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Abstract: As the main source of CO2 emissions in China, the industrial sector has faced pressure
for reducing emissions. To achieve the target of 50% reduction of industrial carbon intensity
by 2020 based on the 2005 level, it is urgent to formulate specific CO2 emission mitigation
strategies in the provincial industrial sector. In order to provide decision-making support for
the development and implementation of mitigation policy, our undesirable slack based measure
(SBM) model is firstly applied to evaluate the industrial CO2 emission efficiency under total-factor
frame (TFICEE) in 13 prefecture-level cities of Jiangsu Province, the largest CO2 emitter in China.
Then, we analyze space-time distribution and distributional evolution tendency of TFICEE by
using the GIS visualization method and kernel density estimation, respectively. Finally, we utilize
the industrial abatement model to estimate the CO2 abatement potential of Jiangsu’s industrial
sector. The empirical results show that there exists a significant spatial inequality of TFICEE across
various regions in Jiangsu, but the regional disparity has been narrowing during our study period.
Additionally, average annual industrial CO2 emission reductions in Jiangsu Province can attain
15,654.00 (ten thousand tons), accounting for 28.2% of its average annual actual emissions, which can
be achieved by improving production technology, adjusting industrial structure and raising the level
of industry concentration.

Keywords: industrial CO2 emission performance; industrial abatement potential; regional disparity;
SBM-Undesirable model; GIS

1. Introduction

With increasingly serious global climate anomalies, climate change has become one of the most
severe challenges faced by humankind in the 21st century. An increasing number of countries are
concerned with mitigating energy consumption and CO2 emissions. In particular, China, the world’s
largest CO2 emitter since 2007, accounted for 28% of global total CO2 emissions in 2013 [1], as a result
of its rapid urbanization and industrialization. Since entering the middle stage of industrialization, the
industrial sector has become the pillar of China’s economy, and meanwhile, industrial CO2 emission
(ICE) has been the main source of national CO2 emissions [2,3]. Thus, how to effectively reduce ICE is
a key to achieving the national CO2 emission reduction targets. In order to tackle climate change and
extenuate the rapid growth of ICE, China promised to abate its industrial carbon intensity (defined as
CO2 emissions per unit of industrial added value) by 50% of 2005 levels by 2020 in 2014 [4].

Policy makers have realized that regional disparity, which is caused by imbalanced socioeconomic
conditions as well as physical geography, brings difficulties and uncertainties to the development and
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implementation of mitigation policies [5–7], and becomes an obstacle to the realization of national
emission reduction. Therefore, it is worth investigating distributional characteristics and regional
inequality of ICE. Considering that CO2 emission efficiency can reflect the level of economic returns
motivated by per unit CO2 emission, evaluating and improving CO2 emission efficiency has recently
drawn increasing attention from the related scholars. The most commonly used measurement for
macro-economy CO2 emission efficiency is partial-factor emission efficiency analysis, which mainly
refers to carbon intensity [8–10]. Recently, a growing number of studies have concentrated on the
evaluation of total-factor CO2 emission efficiency [11–15], since any economic production process
can be considered as a joint production process in which diverse inputs of energy and resources are
employed to generate diverse desirable outputs (e.g., gross industrial output) and undesirable outputs
(e.g., CO2 emissions). For instance, Wang et al. [15] applied directional distance function as well as
Luenberger productivity index to analyze the total-factor carbon emission performance of industrial
land use in China.

Data envelopment analysis (DEA) has been accepted as a popular tool for evaluating total-factor
CO2 emission efficiency because it evaluates emission efficiency within a total-factor productivity
framework, which is more appropriate than the partial-factor indicator method. Numerous DEA
models have been developed and applied to evaluate CO2 emission efficiency by more and more
academic researchers. Among these DEA models, the undesirable slack based measure (SBM)
model [16] proposed by Tone has received increasing attention for its superiority in evaluating
efficiency [17–20]. The SBM-Undesirable model can not only eradicate the radial and oriented
deviation of traditional DEA models, but also be applicable for evaluating efficiency in the presence
of undesirable outputs that are unavoidable in modern production. For instance, Choi et al. [18]
estimated CO2 emission efficiency and potential reductions for China during 2001–2010 by using a
non-radial SBM model.

On the other hand, the estimation of CO2 abatement potential is also critical for formulating
appropriate mitigation policies, and provides policy makers with decision-making support for setting
its reduction targets for 2020. Generally, CO2 abatement potential can be seen as an undeveloped
emission reduction capacity of the emitter, which refers to the volume of CO2 emissions that can
be avoided through implementation of abatement technologies [21]. The studies on CO2 emission
abatement potential estimation have employed several methodologies [22–24]. Among the various
methods, the DEA efficiency variance estimating method has attracted the most attention. According
to the DEA theory, efficiency frontier is constituted by efficient decision making units (DMU), while
inefficient DMUs can reach the frontier and become efficient by reducing excessive input which is
generally viewed as potential emission reductions. So far, DEA has been frequently used to estimate
the CO2 abatement potential of different regions and various sectors [25–29]. For instance, Yu and
Zhang [26] worked out energy efficiency and CO2 abatement potential of China’s industrial sector
by using the directional distance function and DEA method. Bi et al. [28] utilized a non-radial DEA
model characterized with multidirectional efficiency analysis to investigate provincial energy and
environmental efficiency, energy saving and CO2 abatement potential of China’s transportation sector.
Du [29] analyzed energy efficiency, energy saving and CO2 abatement potential for China’s 29 regions
and three areas within ecological total-factor framework by using the super-efficiency SBM model.

As the industrial sector contributes the most CO2 emissions, several studies have focused on
the analysis of CO2 emission efficiency and abatement potential for China’s industrial sector [30–36].
For instance, Wang and Wei [33] analyzed the regional energy and emission efficiency, the energy
saving and CO2 abatement potential, and the marginal abatement costs of industrial CO2 emissions of
30 Chinese major cities. Likewise, as the largest emitter in China [37], Jiangsu Province has attracted
the attention of many scholars on CO2 emission issues [37–39]. For instance, Wang et al. [39] analyzed
the influencing factors of energy-related CO2 emissions in Jiangsu Province during 1995–2009 by
using the Log Mean Divisia Index (LMDI) method. However, these studies have mainly focused on
exploring the influencing factors of CO2 emissions in Jiangsu, but paid little attention to the analysis of
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CO2 emission performance and abatement potential. Worse, as far as we know, the relevant studies
of Jiangsu’s municipal industrial sectors are blank. Therefore, it is necessary and urgent to fill the
gap for the decarbonization transition of Jiangsu’s industrial sector and effective implementation of
mitigation policies.

Under such circumstances, in this paper, we aim to study Jiangsu’s industrial CO2 emission
performance in greater depth by analyzing the levels, space-time distribution and distributional
evolution tendency of the industrial CO2 emission efficiency under total-factor frame (TFICEE) in
13 prefecture-level cities of Jiangsu, and estimate abatement potential of industrial CO2 emission
(APICE) and potential emission reductions for various regions in Jiangsu Province.

The paper is organized as follows. Section 2 introduces models including the SBM-Undesirable
model, kernel density estimation and the industrial abatement model. Section 3 presents the empirical
study including variable selection, data collection and treatment, analysis of CO2 emission performance
and measurement of industrial abatement potential. Section 4 draws the conclusions.

2. Methodology

2.1. Environmental Production Technology

Environmental production technology can be considered as a possible production set containing
both desirable and undesirable outputs, which denotes the technical relationship between desirable
outputs, undesirable outputs and inputs. Supposing a production process that uses capital (K), energy
(E) and labor (L) as inputs to produce desirable output (G) and undesirable output (C), environmental
production technology can be described as follows:

T “ tpK, E, L, G, Cq : pK, E, Lq can produce pG, Cqu . (1)

According to Zhou et al. [40], we further specify the environmental production technology for
J DMUs in Equation (2), by assuming that the production technology exhibits constant returns to
scale [25,41].

T “

#

pK, E, L, G, Cq :
řJ

j“1 λjKj ď K,
řJ

j“1 λjEj ď E,
řJ

j“1 λjLj ď L,
řJ

j“1 λjGj ě G,
řJ

j“1 λjCj ď C, λj ě 0, j “ 1, 2, . . . , J

+

, (2)

where λj is the weight variable that is utilized to construct a convex combination enveloping all DMUs.
J denotes the total number of DMU.

2.2. SBM-Undesirable Model

DEA has been widely applied in various fields for solving the problem of efficiency evaluation,
since the traditional CCR (Charnes, Cooper and Rhodes) [42] and BCC (Banker, Charnes and
Cooper) [43] models were proposed. Traditional DEA models are essentially the radial and oriented
measurement methods, which generally result in overestimation of efficiency. In order to address
the problem, Tone proposed that the SBM [44] model, a non-radial and non-oriented DEA model,
which can solve the defects of the traditional DEA model so as to reflect the nature of the efficiency
evaluation. Actually, the modern production process is often accompanied by undesirable outputs
such as waste water, exhausted gas and so on, so Tone proposed a modified DEA scheme [16] for
evaluating efficiency in the presence of undesirable outputs based on the SBM model, i.e., the so-called
SBM-Undesirable, which is presented in Equation (3):
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minρ0 “
1´ 1

M
řM

m“1 S´
m{xm0

1` 1
N`T

´

řN
n“1 S`

n {yn0 `
řT

t“1 S´
t {bt0

¯ ,

s.t.
ÿJ

j“1
λjxmj ` S´

m “ xm0, m “ 1, 2, . . . , M,
ÿJ

j“1
λjynj ´ S`

n “ yn0, n “ 1, 2, . . . , N,
ÿJ

j“1
λjbtj ` S´

t “ bt0, t “ 1, 2, . . . , T,

λj ě 0, S´
m ě 0, S`

n ě 0, S´
t ě 0, j “ 1, 2, . . . , J,

(3)

where x P RM
` , y P RN

` and b P RT
` are vectors of inputs, desirable outputs and undesirable

outputs, respectively. There are J DMUs and the observed data for DMUj are xj “
`

x1j, x2j, . . . , xMj
˘

,

yj “
´

y1j, y2j, . . . , yNj

¯

and bj “
`

b1j, b2j, . . . , bTj
˘

. S´
m, S`

n , and S´
t denote input excess, desirable

output shortfall and undesirable output excess, respectively. λ is the weight vector and ρ0 denotes
the SBM efficiency score. Generally, producing more desirable outputs and less undesirable outputs
relative to less input resources is a criterion of efficiency.

2.3. Kernel Density Estimation

As an important non-parametric method, kernel density estimation has been widely applied
in studying uneven distribution [45]. Specifically, this method is mainly utilized to estimate the
probability density of random variables and depict the distributional pattern of random variables
with a continuous density curve. Assuming that the density function of the random variable X is ƒ pxq,
we can estimate it by using Equation (4).

ƒ pxq “
1

Nh

ÿN

i“1
K
ˆ

Xi ´ x
h

˙

, (4)

where N is the number of observations; h denotes the bandwidth; K(¨ ) presents the kernel function;
Xi is observation value obeying independent and identically distributed (iid).

Generally, kernel density function is a weighting function or smoothing function. According to
the different forms of expression, it can be divided into Gaussian kernel, Epanechnikov kernel, triangle
kernel and so on. This article selects frequently-used Gaussian kernel function to study distributional
dynamic and evolution tendency of Jiangsu’s industrial CO2 emission efficiency, and the function is
expressed in Equation (5).

K pxq “
1
?

2π
exp

ˆ

´
x2

2

˙

, (5)

As a non-parametric method, kernel density estimation results are presented in the form of
graphics; therefore, we study the evolution of distribution by observing distributional position,
scalability and morphological changes.

2.4. Industrial Abatement Model

Based on CO2 emission efficiency defined by Choi et al. [18] and emission reduction potential
defined by Wang et al. [46] and Rao et al. [47], we propose industrial abatement model in Equation (6):

TFICEEj,t “
TICEj,t

ICEj,t
“

ICEj,t ´ LICEj,t

ICEj,t
“ 1´

LICEj,t

ICEj,t
, (6)

where TFICEEj,t denotes Industrial CO2 Emission Efficiency under Total Factor Frame of j-th city at the
period of t; TICEj,t (Target Industrial CO2 Emissions) represents optimal CO2 emissions of j-th city at
the period of t according to the production frontier; ICEj,t (Industrial CO2 Emissions) represents actual
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CO2 emissions of j-th city at the period of t; LICEj,t (Loss Industrial CO2 Emissions) denotes excessive
CO2 emissions of j-th city at the period of t compared with the frontier. Actually, it is a slack amount
of CO2 emissions and can also be considered as achievable emission reductions. APICEj,t denotes
Abatement Potential of Industrial CO2 Emissions of j-th city at the period of t, and can be measured by
Equation (7):

APICEj,t “
LICEj,t

ICEj,t
. (7)

SBM-Undesirable model can work out TFICEEj,t and the values of TICEj,t, LICEj,t, and APICEj,t

of 13 cities can be obtained by solving Equations (6) and (7). Obviously, the higher value of APICEj,t

shows that the greater reduction potential and the worse environmental performance of the observed
city. Clearly, APICEj,t and TFICEEj,t satisfy the relationship that TFCEEj,t `APCEj,t “ 1.

3. Empirical Study

In this section, we firstly select appropriate indicators of evaluating TFICEE and collect the related
data. Then, our SBM-Undesirable model is applied to work out the TFICEE of 13 cities in Jiangsu
Province. In addition, we analyze space-time distribution and distributional evolution tendency of
TFICEE in Jiangsu by using the GIS visualization method and kernel density estimation. Finally,
we apply the industrial abatement model to estimate the regional abatement potential of Jiangsu’s
industrial sector.

3.1. Variable Selection

Considering that the TFICEE should reflect energy conservation, environmental protection and
industrial economic growth, this paper selects five variables as the inputs and outputs. Based on the
SBM-Undesirable model described in Section 2, three variables serve as inputs: labor employment (L),
capital stock (K) and energy consumption (E). Gross industrial output (G) is viewed as the desirable
output, while CO2 emission (C) is taken as undesirable output. The input–output indicators are
summarized in Table 1.

Table 1. Variables of inputs and outputs.

Variable Units

Input
Capital 100 million RMB
Labor 10 thousand persons

Energy 10 thousand tons of coal equivalent (10,000 tce)

Desirable output Output 100 million RMB
Undesirable output CO2 10 thousand tons

3.2. Data Collection and Treatment

Jiangsu Province, consisting of 13 prefecture-level cities, can be categorized into three areas of
Sunan, Suzhong and Subei, according to socioeconomic conditions and geographic distributions.
Specifically, Sunan contains Nanjing (NJ), Suzhou (SZ), Wuxi (WX), Changzhou (CZ) and Zhenjiang
(ZJ); Suzhong contains Yangzhou (YZ), Taizhou (TZ) and Nantong (NT); Subei contains Yancheng
(YC), Huaian (HA), Suqian (SQ), Xuzhou (XZ) and Lianyungang (LYG). The data presented in this
paper cover industrial input–output data of 13 prefecture-level cities in Jiangsu Province during
2004–2013, when Jiangsu experienced accelerated urbanization and industrialization. The relevant
data are collected from the China Energy Statistical Yearbook [48], China City Statistical Yearbook [49],
Jiangsu Economic Census Yearbook [50–52], and City Statistical Yearbooks of 13 prefecture-level cities.
It should be noted that the industrial data in this paper only contain industrial enterprises above
designated size, due to limitations of statistics. In order to eliminate the price effect, all nominal values
are converted into 2004 constant price. A statistical description for variable data is shown in Table 2.
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Table 2. Descriptive statistics of input and output variables (2004–2013).

Year
Inputs Desirable Output Undesirable Output

Capital Labor Energy Gross Output CO2

2004

Mean 1166.19 70.56 756.68 1998.87 2764.05
Std. dev. 1286.59 68.42 568.43 2391.31 2077.53

Max 4888.87 214.55 1715.06 8668.20 6442.85
Min 89.03 9.47 64.50 141.26 225.17

2007

Mean 2223.64 79.08 1094.03 3744.13 3968.61
Std. dev. 2604.51 84.80 860.35 3987.14 3082.64

Max 9648.09 339.62 3206.62 14,868.15 11,393.35
Min 258.43 18.93 112.79 402.23 412.91

2010

Mean 3429.63 93.54 1312.49 6102.25 4746.79
Std. dev. 3388.69 104.40 1077.06 5417.12 3865.00

Max 12,752.27 419.87 3827.07 21,624.27 13,506.92
Min 691.38 24.69 119.41 997.69 436.33

2013

Mean 4397.08 88.06 1552.22 8816.90 5574.30
Std. dev. 3852.19 75.28 1226.26 6056.60 4392.70

Max 15,241.85 319.60 4298.04 26,327.21 15,028.32
Min 1339.08 25.17 180.77 2598.40 653.84

Note: Due to the limited space, all annual data are not listed.

Labor employment (L) and gross industrial output (G) are directly obtained from yearbooks that
are mentioned above. The estimation of capital stock (K) is generally conducted by Perpetual Inventory
Method (PIM), which requires the data of industrial capital depreciation rate and initial capital stock.
Due to limitations of statistics, these data need to be estimated before using the method. Therefore,
in order to reduce deviation from data estimation, we choose an alternative method that selects the
sum of average balance of net fixed assets and average balance of current assets as Capital stock [17].
Energy consumption (E) in this paper refers to comprehensive consumption of end-use energy, which
includes raw coal, gasoline, kerosene, diesel oil, fuel oil, liquefied petroleum gas (LPG), natural gas
and liquefied natural gas (LNG). All sorts of energy consumption are converted into standard coal
equivalents according to conversion factors from physical units to coal equivalents that are obtained
from Appendix IV of China Energy Statistical Yearbook.

Because there are no official statistics yet on CO2 emission in China, existing literature generally
uses the Reference Approach recommended by the Intergovernmental Panel on Climate Change (IPCC)
to estimate the CO2 emissions. In this paper, we also utilize the method to calculate CO2 emissions
with industrial final energy consumption, which is shown in Equation (8):

CO2 emissions “
ÿ

i
Ei ˆNCVi ˆCEFi ˆCOFi ˆ p44{12q , (8)

where Ei represents the end-use of energy source, i, and NCVi pNet Caloric Value,
CEFi pCO2 Emission Factorq, COFi pCO2 Oxidation Factorq stand for the heat equivalent, the
carbon emission coefficient and the carbon oxidation factor, respectively. In addition, 44{12 denotes
the ratio of the molecular weight of CO2 (44) to the molecular weight of carbon (12), which is called
CO2 gasification coefficient as well.

3.3. Comprehensive Analysis of TFICEE

3.3.1. Evaluation of TFICEE

Based on the SBM-Undesirable model in Section 2, TFICEE of 13 prefecture-level cities in Jiangsu
Province from 2004 to 2013 are obtained, which are listed in Table 3. At the city level, the average
TFICEE scores of Changzhou and Taizhou both exceed 0.9, which are the optimal levels of efficiency in
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the analysis. On the contrary, Xuzhou has the lowest average TFICEE of 0.428, followed by Zhenjiang
with an average TFICEE of 0.489. At the area level, Table 3 indicates that Suzhong enjoys the highest
average TFICEE score of 0.858, followed by Sunan with an average score of 0.763, and the least efficient
Subei with an average score of 0.645. Actually, there exist differences in economic development,
industrial technology, industrial structure and local environmental policy among various cities of
Jiangsu Province, and these differences may account for regional inequality of TFICEE in Jiangsu.

Table 3. TFICEE of 13 prefecture-level cities in Jiangsu Province (2004–2013).

Region 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 Mean

NJ 1.000 1.000 1.000 1.000 1.000 0.843 0.621 0.552 0.492 0.584 0.809
SZ 1.000 1.000 1.000 1.000 0.925 0.799 0.663 0.607 0.500 0.537 0.803
WX 1.000 1.000 1.000 1.000 1.000 0.791 0.667 0.608 0.484 0.526 0.808
CZ 0.656 0.828 1.000 0.926 1.000 1.000 1.000 1.000 0.767 0.894 0.907
ZJ 0.387 0.454 0.458 0.524 0.615 0.554 0.496 0.465 0.413 0.520 0.489
YZ 0.473 0.766 0.764 0.679 0.797 1.000 1.000 1.000 1.000 1.000 0.848
TZ 0.777 0.867 0.907 0.913 0.927 1.000 1.000 1.000 1.000 1.000 0.939
NT 0.401 1.000 1.000 1.000 1.000 1.000 0.669 0.620 0.547 0.647 0.788
YC 0.461 1.000 0.797 1.000 1.000 1.000 1.000 1.000 1.000 0.652 0.891
HA 0.404 0.474 0.517 0.519 0.532 0.552 0.692 0.592 1.000 0.774 0.606
SQ 0.439 0.487 0.525 0.597 0.602 0.625 1.000 1.000 1.000 1.000 0.728
XZ 0.288 0.432 0.426 0.471 0.459 0.433 0.423 0.429 0.417 0.504 0.428

LYG 0.229 0.402 0.413 0.442 0.494 0.558 0.673 0.768 0.900 0.829 0.571
Sunan 0.809 0.856 0.892 0.890 0.908 0.797 0.689 0.646 0.531 0.612 0.763

Suzhong 0.550 0.878 0.890 0.864 0.908 1.000 0.890 0.873 0.849 0.882 0.858
Subei 0.364 0.559 0.536 0.606 0.617 0.634 0.758 0.758 0.863 0.752 0.645

Jiangsu 0.574 0.764 0.773 0.787 0.811 0.810 0.779 0.759 0.748 0.749 0.755

Note that, the imbalance between the number of variables and the number of DMUs may result
in a dimensionality problem. Generally, the number of DMUs should be three times greater than that
of variables, which is necessary for the credibility of the DEA results. However, it should be noted that
there is still a dispute about this issue and the restriction is different in some literature [53]. In addition,
the DEA results are relatively reasonable as well and see no unusual phenomenon of excessive efficient
DMUs resulting from the lack of DMU.

We further calculate annual average TFICEE of Jiangsu and its three areas from 2004 to 2013.
The time trends for the four observations are portrayed in Figure 1. The average TFICEE of Subei
almost continuously increases during 2004–2012 but has a significant decrease in 2013, the last year of
our study period. The average TFICEE of Sunan slightly increases during 2004–2008, suffers a sharp
decline during 2008–2012, but enjoys a significant increase in 2013. The average TFICEE of Suzhong
greatly improves in 2005, and fluctuates at a high level in the rest of our study period. On the other
hand, the average TFICEE of Jiangsu has a significant increase in 2005, which is caused mainly by the
great efficiency improvement of Suzhong and Subei, and then slightly fluctuates around 0.750.

Combined with industrial structure, national regulation and international economic situation,
a qualitative explanation for different trends of TFICEE in Subei and Sunan is given as follows: at the
beginning of our study period, the carbon emission efficiency of Subei is at a low level, thereby
having relatively large room for growth. Moreover, Jiangsu Province experiences a rapid economic
development during our study period in which Subei absorbs advanced technology and management
modes, and introduces a large number of investments and talents from Sunan and other developed
regions. Therefore, Subei’s carbon efficiency experiences a continuous increase from 2004 to 2012.
However, in 2012, the central government proposed ecological civilization construction that largely
restricts the production of high-carbon industries. Actually, the pillar of Subei’s industrial structure
is heavy industry, and, therefore, Subei’s carbon efficiency suffers a significant decrease in 2013 due
to the impact of ecological civilization construction. On the other hand, Sunan’s carbon efficiency
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was at a high level at the beginning, thereby having limited room for growth. Nevertheless, Sunan’s
carbon efficiency slightly increases with the rapid economic development of Jiangsu during 2004–2008.
However, the outbreak of the global financial crisis in 2008 changed the trend. Actually, Sunan’s
economy is export-oriented and a large number of foreign companies are greatly affected by the
financial crisis. Subsequently, Sunan’s carbon efficiency suffered a sharp decline during 2008–2012.
With the passing of the financial crisis, the recovery of the global economy and the improvement of
the international trade situation, Sunan’s foreign investment and international cooperation gradually
increased. As a result, the carbon efficiency of Sunan in 2013 improved significantly.

Sustainability 2016, 8, 679 8 of 15 

 

Figure 1. Time trend of TFICEE in Jiangsu Province (2004–2013). 

Combined with industrial structure, national regulation and international economic situation, 
a qualitative explanation for different trends of TFICEE in Subei and Sunan is given as follows: at 
the beginning of our study period, the carbon emission efficiency of Subei is at a low level, thereby 
having relatively large room for growth. Moreover, Jiangsu Province experiences a rapid economic 
development during our study period in which Subei absorbs advanced technology and 
management modes, and introduces a large number of investments and talents from Sunan and 
other developed regions. Therefore, Subei’s carbon efficiency experiences a continuous increase 
from 2004 to 2012. However, in 2012, the central government proposed ecological civilization 
construction that largely restricts the production of high-carbon industries. Actually, the pillar of 
Subei’s industrial structure is heavy industry, and, therefore, Subei’s carbon efficiency suffers a 
significant decrease in 2013 due to the impact of ecological civilization construction. On the other 
hand, Sunan’s carbon efficiency was at a high level at the beginning, thereby having limited room 
for growth. Nevertheless, Sunan’s carbon efficiency slightly increases with the rapid economic 
development of Jiangsu during 2004–2008. However, the outbreak of the global financial crisis in 
2008 changed the trend. Actually, Sunan’s economy is export-oriented and a large number of foreign 
companies are greatly affected by the financial crisis. Subsequently, Sunan’s carbon efficiency 
suffered a sharp decline during 2008–2012. With the passing of the financial crisis, the recovery of 
the global economy and the improvement of the international trade situation, Sunan’s foreign 
investment and international cooperation gradually increased. As a result, the carbon efficiency of 
Sunan in 2013 improved significantly. 

3.3.2. Space-Time Distribution of TFICEE 

In order to present an intuitive spatial distribution of TFICEE in Jiangsu and conduct dynamic 
analysis of performance changes during our study period, we further draw the geographic 
distribution graphs of TFICEE in 2004, 2007, 2010 and 2013 by using ArcGIS 10.2 (Environmental 
Systems Research Institute, Inc., Redlands, CA, USA), and the results are shown in Figure 2. This 
figure indicates that there exists a significant spatial inequality of TFICEE in Jiangsu, which first 
presents a decreasing trend from south to north in the distribution of 2004 and 2007, and then 
changes to be another decreasing trend from the middle to the north and south. In addition, in terms 
of performance improvement, the number of cities whose efficiencies are lower than 0.5 is eight in 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

TF
IC

EE

Year

Sunan

Suzhong

Subei

Jiangsu

Figure 1. Time trend of TFICEE in Jiangsu Province (2004–2013).

3.3.2. Space-Time Distribution of TFICEE

In order to present an intuitive spatial distribution of TFICEE in Jiangsu and conduct dynamic
analysis of performance changes during our study period, we further draw the geographic distribution
graphs of TFICEE in 2004, 2007, 2010 and 2013 by using ArcGIS 10.2 (Environmental Systems Research
Institute, Inc., Redlands, CA, USA), and the results are shown in Figure 2. This figure indicates that
there exists a significant spatial inequality of TFICEE in Jiangsu, which first presents a decreasing trend
from south to north in the distribution of 2004 and 2007, and then changes to be another decreasing
trend from the middle to the north and south. In addition, in terms of performance improvement,
the number of cities whose efficiencies are lower than 0.5 is eight in 2004, and then decreases to two in
2007 and 2010, while efficiencies of all cities are greater than 0.5 in 2013.

The performances of Suqian and Taizhou experience a sustained growth from 2004 to 2013
and eventually achieve efficiency. Lianyungang and Yangzhou both experience great performance
improvements, which are larger than 0.5 during 2004 to 2013. In contrast, the performances of Nangjing,
Suzhou and Wuxi all decrease by more than 0.5 over the period of 2004 to 2013. Additionally, there
are six cities experiencing a performance fluctuating process during the study period, and the most
significant fluctuation appears in Nantong and Yancheng, whose fluctuation ranges of TFICEE are both
over 0.5. The remaining four cities fluctuate within a small scale over our study period. In general,
Jiangsu’s TFICEE levels show an upward trend during our study period.
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3.3.3. Distributional Evolution Tendency of TFICEE

Based on kernel density estimation in Section 2, and with the assistance of R-program (R-3.2.4,
Robert Gentleman and Ross Ihaka, Auckland, New Zealand) [54,55], the kernel density estimation
curves of Jiangsu’s TFICEE in 2004, 2007, 2010 and 2013 are obtained, and the results are shown in
Figure 3. By comparing the four curves, we can easily find that peak value and variation range have
experienced a continuous increasing and shrinking, respectively, which indicate that regional disparity
of TFICEE has been narrowing during our study period.

Specifically, compared with 2004, the density function of 2007 significantly moves to the right
and becomes steeper; meanwhile, its variation range obviously narrows, which indicates that the
overall efficiency greatly improves and regional disparity narrows during this period. However, the
appearance of significant double peaks also shows that there is a serious polarization phenomenon
in the distribution of TFICEE at the same time. Compared with 2007, the density function of 2010
nearly stays stationary, but its peak value and variation range change in opposite direction, indicating
that there is a decline in regional disparity of TFICEE. Compared with 2010, the density function of
2013 slightly moves to the left and becomes steeper; meanwhile, the variation range shrinks and the
significant double peaks disappear, indicating that regional disparity and polarization phenomenon
both have been alleviated.
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the existence of density mass beyond 1 in Figure 3 is caused by the boundary effect of kernel density
estimation, but we have proved that it has little effect on the results derived from this figure in
this paper).

The changes of the peaks of Kernel density getting higher and ranges of TFICEE shrinking denote
that regional disparity of TFICEE in Jiangsu Province has been narrowing. As mentioned above,
Jiangsu has experienced a rapid economic development during 2004–2013. In addition, cooperation
and exchanges among cities have been strengthened with the improvement of traffic, leading to the
extension of advanced technology and efficient management modes, as well as the full flow of talents,
capitals and other elements within the bounds of the entire province. As a result, the reduction in
regional inequality of economic development leads to the convergence of TFICEE in Jiangsu Province,
which is characterized by the increase of peak value and the shrunken ranges of TFICEE in Figure 3.

3.4. Estimation of Industrial Abatement Potential

Based on the industrial abatement model in Section 2, average annual abatement potential of
industrial CO2 emissions (APICE) and potential industrial CO2 emission reductions of 13 cities and
three categorized areas over 2004–2013 are obtained, which are listed in Table 4. As shown in Table 4,
the average APICE of four cities is over 0.3 during our study period. Specifically, Xuzhou has the
largest abatement potential, which almost reaches 0.6, followed by Zhenjiang, Lianyungang and
Huaian. Nanjing, Suzhou, Wuxi, Yangzhou, Nantong, Yancheng and Suqian may reduce 10%–30% of
their actual industrial CO2 emissions in their production process, while Changzhou and Taizhou have
the lower abatement potential, which is close to zero. At the area level, Subei has the highest abatement
potential, which nearly reaches 0.5. Sunan has the second highest potential, and Suzhong has the
lowest abatement potential about 0.15. On the whole, the average APICE of the Jiangsu Province is
0.282, which means that over a quarter of Jiangsu’s ICE is excessive emission.

As shown in Table 4, Jiangsu’s average annual industrial CO2 emission reductions can attain
15,654.00 (ten thousand tons), accounting for 28.2% of average annual actual emissions. In terms of
abatement amount, Xuzhou, Suzhou and Zhenjiang all account for over 10% of total potential emission
reductions. Specifically, Xuzhou has the highest potential emission reductions of 5540.05 (ten thousand
tons) and the highest abatement contribution of 35.39%, followed by Suzhou and Zhenjiang.
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While Nanjing, Wuxi, Changzhou, Yangzhou, Nantong, Yancheng, Huaian and Lianyungang account
for 1%–10% of the total potential emission reductions. Suqian and Taizhou account for less than 1%,
meaning that they have little effect on the total potential emission reductions. It should be noted that
abatement contribution is not fully consistent with abatement potential due to regional variation in
actual industrial CO2 emissions. For instance, the APICE of Suqian is 0.273, ranking as no. 5, but
its abatement contribution is the least. On the other hand, abatement contribution largely varies in
different areas. Subei and Sunan can actually affect the total reductions by 45.78% and 44.95%, much
higher than 9.26% in Suzhong.

Table 4. Average industrial abatement potential of regions in Jiangsu over 2004–2013.

Region Abatement
Potential R1

Average Annual
Actual Emission

(104 tons)

Potential Emission
Reduction
(104 tons)

Abatement
Contribution R2

NJ 0.191 9 5691.17 1085.87 6.94% 5
SZ 0.197 7 11,637.25 2291.37 14.64% 2
WX 0.192 8 6770.49 1302.64 8.32% 4
CZ 0.093 12 2919.47 271.22 1.73% 10
ZJ 0.511 2 4078.71 2085.85 13.32% 3
YZ 0.152 10 3189.58 485.13 3.10% 9
TZ 0.061 13 2020.65 123.06 0.79% 12
NT 0.212 6 3978.74 841.90 5.38% 6
YC 0.109 11 1812.20 197.53 1.26% 11
HA 0.394 4 2040.33 804.70 5.14% 7
SQ 0.273 5 411.17 112.04 0.72% 13
XZ 0.572 1 9688.79 5540.05 35.39% 1

LYG 0.429 3 1194.37 512.62 3.27% 8
Sunan 0.226 31,097.09 7036.96 44.95%

Suzhong 0.158 9188.97 1450.09 9.26%
Subei 0.473 15,146.85 7166.95 45.78%

Jiangsu 0.282 55,432.91 15,654.00 100.00%

Note: R1—the rank of abatement potential; Abatement contribution—the proportion of potential emission
reduction; R2—the rank of abatement contribution.

As mentioned above, our industrial abatement model is based on a DEA efficiency variance
estimating method, which implies that the lower the efficiency, the more redundancy of inputs and
undesirable outputs in the production process, namely the larger emission reduction potential. XZ and
ZJ have the highest abatement potential and contribution, whose main industries are traditional high
energy consumption and high carbon emission industries of mining and selection, metallurgy, and iron
and steel. Generally, these high-carbon industries have lower carbon efficiency than other industries.
Subsequently, industrial structure dominated by high-carbon industries makes carbon efficiency of the
two cities lower than that of other neighboring regions. In addition, their actual carbon emissions are
relatively large as well. Therefore, abatement potential and contribution in XZ and ZJ are much higher
than other regions.

4. Conclusions

With the SBM-Undesirable model, in this paper, we firstly studied annual industrial CO2 emission
efficiency of 13 prefecture-level cities in Jiangsu Province from 2004 to 2013. Then, we further analyzed
space-time distribution and distributional evolution tendency of TFICEE during our study period,
by using GIS visualization method and kernel density estimation, respectively. In addition, based
on industrial abatement model, we worked out average annual industrial abatement potential and
potential emission reductions of various regions in Jiangsu Province.

The empirical results show that TFICEE of most cities and areas has different degrees of
improvement with the economy development, and Jiangsu’s TFICEE levels showed an upward
trend on the whole during our study period. Additionally, there exists a significant spatial inequality
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of TFICEE across various regions in Jiangsu, but the regional disparity has been narrowing over time.
By examining regional industrial abatement potential and potential emission reductions, we find
that Subei has the highest abatement potential, which is nearly up to 0.5, and makes the greatest
contribution to the total potential emission reductions, which is more than 45%. In particular, Xuzhou,
a city of Subei, has the highest abatement potential and potential emission reductions among 13 cities,
which are more than 0.5 and 35%, respectively. On the whole, Jiangsu’s industrial average annual CO2

emission reductions can attain 15,654.00 (ten thousand tons), accounting for 28.2% of average actual
annual emissions.

As mentioned above, there exists significant regional inequality of abatement potential, economic
development and industrial structure in Jiangsu Province, which are crucial for the development and
implement of abatement policy. Therefore, in order to formulate the most suitable emission reduction
policy, local municipal government should take all these factors into consideration. From the results
of this study, Sunan and Subei have relatively large emission reduction potential and should step up
efforts to reduce emissions. Nevertheless, due to differences in economic development, the specific
policies are different. In light of the high level of economic development and industrial technology,
Sunan should vigorously develop the technology-intensive industries to realize the transformation of
industrial structure. However, limited to the stage of industrial development, Subei should increase
the investment on upgrade technology and equipment level, promote cross-regional mergers and
acquisitions, and raise the level of industry concentration to form scale effect. XZ and ZJ, having the
largest abatement potential and contribution, especially should not only actively promote technological
innovation and adjust the industrial structure dominated by high-carbon industries, but also carry
out inter-regional cooperation to upgrade and integrate the industrial scale efficiency. On the other
hand, the Jiangsu provincial government should further break down inter-regional market barriers to
promote the flow of technologies, capitals and talents within the entire province. In addition, it is vital
to establish the internal dynamic mechanism of emission reduction and design incentive compatible
mechanisms to coordinate regional economic development.

Of course, this study still has some limitations. It does not consider industrial carbon transfer
among the regions in Jiangsu Province, which may result in inaccurate estimation of regional TFICEE.
In addition, the quantitative analysis for regional disparity on industrial carbon emission efficiency
and abatement potential is our future research focus.
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