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Abstract: As a service oriented and networked model, cloud manufacturing (CM) has been proposed
recently for solving a variety of manufacturing problems, including diverse requirements from
customers. In CM, on-demand manufacturing services are provided by a temporary production
network composed of several enterprises participating within an enterprise network. In other words,
the production network is the main agent of production and a subset of an enterprise network.
Therefore, it is essential to compose the enterprise network in a way that can respond to demands
properly. A properly-composed enterprise network means the network can handle demands that
arrive at the CM, with minimal costs, such as network composition and operation costs, such as
participation contract costs, system maintenance costs, and so forth. Due to trade-offs among
costs (e.g., contract cost and opportunity cost of production), it is a non-trivial problem to find the
optimal network enterprise composition. In addition, this includes probabilistic constraints, such as
forecasted demand. In this paper, we propose an algorithm, named the dynamic enterprise network
composition algorithm (DENCA), based on a genetic algorithm to solve the enterprise network
composition problem. A numerical simulation result is provided to demonstrate the performance of
the proposed algorithm.

Keywords: enterprise network composition problem; cloud manufacturing; genetic algorithm;
inventory model

1. Introduction

As consumer demand has changed drastically and quickly, mass customization to deal with the
customers’ demands has been popular in manufacturing. The main goal is to provide customized
products or services effectively and efficiently, in terms of customer’s specified needs at reasonable
prices [1]. It is essential for an enterprise to retain various manufacturing resources, such as design,
production, testing, and logistic resources, while being able to change the kinds, and the amounts,
of resources in accordance with the demands of customers for realization of mass customization.
Unfortunately, it is impossible for an enterprise, especially for small and medium-sized enterprises
(SMEs), to retain all of these manufacturing resources, or change the amount of resources to satisfy
all of the requirements of customers. This is why mass customization has largely not lived up to its
promised potential [2].

Sharing manufacturing resources among multiple enterprises may be a solution to realize
mass customization, but it has been difficult to cooperate and share resources among enterprises
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because existing manufacturing models have been constructed independently of other enterprises and,
as a result, they cannot share the resources efficiently. For this reason, a new integrated manufacturing
model based on cloud computing technology, called cloud manufacturing (CM), has been proposed
more recently [3]. Owing to cloud computing technology that enables ubiquitous and on-demand
network access to a shared pool of configurable computing resources [4], CM can provide a shared
manufacturing resource pool that can be managed and operated in a unified and intelligent way.

In this sense, various enterprises participating in CM can share manufacturing resources and
cooperate with each other to produce highly-customized manufacturing services even though the
services are too large or too complex to handle for one enterprise [5]. In addition, CM can deliver
reliable, high-quality, and on-demand manufacturing services for the whole lifecycle of manufacturing,
such as design, production, testing, and logistics [6], by enabling the enterprises to freely access
every manufacturing service in the manufacturing cloud (MC), without certain expertise in the
management of resources used. That is, MC is a main component of cloud manufacturing to utilize
the manufacturing process in CM. Thus, we use the terms CM and MC separately to distinguish
the manufacturing model (CM) and platform (MC), clarifying the manufacturing process in CM.
The MC is a manufacturing platform made up of universal and renewable manufacturing resources
with flexibility [7]. In the MC, diversified manufacturing resources can be intelligently sensed and
connected into the wider Internet, and automatically managed and controlled by means of the Internet
of Things (IoT) and related technologies (e.g., radio frequency identification (RFID), wireless sensor
network, embedded system, etc.). Then those are virtualized and encapsulated into the MC, which
means they are enrolled in the MC with identification factors (e.g., name, inventory level, location).
They can be accessed, invoked, and deployed by means of cloud computing technologies, virtualization
technologies, and service-oriented technologies after that. MC automatically analyzes customers’
requests to estimate the required resources and the amount of them to complete the requests. After the
estimation, MC finds the appropriate enterprise(s) that could successfully complete the request. If the
request is so large that two or more enterprises are needed to complete the request, then MC composes
the enterprise network for the request. The formal operation process to complete a customer request in
MC is presented in Figure 1. As seen in Figure 1, if the request is too large for an enterprise to complete
it (e.g., the request requires various resources or a lot of resources), MC finds and selects two or more
enterprises and composes a network of enterprises [8].
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Cloud manufacturing is defined by many researchers: Xu [9] defined CM as “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
manufacturing resources (e.g., manufacturing software tools, manufacturing equipment, and
manufacturing capabilities) that can be rapidly provisioned and released with minimal management
effort or service provider interaction”. Meanwhile, Wu et al. [10] defined CM as a “customer-centric
manufacturing model that exploits on-demand access to a shared collection of diversified and
distributed manufacturing resources to form temporary, reconfigurable production lines which enhance
efficiency, reduce product lifecycle costs, and allow for optimal resource loading in response to
variable-demand customer generated tasking”.

Figure 2 illustrates the whole life cycle process of CM [11]: First of all, enterprises contract with
CM and participate in CM. This contract generates the participation contract cost. Once the enterprise
takes part in CM, it is possible to collect the resource information of each enterprise, such as the
amount of resources the enterprise currently reserves, which is virtualized and encapsulated in the
MC. Customers participating in CM invoke requirements about the products or services they want and
the requirements are reorganized to be recognized as demands in CM. Types of resources, due dates,
the amount of resources, and so forth, are included in the requests. After that, customer demands
are matched with the adequate manufacturing service in the MC considering the information about
the resource capabilities of each enterprise. The type of matching requirements and services could be
either one-to-one (one enterprise is assigned to the service of one customer), N-to-one (two or more
enterprises are assigned to the service of one customer), one-to-N (one enterprise is assigned to the
service of two or more customers), or N-to-N (two or more enterprises are assigned to the service
of two or more customers). N enterprises compose a temporary production network for one-to-N
and N-to-N cases, while there is no need to compose the network for one-to-one and N-to-one cases.
Finally, some enterprises in CM may leave CM, which generates a contract cancellation cost.
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As an example of the operation process, suppose enterprises 1, 2, 3, . . . , n participate in CM
as illustrated in Figure 1. Suppose that customer 1 invokes a request including resource D (design),
P (production), T (testing), and this request is newly organized in the requirement composition layer as
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shown in Figure 1. For convenience, let the amount of every resource be 1. Then, the enterprise alliance
that can handle the request from the customer 1 is one of {(enterprise 1, enterprise 2, enterprise 3),
(enterprise 1, enterprise 2), (enterprise 1, enterprise 3), (enterprise 3), . . . }. For instance, (enterprise 1,
enterprise 2) can handle the demand by sharing D (by enterprise 1), P, and T (by enterprise 2).
This indicates that the request can be handled by two or more enterprises (N-to-one) or only
one enterprise (one-to-one). Note that enterprise n is not included in any alliance because it does not
have either D, P, or T. After an alliance (i.e., temporary production network) is decided to handle the
request and the request is fully processed, the alliance is terminated.

Due to the appearance of CM, it is possible for SMEs to perform large-scale and highly customized
production by collaborating with other SMEs, but there still remain issues to be solved for practical
operation in many aspects. Service selection, scheduling, resource allocation, and capacity-sharing are
such issues and, therefore, researchers have recently focused on resolving these issues. For example,
Laili et al. [12] analyzed the complex features of cloud services in cloud computing, and based on
these features, they suggested a ranking chaos algorithm for service composition selection, and
optimal computing resource allocation altogether in the private cloud. In Cao et al. [13], the authors
adopted a fuzzy decision-making theory to establish a manufacturing scheduling model in the MC
considering four criteria: time, quality, cost, and service. Mai et al. [14] proposed a framework for
3D printing services in the MC to handle several problems of the MC, such as evaluation, service
matching, scheduling, etc. Li et al. [15] developed a model to solve industrial robot task allocation
problems in CM. This model has three sub strategies, which are the load-balance of robots, minimizing
cost, and minimizing processing time, where a genetic algorithm (GA) implements these strategies.
Wei et al. [16] adopted an ant colony optimization algorithm for resource allocation problems in CM,
where time, cost, quality, and load balance are considered as a multi-dimensional objective function.
Tsai et al. [17] employed an improved differential evolution algorithm to optimize task scheduling
and resource allocation in a cloud computing environment. Ren et al. [18] analyzed the impact of
cooperative relationships between service providers on CM performances, such as the manufacturing
task competition rate, service utilization, and service scheduling deviation degree. They showed
that the cooperation among enterprises which participate in CM can utilize wasted manufacturing
resources, such as idle machines. Argoneto and Renna [19] proposed a framework for capacity-sharing
among independent enterprises in CM. The framework, based on a cooperative game algorithm and
a fuzzy engine, yields a stable matching among enterprises considering their capacity and geographical
locations. Renna [20] developed a decision model for a SME to decide whether to participate or leave
a collaborative network, which could be practically applied to CM environments.

As introduced above, research regarding service selection, scheduling, resource allocation, and
capacity sharing in CM has been conducted, but there is no previous research considering the dynamic
aspects of operation process in CM. In other words, resource allocation or scheduling should be
dynamically changed according to dynamically changing customer requests.

Unfortunately, dynamic aspects of the issues in CM have not been fully addressed by the
previous researches. For example, the models developed in Cao et al. [13] and Wei et al. [16] yields
a manufacturing schedule, and the model developed in Li et al. [15] allocates tasks only before the
manufacturing process begins. In other words, their models cannot be applied to real-time situations.
As another example, Ren et al. [18] showed the fact that the cooperative relationship between service
providers can utilize wasted manufacturing resources, but do not consider the fact that the relationships
among manufacturing service providers are changeable in CM.

Many researchers have recently focused on the dynamic manufacturing problems, such as
real-time scheduling or resource allocation using genetic algorithm (GA). Rahman et al. [21] suggested
a GA-based approach to solve the permutation flow shop scheduling problem. The problem requires
repeated optimization procedures as each new order arrives since it includes dynamic aspects (e.g.,
customer orders are randomly placed). The suggested approach in [21] showed a stable performance
despite the dynamic situation. Lei et al. [22] proposed a GA-based framework for real-time dynamic
voltage scaling with multiple objectives. Their experimental results clearly demonstrated that the
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proposed framework is superior to other frameworks. Ma et al. [23] developed a dynamic task
scheduling algorithm based on GA to effectively solve the task scheduling problems in cloud
computing environments. Their simulation showed that the proposed algorithm significantly reduced
the execution time of task scheduling. Sethanan et al. [24] solved reentrant flow shop scheduling
with time windows using hybrid GA, which yields the best solution among meta-heuristic algorithms
(simulated annealing, GA, and hybrid GA).

Enterprises which participate in CM should be considered as an inventory unit for scheduling or
resource allocation since their resources ensure the circulation of whole manufacturing activities by
cooperating with each other in the production network. It is very important, therefore, to compose
an enterprise network that handles the requirements from customers (i.e., demands) with minimal
costs, and this problem is called the enterprise network composition problem in CM. It is a non-trivial
problem since trade-offs exist between costs (e.g. contract cost and opportunity cost of production),
and also probabilistic constraints such as forecasted demand and, therefore, it is almost impossible to
find the optimal network analytically. This paper proposes a dynamic enterprise network composition
algorithm (DENCA) based on a GA to solve the problem dynamically. In other words, DENCA
constructs the initial enterprise network and changes the network as demand is changed.

The rest of this paper is organized as follows: Section 2 describes a research problem called the
enterprise network composition problem and introduces assumptions and notations used throughout
this paper; Section 3 proposes an algorithm to solve the problem, and each step of the algorithm is
explained in detail; Section 4 provides a numerical simulation to illustrate the suggested algorithm;
and Section 5 concludes the paper.

2. Enterprise Network Composition Problem

2.1. Description

Since one of the typical characteristics of CM is the pay-per-use of manufacturing resources on
demand [5], the cost structures of existing manufacturing models and those of CM are completely
different. For example, the task of inventory management for existing manufacturing models is
to maintain stock of products or resources [25], while the task for CM is to sustain an appropriate
enterprise network to handle various customer requests and minimize the composition cost. Note that
the CM task mentioned above is the responsibility of a CM manager, not a manager of an enterprise
belonging to CM. Therefore, traditional inventory costs, such as order cost and depreciation cost, are
not involved, but enterprise management costs, such as contracts, service invocation, and aggregation,
occur in CM [26].

It is difficult to compose a proper enterprise network so that the network can respond to
the demands with minimal cost because of several practical reasons: (1) probabilistic constraints;
(2) various expenses; and (3) dynamically-changing customer requests (a real-time algorithm is
needed). Furthermore, the initially-composed network (initial network) could change as demands
fluctuate. That is, the network may not meet later demands or need additional expenses although
the network was well composed at first. Expenses in the enterprise network are incurred in various
aspects: a participation contract cost occurs when an enterprise contracts with CM to newly participate
in CM, while a contract cancellation cost occurs when an enterprise cancels the contract to leave
the system. Network management cost is a fixed cost, which includes an activating search engine
fee, maintenance cost of the user interface, and portal website. Cloud service invocation and service
aggregation costs are costs to realize manufacturing services of each enterprise in CM and to aggregate
different manufacturing services (e.g., design service, logistics service), respectively. These costs are
directly proportional to the amount of resources enterprises reserve [27]. Finally, the opportunity cost
of production occurs when there are customer requests and the CM cannot deal with due to the lack of
resources. Namely, the opportunity cost of production occurs when the CM misses a chance to make
profit by handling the requests. Among the costs, some are directly proportional to the amount of
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resources an enterprise network has (currently retains). The enterprise management cost, including
resource virtualization cost, is the typical example.

It can be intuitively known that there are trade-offs among the costs. For example, if CM contracts
many enterprises to participate in CM, then the opportunity cost of production may decrease, while
the enterprise management cost will increase. Another example is a trade-off between the participation
contract (or contract cancellation) cost and the opportunity cost of production. If a CM manager decides
to frequently change the network according to forecasted demands for a flexible operation, then the
opportunity cost of production would be minimized, but contract costs and contract cancellation
costs would increase. Hence, it is essential to consider these trade-offs for composing a network of
enterprises. We call this the enterprise network composition problem throughout the paper.

In Figure 3, a dotted rectangle indicates the scope of the paper. We develop an algorithm to
compose the enterprise network, which helps CM to match services by ensuring proper levels of
demand response. It does not include resource allocation, service matching, and scheduling.
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2.2. Assumptions and Notations

Initial demand (i.e., demand on day 1) is assumed to be given in advance, while subsequent
demands after day 1 must be forecasted. The demands for any manufacturing services are decomposed
of each type of required resource. For instance, a demand may be composed of one design resource,
two production resources, and one logistics resource. The resources a network retains, but not uses,
are always available whenever relevant requests arrive at the MC. If there are not sufficient resources
for completing the requests, then the requests will be lost. In addition, contracts regarding enterprise
participation in, or withdrawal from, the MC will take effect after a day. In other words, if a company
contracts a MC to participate in, or cancel, the contracts to leave the system, then the company will
join or leave the system on the next day. Finally, some events to make resources unavailable, such as
unexpected maintenance, are not introduced in this paper, but we can introduce the unexpected
maintenance into the model by letting the available resources be zeroes during the maintenance period.

Notations used throughout the paper are presented in the following Table 1.

Table 1. Notations.

Notation Definition

Ei Enterprise i, i = 1, 2, · · · , n

Ii
t Indicator variable which represents whether the enterprise i joins the network at day t or not,

that is, Ii
t = 0 or 1

PEt Set of participating enterprises in an enterprise network at day t
PEt

i Participating enterprise i in an enterprise network at day t
Rj Resource j (j = 1, · · · , m)
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Table 1. Cont.

Notation Definition

Dt
j Demand of Rj at day t

Dt Vector of demands at day t,
(

D1
t, D2

t, · · · , Dm
t)

D̂t
j Forecasted demand of Rj at day t

λj (Ei) Ei’s capacity of resource Rj
λj
(
PEt) Current enterprise network’s capacity of resource Rj

CIN
(
PEt) Internal management cost of MC of PEt

CSI (Ei) Cloud service invocation cost of Ei
CSA (Ei) Cloud service aggregation cost of Ei
CCO (Ei) Participation contract cost of Ei
CCW (Ei) Contract cancellation cost of Ei
CLO

(
PEt) Opportunity cost of production occurring when PEt do not respond demand properly at day t

CSI,Rj Unit cost of cloud service invocation for Rj
CSA,Rj Unit cost of cloud service aggregation for Rj
CCO,Rj Unit cost of participation contract for Rj
CCW,Rj Unit cost of contract cancellation for Rj
CLO,Rj Unit opportunity cost of production for Rj
α Significance level of the risk that demand is unmet (user-defined parameter)
τ Number of operation days of MC (user-defined parameter)

3. Dynamic Enterprise Network Composition Algorithm

Figure 4 is a flow chart of the dynamic enterprise network composition algorithm (DENCA)
suggested in this research. Initially, the operation day (indicated by t) is set to 0 and initial demand
D1 is given. Then the CM manager constructs an initial enterprise network that can fully respond
to the initial demand with minimal cost. With the network PEt at day t which handles the current
demand, the manager forecasts demand at day (t + 1) based on D1 , D2, . . . , Dt and decides whether
the current network PEt can handle the predicted demand D̂t+1 or not. In addition, it should take into
consideration that a large portion of resources retained in the current MC may not be used and wasted
(i.e., utilization of MC is low) because many unnecessary enterprises are participating in the present
MC. Unless the current network is expected to be satisfied with the conditions (the enterprise network
is able to handle future demand properly, and resource waste problems should not occur), the manager
should construct a new enterprise network and these steps repeat for the entire operating time span.
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A detailed explanation of the flowchart in Figure 4 will be provided from Sections 3.1–3.4.
More concretely, Sections 3.1 and 3.2 describe how to construct an initial enterprise network and to
forecast demand at day t + 1 based on

{
D1, D2, . . . , Dt}, respectively. In Section 3.3, we explain how

one can check if constraints of the demand response are satisfied and, finally, Section 3.4 explains
the way to construct a new enterprise network when the conditions of the demand response are not
satisfied utilizing a genetic algorithm.

3.1. Initial Enterprise Network Composition

The initial enterprise network should cover the initial demands with minimal cost. The formulation
for the initial enterprise network composition problem is presented in Equations (1) and (2).
The objective function in Equation (1) is to minimize the cost when the initial network is PE1,
which consists of the CM internal management cost (CIN(PE1)) and the participation contract cost
(∑n

i=1
(

I1
i × Cco (Ei)

)
). Note that the contract cancellation and opportunity cost of production are not

included in the objective function in Equation (1) because the initial network is constructed to handle
the initial demand without any loss. Constraints in Equation (2) imply that the number of resources
Rj (j = 1, 2, · · · , m) the initial network possesses must be larger than, or equal to, the initial demand
of Rj.

Min Z = CIN

(
PE1

)
+

n

∑
i=1

(
I1
i × Cco (Ei)

)
(1)

subject to:

∑n
i=1 Ii

1 × λj (Ei) ≥ D1
j , for all j = 1, 2, . . . , m, Ii

1 ∈ {0, 1} (2)

The internal management cost of the MC in Equation (1) is calculated as follows:

CIN
(
PEt) = ∑

Ej∈PEt

{
CSI
(
Ej
)
+ CSA

(
Ej
)}

(3)

Cloud service invocation, cloud service aggregation, and participation contraction costs of Ei are
calculated in Equations (4)–(6), respectively:

CSI (Ei) =
m

∑
j=1

(
λj (Ei)× CSI, Rj

)
(4)

CSA (Ei) =
m

∑
j=1

(
λj (Ei)× CSA, Rj

)
(5)

CCO (Ei) =
m

∑
j=1

(
λj (Ei)× CCO, Rj

)
(6)

where CSI, Rj , CSA, Rj , and CCO,Rj denote the unit cost of cloud service invocation, cloud service
aggregation, and participation contraction for Rj. CSI,Rj is interpreted as the cost to aggregate one
additional resource Rj. CSA, Rj and CCO, Rj can be interpreted similarly. Equations (4)–(6) indicate that
these costs are directly proportional to the amount and kind of resource Ei has. Thus, the objective
function in Equation (1) can be re-written as follows:

Min Z = ∑
Ej∈PE1

{
m
∑

j=1

(
λj (Ei)× CSA, Rj

)
+

m
∑

j=1

(
λj (Ei)× CSI, Rj

)}
+

n
∑

i=1

(
I1
i ×

m
∑

j=1

(
λj (Ei)× CCO, Rj

))
(7)

The initial enterprise network composition problem can be solved by integer linear programming
(ILP), whose decision variable I1

i (i = 1, 2, . . . , n) indicates whether Ei participates in CM (I1
i = 1) or

not (I1
i = 0) at t = 1.
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3.2. Resource Demand Forecasting

Time-series analysis methods have been employed to forecast demand of enterprise resources,
including cloud computing resources, in many studies. For example, Zhang et al. [28] employed
auto-regressive (AR) functions to forecast demand for CPU and memory in a cloud computing
environment. Let T (·) be a time-series model for forecasting demand Dj

t+1 (j = 1, 2, . . . , m) at
t + 1. Then:

Dt+1
j = T

(
D1

j , · · · , Dt
j

)
+ ε j = D̂t+1

j + ε j (8)

where the forecasting error ε j is assumed to follow a Gaussian distribution with mean 0 and variance
σj

2, which is time-independent. Therefore, Dt+1
j is a random variable which also follows a Gaussian

distribution with mean D̂t+1
j and variance σj

2. Then we have:

Dt+1 = (T (D1) , · · · , T (Dm))
T + ε (9)

where T
(
Dj
)
= T

(
D1

j , · · · , Dt
j

)
for j = 1, 2, · · · , m and ε = (ε1, ε2, · · · , εm)

T .

Note that the Dt
j denotes the amount of resource j required at day t. For instance, if a task which

requires three resource j for two days is arrived at day t, and there is no other task in CM but the task,
then the Dt

j and Dt+1
j will be 3.

3.3. Conditions of Demand Response

The condition in Equation (10) helps us determine whether the current network should be
reconstructed or not in order to handle the current demands properly and not to waste resources:

P
(
∑n

i=1

(
Ii

t × λj (Ei)
)
< D̂t+1

j

)
< α for j = 1, 2, . . . , m (10)

Inequality in Equation (10) indicates the probability that the capacity of Rj (j = 1, 2, · · · , m) in
the current enterprise network is not sufficient for the demand of the next day and should be smaller
than user parameter α, the threshold of the risk that demand will not be met. Notice that the value of α
should be small if the loss unit cost is high. By means of a standard normal distribution, the probability
can easily be calculated. Another set of inequalities to be considered is the following:

P

 ∑
Ei∈PEt{PEj

t}

(
Ii

t × λj (Ei)
)
< D̂t+1

j

 < α, for j = 1, 2, . . . , m, k = 1, 2, . . . ,
∣∣PEt∣∣ (11)

Inequality in Equation (11) expresses the probability that an enterprise network could handle the
demand properly, even if an arbitrary enterprise currently participating in the MC leaves. This must
be larger than 1− α.

3.4. Enterprise Network Recomposition

If the conditions introduced in Section 3.3 are not satisfied, then the enterprise network should be
newly composed. We call this recomposition of the network. Recomposition is noticeably different
from the initial network composition because the demand loss probability must be considered, as well
as both contract cancellation cost and opportunity cost of production for the network.

The recomposition procedure can be done by solving the following:

Min Z = ∑n
i=1

(
Ii

t+1 × (CSA (Ei) + CSI (Ei)
)
+ ∑Ei /∈PEt

(
Ii

t+1 × CCO (Ei)
)

+ ∑
Ei∈PEt

((
1− Ii

t+1
)
× CCW (Ei)

)
+ CLO

(
PEt+1) (12)
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subject to:
P
(
∑n

i=1

(
Ii

t+1 × λj (Ei)
)
< D̂t+1

j

)
< α, for j = 1, 2, 3, . . . , m. (13)

The first term ∑n
i=1

(
Ii

t+1 × (CSA (Ei) + CSI (Ei)
)

in Equation (12) denotes total cloud service
aggregation and invocation costs incurred by enterprises participating in CM. The second term

∑
Ei /∈PEt

(
Ii

t+1 × CCO (Ei)
)

is the total contract cost incurred by newly-participating enterprises.

The third term ∑
Ei∈PEt

((
1− Ii

t+1
)
× CCW (Ei)

)
is the total contract cancellation cost incurred by

newly-leaving enterprises, where CCW (Ei) is calculated as following:

CCW (Ei) =
m

∑
j=1

(
λj (Ei)× CCW, Rj

)
(14)

Finally, CLO
(
PEt+1) denotes the opportunity cost of production when the enterprise network is

PEt+1, which is given by:

CLO
(
PEt) = m

∑
j=1

g

 ∑
Ei∈PEt

λj (Ei) , Dj
t

× CLO, Rj

 (15)

where g
(

∑Ei∈PEt λj (Ei) , Dj
t
)

is the amount of loss for Rj.

g

 ∑
Ei∈PEt

λj (Ei) , Dj
t

 =


Dj

t − ∑
Ei∈PEt

λj (Ei) , if Dj
t > ∑

Ei∈PEt
λj (Ei) ,

0, otherwise.
(16)

In contrast to the initial network construction, ILP cannot be adopted to recompose the network
because of probabilistic constraints. Instead, a metaheuristic algorithm must be used to solve this
efficiently and GA is employed in this paper. We represent the structure of chromosomes as a binary
string of n bits where each bit denotes whether a corresponding enterprise participates in the system
or not.

4. Numerical Example

This section provides a numerical example to illustrate and compare efficiencies of the suggested
algorithm in this study and the branch-and-bound (B and B) algorithm. In Section 4.1, we generate
a set of simulated data including information of enterprises and estimated demands for an experiment.
In Section 4.2, we apply DENCA to this simulated dataset.

4.1. Data

We assume that there are 15 enterprises (E1, · · · , E15) and five resources (R1, · · · , R5). The amount
of resources each enterprise possesses are presented in Table 2. Each resource can be a manufacturing
resource (e.g., robot arm, 3D printer), a logistic resource (e.g., truck, airplane), etc. As shown, each
enterprise has four or five kinds of resources and, therefore, simple inventory models cannot be applied
to this problem.

CM is assumed to operate for 30 days (τ = 30), and the actual and forecasted demands of
each resource are shown in Table 3 ((a) and (b)), respectively. Forecasted demands are obtained
by adding random noise ε j (j = 1, · · · , 5) to actual demands of each resource for 30 days, where
ε1, ε2, ε3 ∼ N

(
0, 12) and ε4, ε5 ∼ N

(
0, 0.52).
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Table 2. Amount of resources each enterprise reserves.

R1 R2 R3 R4 R5

E1 2 0 1 2 1
E2 4 1 2 0 1
E3 3 1 0 3 2
E4 0 2 1 0 5
E5 5 0 2 1 0
E6 1 1 2 2 0
E7 3 2 1 0 1
E8 0 1 1 3 4
E9 2 1 3 1 0
E10 4 0 1 2 2
E11 1 3 1 0 2
E12 2 1 0 1 1
E13 0 4 1 1 3
E14 3 1 2 0 0
E15 0 5 1 2 1

Table 3. The amount of resources each enterprise reserves.

(a) Actual Demands (b) Forecasted Demands

t D1
t D2

t D3
t D4

t D5
t D̂t

1 D̂t
2 D̂t

3 D̂t
4 D̂t

5

1 12 7 9 7 10 - - - - -
2 12 7 9 7 10 12 7 8 7 9
3 12 7 9 7 10 13 6 9 7 10
4 12 7 9 5 13 11 6 8 5 13
5 15 9 12 5 13 15 6 12 5 13
6 15 9 12 8 13 16 8 10 7 13
7 15 9 12 8 13 13 8 13 7 12
8 10 8 12 8 12 9 7 12 7 11
9 10 8 12 6 12 8 8 11 5 12

10 10 8 11 6 15 10 8 10 5 15
11 12 7 11 7 15 12 6 11 7 14
12 12 7 11 7 15 11 8 11 6 14
13 12 7 9 7 15 13 6 8 6 15
14 14 8 9 10 15 14 7 8 9 14
15 14 8 9 10 11 15 8 8 9 10
16 14 8 9 10 11 14 8 8 10 11
17 14 9 8 10 11 14 8 8 10 10
18 11 10 8 10 11 9 10 7 10 10
19 11 10 8 8 11 11 9 6 7 10
20 11 10 7 8 7 12 9 6 6 6
21 12 10 7 8 7 10 8 7 8 7
22 12 8 7 8 7 12 8 6 8 7
23 12 8 9 7 7 12 6 8 7 6
24 16 8 9 7 5 16 7 7 6 5
25 16 8 11 6 5 17 7 12 5 4
26 16 7 11 6 9 16 7 11 5 8
27 14 7 11 7 9 14 8 10 8 9
28 14 6 9 7 9 13 5 9 8 8
29 13 5 9 6 10 12 3 11 6 10
30 12 3 6 6 10 12 4 6 6 10

The unit costs and corresponding costs are presented in Tables 4 and 5, respectively.
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Table 4. Corresponding costs related with each enterprise.

CSA CSI CCO CCW

E1 130 125 340 230
E2 165 155 400 26
E3 200 200 540 360
E4 170 165 460 310
E5 165 155 400 260
E6 135 125 330 230
E7 150 145 370 240
E8 200 195 550 380
E9 150 135 350 240
E10 190 185 500 330
E11 155 150 390 260
E12 110 110 290 190
E13 205 200 530 360
E14 125 115 290 190
E15 215 210 540 370

Table 5. Unit costs of each resource.

R1 R2 R3 R4 R5

CSA,Rk 20 25 20 25 20
CSI,Rk 20 25 15 25 20
CCO,Rk 50 60 40 70 60
CCW,Rk 30 40 30 50 40
CLO,Rk 60 75 60 80 70

4.2. Results

Using the formulation in Section 3.1, we compose the initial network by searching all
possible enterprise combinations. In other words, we attempt to find the solution satisfying every
constraint and minimizing the costs in Equation (1) from (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
to (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). The optimal initial network, its capacity for each
resource, and its related cost are (1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0),

(
λ1
(
PE1) , . . . , λ5

(
PE1)) =

(23, 14, 16, 13, 17), and 18,070, respectively.
Now, for values α = 0.1 and 0.2, we construct enterprise networks in CM from day 2–30,

as explained in Section 3.4, by means of the suggested algorithm, and a B and B algorithm for
comparison purpose. The B and B algorithm is employed because it is known to yield good outputs
for IP problems in general. Figures 5 and 6 illustrate the amount of each resource of the enterprise
networks constructed by means of the DENCA and B and B algorithms when α = 0.1 and 0.2,
respectively. These figures also include the actual demands for 29 days (from day 2 to day 30).

As shown in these figures, the enterprise networks constructed through both the DENCA and
B and B algorithms can handle the demand without any loss for each resource. In other words,
the amounts of resources that the enterprise networks have are higher than the amounts of required
resources (i.e., demands) for the entire 30 days. The difference between the enterprise networks derived
from the DENCA and B and B algorithms is that the former prepares more resources than the latter,
which might cause resource waste (unnecessary expense). Readers see that most red circle points
(derived from B and B) are located above the blue square points (obtained by DENCA) and dotted
lines (actual demand) in the figures.
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Figure 6. The amount of each resource the constructed networks own when α = 0.2 and actual demand.

Table 6 demonstrates the overall network composition costs calculated by the DENCA and B and
B algorithms and it supports that the overall network composition costs by means of DENCA is equal
to, or less than, the overall network composition costs by means of the B and B algorithm for all days.
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Table 6. Network composition costs by means of the DENCA and B and B algorithms.

α = 0.1 α = 0.2

Day DENCA B and B DENCA B and B

2 12,960 13,065 12,930 12,960
3 13,315 13,315 13,290 13,300
4 13,550 13,550 13,535 13,545
5 13,640 13,640 13,615 13,640
6 13,635 13,650 13,605 13,605
7 13,695 13,695 13,640 13,640
8 13,640 13,640 13,595 13,605
9 13,625 13,665 13,580 13,610
10 13,610 13,630 13,595 13,605
11 13,635 13,640 13,580 13,630
12 13,635 13,665 13,580 13,630
13 13,580 13,590 13,565 13,575
14 13,590 13,610 13,565 13,565
15 13,615 13,620 13,585 13,590
16 13,605 13,625 13,575 13,575
17 13,605 13,625 13,575 13,575
18 13,600 13,600 13,570 13,600
19 13,575 13,580 13,555 13,575
20 13,585 13,590 13,565 13,575
21 13,565 13,575 13,545 13,550
22 13,575 13,575 13,555 13,555
23 13,560 13,560 13,535 13,535
24 13,605 13,605 13,585 13,585
25 13,640 13,640 13,625 13,625
26 13,635 13,640 13,605 13,605
27 13,610 13,610 13,585 13,585
28 13,565 13,565 13,550 13,550
29 13,595 13,605 13,570 13,590
30 13,545 13,550 13,535 13,535

5. Conclusions

CM can help enterprises (especially SMEs) perform large-scale manufacturing jobs by
collaborating with other enterprises, but several critical issues for practical operations remain to
be resolved. In this study, we suggested an algorithm based on GA for the enterprise network
selection problem, which is one of these problems. This algorithm includes composing an initial
enterprise network, forecasting demand, and recomposing the network according to demand
forecasts. A numerical example was provided to show that the network constructed by means
of the suggested algorithm not only handles the demands better, but also incurs a smaller cost (note
that no significant difference was observed between network capacities and actual demands) than
the B and B algorithm. In addition, the suggested algorithm is cheaper than the B and B algorithm in
terms of computational time.

Since this paper is based on the some assumptions (e.g., the initial demand is given in advance,
the forecasting error term follows a Gaussian distribution), this paper may not completely describe
and reflect CM situations well. Hence, these assumptions should be eased in our future research.
For example, we did not consider the situation that enterprises have trouble in collaborating with each
other because of an assumption that enterprises are located near each other. Thus, we will consider
collaboration potentials among enterprises based on enterprises’ locations, quality evaluations, etc.,
in future research.
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