectCol’, ‘equipSafety’, ‘hookBeam’,
liftBeam’, erectBeam’, ‘checkAll’, and ‘erectAll’. To determine the reliable productivity output provided
by the simulation, we needed an accurate way of defining these nine steps. Through a literature review
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and interviews with experts, we configured dependable values and an appropriate distribution for the
steps presented in Table 2.

Table 2. Input values and assumptions.

Steps Input Values Description or Assumptions

source 1 entity every 5 s Source depends on the schedule; this schedule will be
defined after predicting reliable production plan

batch numberOfCol + numberOfBeam (+dummySteel) We assumed that columns and beams of each level are
entered in one truck

truckEnter None (Dummy step) This step means that a truck enters a site. The speed can be
limited during simulation

driveToUnload None (Dummy step)
This step means that a truck moves in front of the stock
yard for unloading. The speed can be limited during
simulation

seizeSt Resource sets: forklift This step allocates steels to the resource (forklift).

unloading * triangular(1, 5, 4)
This step is a dummy step because it is not directly related
to measure productivity. Then, we assumed input values
depending on various cases.

releaseSt Release: all seized resources This step releases steels from the resource (forklift)

unbatch None This step is the dummy step for recognizing steel entities
individually by detaching them from one truck

managSt Capacity = ‘capaOfStockYard’ Its capacity is adjusted by the
‘capaOfStockYard’ parameter

hold Blocking condition: hold.out.count() !=
batchBe.out.count();

This step holds steel materials for allocating to the
proper sequence

pickupCol Quantity: numberOfCol This step picks up columns to perform ‘temporary erecting
columns work’

unbatchCol None This step is the dummy step for recognizing steel
entities individually

hookCol triangular(0.583, 1.167, 0.833) We assume hooking column material one by one. Also,
it requires the same amount of time with hookBeam

liftColumn triangular(0.767, 1.067, 0.917) This input distribution is acquired from analysis of
previous literatures

erectCol triangular(3.667, 6.167, 4.167) This input distribution is acquired by cross-checking of
previous literatures

batchCol Size: numberOfCol We bound columns on one floor plan into one batch

pickupBe Quantity: numberOfBeam This step picks up beams to perform ‘temporary erecting
beams work’

unbatchBe None This step is the dummy step for recognizing steel
entities individually

equipSafety 1.667 expert interview

hookBeam triangular(0.183, 0.44, 0.258) We assume hooking a beam material one by one because
of preventing torsion

liftBeam triangular(0.769, 1.069, 0.919) This input distribution is acquired from analysis of
previous literatures

erectBeam triangular(3.731, 4.000, 3.869) This input distribution is acquired by cross-checking of
previous literatures

batchBe Size: numberOfBeam We bound beams on one floor plan into one batch

checkAll 80 expert interview

erectAll numberOfBeam * triangular(3.731, 4.000, 3.869) The number of erecting materials installed is same as the
number of temporary erecting beams

sink None Ending point

* 1 s in simulation = 6 min in real time. * triangular(min, max, mode).

Whereas the input distribution of the construction simulation fit the beta distribution [41], it was
more difficult to obtain an amount of data sufficient to extract the beta distribution. Since triangular
distribution is both simple and intuitive [42,43], we applied it as input data retrieved, based on data
from previous literature (see Table 2). The triangular input data used for critical simulation steps were
determined by cross-checking the previous literature on this topic. The values are presented in Table 3.
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Table 3. Triangular input data for critical simulation steps.

Steps
Duration (Minutes in Real Time *)

Minimum Most Likely (Mode) Maximum

hookCol 3.500 5.000 7.000
liftColumn 4.600 5.500 6.400

erectCol 22.000 37.000 25.000
hookBeam 1.100 1.550 2.640
liftBeam 4.613 6.413 5.513

erectBeam 22.388 24.000 23.213
erectAll 22.388 24.000 23.213

* 1 s in simulation = 6 min in real time.

5.3.5. Steel Agent Modeling

In the steel erection work model using discrete-event simulation (process-centric models), steel
was used as an object in the process flow. We needed the amount of materials and the height of the
erection, which were obtainable from the BIM model. After we obtained this information, we classified
the steel materials according to their required order in the work process flow shown in Figure 13. First,
we sorted the columns and beams. Then, the steel was divided according to separate floors because it
needed to be installed according to the floor order. In the model presented in Figure 8, the columns
were only installed on the basement level, so we created only one state for columns. Conversely,
we prepared six states for the beams because they needed to be installed on all six floors. To classify
these input values, we created two parameters, ‘baselevel’ and ‘referenceLevel’. After developing
the commands for extracting the BIM information, we stored the base level value of the columns in
‘baselevel’ and the reference level value of the beams in ‘referenceLevel’. Since columns only had
a base level and beams only had a reference level, these two parameters were all that were needed.
Additionally, we reflected the height factor by dividing the state by floor.
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5.4. Running the BIM-Integrated Simulation

Within the Autodesk Revit 2015 environment, we opened the prepared BIM model and added
in the commands described above. By executing the process, we obtained the simulation input data
extracted from the BIM model and translated it into the simulation data format. Then, we opened the
Anylogic simulation application and imported the simulation input data. We also imported the steel
work process model. Next, the input data model was added to the steel work process simulation. In the
Anylogic simulation environment, different files can be combined if they are written in an Anylogic
simulation format such as alp. We then integrated the resource input data from BIM into the steel work
process simulation, performed the steel erection work process simulation, and measured the column
and beam erection productivities and the overall productivity of the erection. The entire process is
presented in Figure 12. When we measured the productivity, we were able to obtain the optimal
resource input combination by adjusting the input data. Consequently, the method enabled us to
establish optimal resources and production plans that considered the construction project’s uniqueness
and complexity. Figure 14 shows the entire processes.
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5.4.1. Model Input and Assumptions

This section describes the model input data and assumptions that were made when we applied
the BIM-integrated simulation to the actual steel installation work. Based on experts’ opinions,
we determined the simulation steps critical to the steel erection work simulation. These steps included
hooking, lifting, erecting, installing safety equipment, and checking verticality. We analyzed the
model’s input values for these steps, found historical values in a previously-published case study,
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cross-checked the data, then decided on minimum, maximum, and most likely values. This process
was validated via the expert interviews.

We also assumed that there was one foreman who worked on the ground, one signalman for the
signal, one worker who hooked the materials to the tower crane, two workers who erected the structure,
and two workers who welded between the columns. We identified these values via a textbook analysis,
expert interviews, and a review of the published literature on this topic. We presumed access to a
forklift and tower crane, and analyzed the required use of this equipment by employing the basic
analysis tools in the Anylogic simulation software. Also, the amount of materials the forklift and tower
crane could move could be modified during the simulation because we considered them adjustable
managerial values.

5.4.2. Role of Critical Factors and Input Assumptions

As mentioned above, we identified six critical factors affecting productivity for steel erection
work: the number of workable days, amount of materials, capacity of the stockyard, height of the
erection, availability of a tower crane, and skill of the workers. These critical factors were divided into
those that were and were not obtainable from BIM. Then, we determined how to consider unobtainable
factors in the simulation model. The method we followed for reflecting all critical factors is presented
in Table 4.

Table 4. Method for reflecting critical factors in the simulation model.

BIM Information Critical Factors Method to Reflect Critical Factors in the Simulation Model
(Technical Method/Assumptions)

Obtainable The number of
erecting materials The factor could be obtained from BIM model by executing commands

Unobtainable

The capacity of
stockyard

The factor represented the number of capable stored steel materials in
the stockyard, and it was considered as the managerial factor, so this
value could be changed while running the simulation

The workable day The factor was unpredictable. Thus, if we predicted productivity,
we could draw proper workable days

The level of erecting
height

We could obtain the height of erecting, but could not obtain the level of
erecting height

The availability of
using the tower crane

We first supposed that there is one tower crane in a construction site.
By calculating the utilization of tower crane resource, we could deduce
proper utilization of the tower crane for steel erection work

The skill of workers
The factor was also unpredictable. However, by supposing workers’
skill, we could draw proper combination of workers’ skill for steel
erection work

We assumed that the height of the erection increased until Floor 3, then decreased to the roof;
that is, the level of the columns in the basement was 1.2, while the levels of the erecting beams on
the first, second, third, fourth, fifth, and sixth floors were 1.1, 1.0, 0.9, 1.2, 1.3, and 1.3, respectively.
The production values were divided into these values to reflect the predicted steel work productivity.
When we added the BIM information by using the above-mentioned commands, we classified the steel
materials by their height; and then, each level of height was used to predict productivity. Additionally,
since workers’ levels of skill can be unpredictable, we extrapolated the optimal combination of skilled
workers through an analysis of the various scenarios. Specifically, since the required number of
workers will differ according to their skill, we applied a different number of workers to each process,
compared their level of utilization, and extrapolated the optimal combination.

5.4.3. Results from Running the BIM-Integrated Simulation Model

We executed the BIM-integrated simulation model and built graphs of the work productivity based
on the model input values and critical factors determined from the above-mentioned assumptions.
The amount of materials needed for each level was determined by using BIM’s API commands.
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We assumed that the capacity of the stockyard was more than the sum of the number of columns and
beams in order to avoid restrictions from a limited stockyard. The difficulty of the work as the height
increased was a productivity-impeding factor. The entire setup of all the critical factors is presented in
Table 5.

Table 5. Simulation running conditions.

Setup Data Base Case Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

The number of
erecting materials Column: 18 Beam: 32 Beam: 45 Beam: 45 Beam: 35 Beam: 25 Beam: 8

The capacity
of stockyard 100

The workable day Extrapolation from the results of productivity on site

The level of
erecting height 1.2 1.1 1.0 0.9 1.2 1.3 1.3

The availability of
using tower crane

Assumed one tower crane in the construction site. Extrapolated from the results of productivity
on site

The skill of workers

Maintain the initial number of workers
Foreman 1

Signal man 1
Workers for welding 2
Workers for bolting 2

Workers for hooking 1

We performed our BIM-integrated simulation according to the simulation’s running conditions
shown in Figures 15–22. The installation sequence was according to height; that is, in the first set
of erections, the beams on Levels 1, 2, and 3 were installed sequentially after installation of the first
set of columns. Then, in the second set of erections, the beams on Levels 4, 5, and 6 were installed
sequentially after installation of the second set of columns. The productivity of the beams varied
according to the erection height. The difficulty of the work increased according to the following floor
levels: 3, 2, 1, 4, 5, 6. Likewise, productivity increased according to the same sequence. While we
supposed that the standard height was 1.0, we observed a difference if the difficulty level of work was
varied more.
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To allocate the production periods, we compared the times needed to complete each level of the
erection work, as shown in Table 6. The values in Table 6 can also be seen in the graphs displayed in
Figures 15–22. The total production time broadly depended upon the amount of erection materials.
According to a comparison of the Levels 1 and 2 beam erection data, although Level 1 was more
difficult, the total production time was shorter because the amount of necessary materials was less.
In this regard, we found that the amount of materials has a greater influence on the production
schedule than the height. Thus, we assumed the variation in difficulty to be 0.1, so if the variation
increased, productivity would be controlled by height.

Table 6. Time to complete erection work.

Results Base Case Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

The number of
erecting materials Column: 18 Beam: 32 Beam: 45 Beam: 45 Beam: 35 Beam: 25 Beam: 4

The level of erecting height 1.2 1.1 1.0 0.9 1.2 1.3 1.3

Time for completion
(in Simulation) Around 80 s Around

130 s
Around

190 s
Around

190 s
Around

150 s Around 98 s Around 20 s

Time for completion (min) 480 780 1140 1140 900 588 120

Time for completion (h) 6.0 13.0 19.0 19.0 15.0 9.8 2.0

1 s in simulation = 6 min in real time.

6. Sensitivity Analysis

This section discusses the sensitivity analysis that tested the model’s reaction to changes in
the input parameters. We analyzed four critical factors: the amount of erection materials, stockyard
capacity, height of the erection, and availability of a tower crane. Though there were a total of six factors
found to be critical, workable days and workers’ skill could not be defined or assumed before the
simulation. These two factors can only be obtained by extrapolation from simulation results and/or
analysis of previous research. Among the four impact factors, we analyzed the amount of erection
materials and capacity of the stockyard because they could be modified by individuals involved in the
construction project participants. For example, materials could be reduced by the strategic structural
design of a structural designer, and the capacity of a stockyard could be adjusted by a strategic floor or
path plan. Our sensitivity analysis considered these point of flexibility. The setup and results of this
analysis are presented in Table 7 and visualized in Figure 23.

Traditionally, construction managers have accepted that productivity decreases when the amount
of erection materials increases. However, according to our sensitivity analysis, productivity decreased
but then recovered when the amount of erection materials regularly increased. On the other hand,
when the amount was enough to disturb productivity, it decreased along with the extension of the
capacity of the stockyard. With regards to construction planning, this analysis can be applied to
determine the proper amount of erection materials and size of the stock yard needed.
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Table 7. Sensitivity analysis setup and results.

The Number of Erecting Materials

Productivity (↘) 12 14 16 18 20 22 24

The capacity
of stockyard

17 0.258 0.237 0.235 0.250 0.276 0.307 0.339
34 0.258 0.237 0.231 0.233 0.235 0.239 0.238
51 0.259 0.232 0.235 0.237 0.235 0.239 0.236
68 0.257 0.232 0.235 0.237 0.235 0.237 0.236
85 0.258 0.236 0.235 0.234 0.235 0.239 0.235

102 0.258 0.236 0.238 0.003 0.235 0.237 0.235
119 0.258 0.232 0.235 0.237 0.238 0.240 0.236
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7. Conclusions

By executing the BIM-integrated simulation, we were able to obtain a dynamic productivity plan
and calculate the project’s per-hour rate of production. Compared to the traditional construction
planning method, this system established a reliable construction plan from a bottom-up approach,
meaning that we considered operational work and the relationships among the various activities,
activities and resources, and resources themselves. This activity-based construction planning method
improves reliability because the results are much closer to the actual schedule and the construction
plan can be adjusted whenever the BIM model is modified. Also, when delays occur or resources
change, using this BIM-integrated simulation framework is more flexible because the work is broken
down into more detailed activities.

This research presented the development and application of the BIM-integrated simulation
framework for reliable construction planning. From this framework, the operational level productivity
is measurable, which means it can be used for whole-project planning. While BIM has been used in
various construction fields ranging from predicting the energy performance of buildings to analyzing
structural safety, BIM usage is relatively limited in the construction management field. This research
presented a method capable of expanding BIM’s utilization in the construction management domain.
Also, since BIM information can now be reused by construction engineers establishing construction
plans, the framework saves time, money, and effort that would otherwise be spent reproducing
construction project data.
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Furthermore, the developed framework presents a new perspective on construction planning
by considering construction projects’ uniqueness and complexity. Whenever the BIM model is
modified during the work’s progress, users can easily regenerate construction plans because BIM is
integrated with the construction work simulation. Moreover, in the simulation environment, users
can synthetically manipulate complex factors and resources. Since the current planning method uses
historical data and heuristic adjustments, such plans depend on historical sample data and managers’
knowledge and skill. That is, these construction plans cannot ensure consistency or accuracy. However,
our framework facilitates more reliable planning by using the quantitative BIM-integrated simulation
method. The end result is more reliable construction plans.

While the BIM-integrated simulation method created for this research is a technical breakthrough
that represents a vast improvement in management efficiency, there were some limitations to this
research. First, researchers should validate this framework by applying it to various test cases. Second,
the framework should be employed in diverse types of construction beyond that of the steel erection
work exampled here. Finally, the simulation results should be made visual via a BIM model; doing so
would extend the applicability of this framework.
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