o ey z
<@ sustainability ﬂw\p\py

Article

Short Term Wind Power Prediction Based on
Improved Kriging Interpolation, Empirical Mode
Decomposition, and Closed-Loop Forecasting Engine

Nima Amjady * and Oveis Abedinia 2

Department of Electrical Engineering, Semnan University, Semnan 35195-363, Iran

Department of Electrical Engineering, Budapest University of Technology and Economics, 1052 Budapest,
Hungary; oveis.abedinia@gmail.com

*  Correspondence: amjady@semnan.ac.ir; Tel.: +98-23-33654261

2

Received: 30 September 2017; Accepted: 10 November 2017; Published: 16 November 2017

Abstract: The growing trend of wind generation in power systems and its uncertain nature have
recently highlighted the importance of wind power prediction. In this paper a new wind power
prediction approach is proposed which includes an improved version of Kriging Interpolation Method
(KIM), Empirical Mode Decomposition (EMD), an information-theoretic feature selection method,
and a closed-loop forecasting engine. In the proposed approach, EMD decomposes volatile wind
power time series into more smooth and well-behaved components. To enhance the performance of
EMD, Improved KIM (IKIM) is used instead of Cubic Spline (CS) fitting in it. The proposed IKIM
includes the von Karman covariance model whose settings are optimized based on error variance
minimization using an evolutionary algorithm. Each component obtained by this EMD decomposition
is separately predicted by a closed-loop neural network-based forecasting engine whose inputs are
determined by an information-theoretic feature selection method. Wind power prediction results
are obtained by combining all individual forecasts of these components. The proposed wind power
forecast approach is tested on the real-world wind farms in Spain and Alberta, Canada. The results
obtained from the proposed approach are extensively compared with the results of many other wind
power prediction methods.

Keywords: wind power prediction; Empirical Mode Decomposition (EMD); Kriging Interpolation
Method (KIM); Neural Network (NN); feature selection method; closed-loop forecasting engine

1. Introduction

Wind power is one of the fastest growing electricity sources in the world [1]. Despite wind
power’s clean benefits, wind power is a non-dispatchable resource which is dependent on weather
conditions [2]. The resultant variable nature of this resource threatens the balance of generation and
demand in power systems [3]. Accordingly, wind power variations increase the regulation requirements
and decrease their operational benefits in power systems [4]. An effective solution for this problem
is forecasting wind power [5]. For this purpose, several methods have been proposed by research in
recent years. As some newer examples, a two-stage hybrid network including Bayesian clustering by
dynamics and support vector regression has been proposed for wind generation forecasting in [5]. In [6],
two Neural Network (NN) based approaches have been presented for direct and rapid construction
of wind power prediction intervals. Combination of non-parametric and time-varying regression
model and time-series model, i.e., Holt-Winters and Autoregressive-moving-Average Model (ARMA),
which can consider residual autocorrelation and seasonal dynamics, has been presented in [7] for wind
power prediction. Wind speed prediction by a Hybrid Iterative Forecast Method (HIFM) has been
presented in [8]. A two-stage feature selection technique has been also proposed for selecting the most
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relevant and least redundant input variables in [8]. In [9], wind power forecast by Ridgelet Neural
Network (RNN) has been proposed in which Ridgelet is used as the activation function of the hidden
nodes. Moreover, a new Differential Evolution (DE) method has been presented in [9] for training
the RNN. A hybrid forecasting method based on Enhanced Particle Swarm Optimization (EPSO) has
been introduced in [10] for wind power prediction. This hybrid method is composed of persistence
technique, back propagation neural network, and Radial Basis Function (RBF) neural network. Also,
EPSO further optimizes the weight coefficients in this hybrid technique. In [11], another version of
EPSO with a hybrid NN has been proposed for wind power prediction. The training mechanism of
the hybrid NN is composed of the EPSO as well as Levenberg-Marquardt (LM), Broyden, Fletcher,
Goldfarb, Shannon (BFGS), and Bayesian Regularization (BR) learning algorithms. Wind power forecast
methods have been reviewed in [12-15].

Various research works have focused on maximum power point tracking (MPPT) in photovoltaic
(PV) generation systems, wind generation systems and their hybrid wind-PV systems, such as [16-19].
A neuro-fuzzy wavelet-based adaptive MPPT control for PV Systems [16], dynamic operation and
control for a hybrid wind-PV-fuel cell microgrid [17], intelligent MPPT control for a grid-connected
hybrid solar power, wind power, and diesel-engine system [18], and fuzzy MPPT controller for a hybrid
solar power and battery system [19] have been presented in the literature.

In recent years, different transformation techniques have been presented by researchers to enhance
the accuracy of forecast methods. Fourier Transform (FT) is one of the earlier techniques which gives the
frequency spectral content of the signal [20]. However, FT application is limited to stationary signals.
It cannot give information about where in time the frequency spectral components appear. Short-time
FT (STFT), which provides the time information by calculating many FTs for sequential time windows
and putting them together [21], has been proposed to deal with non-stationary signals. However,
STFT provides a fixed resolution at all times, while low /high frequency behaviors require long/short
analysis windows. Wavelet Transform (WT) alleviates the limitations of FT and STFT methods by using
functions that retain an appropriate compromise between time location and frequency information.
The basic concept of this method begins with the selection of a proper wavelet function, called mother
wavelet, and then combining its shifted and scaled versions. Several wind power forecast methods
using WT have been presented so far, such as [22-25]. However, WT is a linear signal-processing tool
which may not be able to thoroughly analyze nonlinear signal variations. Additionally, the effectiveness
of WT is dependent on the proper selection of mother wavelet, while it has to be given before the
analysis. Mother wavelets are usually chosen by trial-and-error and heuristic methods. The problems
of WT have been extensively discussed in [26].

EMD is a well-organized decomposition approach, which can mitigate the problems of WT
regarding estimating instantaneous frequency [27]. EMD has been used for wind power and wind
speed prediction in [28]. However, EMD has a disadvantage to process non-stationary signals.
This disadvantage is generating fake extremes [26]. To alleviate this problem a new version of EMD is
proposed in this research work.

The new contributions of this research work are as follows:

(1) A new version of KIM, named Improved KIM (IKIM), is presented. The proposed IKIM includes
the von Karman covariance model whose settings are optimized based on error variance
minimization by an evolutionary algorithm.

(2) Animproved version of EMD is introduced. Cubic spline fitting of conventional EMD is replaced
by IKIM in the proposed EMD. It is shown that the proposed EMD alleviates the problems of
conventional EMD.

(3) A new closed-loop forecasting engine is proposed for wind power prediction. This forecasting
engine is based on NN trained by Levenberg—-Marquardt learning algorithm.

(4) A new wind power prediction approach is presented, which is composed of the proposed EMD,
an information-theoretic feature selection method, and the proposed forecasting engine.
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Since stochastic search methods, such as particle swarm optimization (PSO), proceed randomly in
the solution space to find the optimal solution, numerical stability is an important concern for these
methods. However, we have used Levenberg-Marquardt (LM) learning algorithm, which is an efficient
training mechanism for prediction tasks, to train the NN-based forecasting engine. Unlike stochastic
search methods, LM does not search randomly the solution space. Instead, LM effectively proceeds
in the solution space using Gauss-Newton and steepest descent techniques. Since LM does not have
random evolution, numerical stability is not a problem for this method.

Microgrids are small power networks that supply load demands locally. For this purpose,
a microgrid provides a system approach to distributed generations. Thus, a microgrid can have
both dispatchable units (such as diesel engines and micro-turbines) and renewable units (such as wind
units and solar units). If a microgrid has wind units, the proposed wind power prediction approach
can be used to forecast its wind power the same as it is used to forecast the wind power of a wind farm.
We should give the historical data of the wind power pertaining to the wind units of the microgrid to
the proposed prediction approach. The proposed approach decomposes this wind power time series
by means of IKIM and EMD, selects most effective features for it by means of Maximum Relevancy,
Minimum Redundancy and Maximum Synergy (MRMRMS) feature selection method and provides
wind power forecast for the microgrid through the closed-loop forecasting engine. In other words,
the proposed wind power prediction approach forecasts wind power of a microgrid based on the same
steps and methodology used to forecast wind power of a power system. Thus, the proposed wind
power prediction approach can be useful for microgrids the same as it is useful for power systems and
wind farms.

The next sections of the paper are structured as follows. In Section 2, conventional EMD is first
introduced and then the proposed EMD based on IKIM is presented. In Section 3, the proposed
closed-loop forecasting engine and the information-theoretic feature selection method are introduced.
Afterwards, the proposed wind power prediction approach is constructed by combining its
components. The numerical results produced by the proposed wind power prediction approach
for real-world wind farms are presented in Section 4 and compared with the results of many other
prediction methods. Section 5 presents a discussion of the results and Section 6 concludes the paper.

2. Empirical Mode Decomposition (EMD)

EMD aims at decomposing a volatile signal to more smooth and well-behaved components called
Intrinsic Mode Function (IMF). IMF is an oscillating function, as a counterpart to harmonic function,
with two main characteristics: (1) IMF has the same number of local maxima, local minima and zero
crossings or at most these numbers differ by one, (2) the mean of IMF is zero. To decompose a signal
to IMF components, EMD uses an iterative sifting process that can be summarized as the following
step-by-step EMD algorithm:

EMD Algorithm:

(1)  Calculate the local maxima and minima of the signal, denoted by x(t), within the considered domain.

(2)  Connect the maxima of x(f) with an interpolating function, such that an upper envelope u(t) is created
about the signal. EMD uses spline of order 3, known as Cubic Spline (CS), for the interpolation [29].
Similarly, connect the minima of x(t) with the interpolating function to create a lower envelope I(f)
around the signal. These envelopes are shown in Figure 1.

(3) The mean of the upper and lower envelopes, i.e., s(f) = [u(t) + [(t)]/2, is calculated, which is the curve of
local mean in Figure 1.

(4)  If the stopping condition a is satisfied, the local mean s(t) is an IMF and go to step 5; otherwise, substitute
the signal with signal minus the local mean, i.e., x(t) — s(t)—x(t), and go back to step 2.

(5) Suppose n IMF components s;(t), sp(t), . .. , su(t) have been produced so far. Compute the residual
r(t) = x(t) — [s1(t) + s2(t) + ... + su(t)]. If the stopping condition b is satisfied, terminate the algorithm;
otherwise, substitute the signal with the residual, i.e., r(f)—x(t), and go back to step 2.
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Figure 1. Illustration of the sifting processes including original signal x(t) (solid black line),
upper envelope u(t) (dashed red line), lower envelope I(t) (dash-dot blue line) and local mean or
Intrinsic Mode Function (IMF) s(t) (dotted green line).

The stopping condition a expresses that the relative difference between two successive local
means should be less than a threshold [30], which means that iterating the inner loop makes negligible
changes in the local mean. The stopping condition b for the outer loop states that the residual should be
monotonically increasing or decreasing, i.e., no oscillation is observed in the residual in the considered
domain [31]. If the algorithm is terminated with n IMF components, the signal is decomposed as:

n

x(t) =) sit) +r(t) @

i=1

EMD is an effective signal-processing tool to analyze local behaviors through decomposing
a volatile signal into less volatile components. However, it has an important disadvantage, which is
generating fake extremes introduced by the CS curve fitting. These fake maxima and minima lead to
fake overshoots and undershoots, indicated in Figure 2, which decreases the accuracy of the produced
IMFs and also increases the iterations of the sifting process. To cope with these problems and enhance
the performance of EMD, a modified version of it is proposed in which the CS interpolation is replaced
by IKIM. In the following, ordinary KIM is first reviewed briefly and then an improved version of
ordinary KIM, i.e., IKIM, is introduced. Afterwards, the proposed IKIM is applied to EMD.

Normalized signal

Time (s)

[ B 10

Figure 2. Illustration of the Empirical Mode Decomposition (EMD) problem: Original signal (solid black
line), upper envelope (dashed red line), lower envelope (dash-dot blue line), IMF (dotted green line)
and wrong undershoots/overshoots (red hachure).

Kriging is an interpolation method, which estimates the value of a function at a given point
as a weighted sum of the function values at the neighboring points [32]. Kriging has important
advantages with respect to other interpolation techniques. It assigns weights based on a data-driven
strategy, instead of an arbitrary function, giving higher weights to isolated points compared to points
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within a cluster. Moreover, Kriging can provide an error estimation through Kriging variance along
with estimation of the own variable [33].
KIM estimates the value of a time series x(t) at point ¢, through the following weighted sum:

M M
) =Y wix(t;), Y w=1 2
i-1 i=1

where £(t) indicates KIM estimation of x(t); t;, 1 < i < M, are the neighboring points of .
In ordinary KIM [34], the weights w; are obtained through variance minimization model. The KIM
error, denoted by e(.), for estimation of x(¢) is as follows:

M
elx(t)] = 2(t) — x(t) = }_wix(t;) — x(t) ©)
which can be written in vector form as below:

ex(t)] = [wy -+ wm —1[x(t) -+ x(tm) x()]" 4)

where the superscript T indicates transpose. The error variance, shown by Var(e[x(t)]), can be written
as below based on the bilinear form theorem [35]:

Var(e[e(t)]) = [wr - w —1]. o
Var([x(tl) o x(tm) x(t)]T).[wl w17

By decomposing the vector [x(t1) --- x(tp) x(t)]Ttotwosub—VectorsX: [x(t1) --- x(tM)]T
and [x(t)], (5) can be reformulated as:

Var(e[x(t)]) = [wy1 -+ wm —1].

Var(X) Cov(X, x(t)) 1[@01 cwy — 17
[Cov(X, x(1)] T Var(x(1))

(6)

where Cov(.,.) represents covariance function. Consequently, ordinary KIM determines the weights wy,
..., wp by solving the following optimization model:

M
Min {Var(e|x(t st.) w;=1 7
Min (VarCle()} st Y %
where Var(e[x(t)]) is as presented in (6). To compute the variance and covariance terms of (6),
KIM assumes Gaussian process for the M samples (i.e., the prior distribution) and so the resulting
posterior distribution becomes Gaussian [33]. The optimization problem of (7) can be solved by means
of Lagrange multipliers’ method, which leads to the following solution [34]:

w1 Cov(x(t1),x(t1)) --- Cov(x(t1),x(tm)) 1 - Cov(x(ty),x(t))

| : | : .
wWpm Cov(x(tp), x(t1)) -+ Cov(x(tp),x(tpm)) 1 Cov(x(tp), x(t))

A 1 1 0 1

where A is the Lagrange multiplier associated with the constraint Y™, w; = 1. By determining the
weights wy, ... , wy, the estimation of x(t), i.e., (), and the error variance can be obtained through
(2) and (6), respectively.
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The most time-consuming part of (8) is calculation of the covariance functions. Thus, to decrease
the computation burden of the above optimization problem, a well-known approximation for the
covariance of Gaussian processes is used here in which the covariance function is approximated based
on the covariogram [33]:

Cov(x(tl-),x(t]-)) = C(dl]) (9)

where d;; indicates the Euclidean distance between ¢; and ¢;. For our one-dimensional problem the
Euclidean distance is reduced to dl-j =t — i |. Also, C(.) is the covariogram which represents the
covariance function based on the distance d;;. For this purpose, several functions have been presented
in the literature as C(.), such as the linear model, the exponential model, the Gaussian model, and the
spherical model [34]. Recently, the von Karman covariance model has been introduced in [35], which is
an effective model considered for calculating the covariance terms in this work. The anisotropic von
Karman function can be defined as:

o2

O

(r/a)’Ky(r/a) (10)
where I'(.) is the gamma function and Kj is the modified Bessel function of the second type of order
0 < v < 1[36]; r is the lag; a is correlation length; and o represents the variance. Figure 3 shows C(r)
in terms of r/a for different values of v. In this paper, v = 0.5 is adopted, which leads to exponential
auto-covariance function. Moreover, the value of 2 in C(r) is optimized by Shark Smell Optimization
(SSO) method which has been recently introduced in [37]. The objective of this optimization problem is
minimizing the error variance. For details of SSO, the interested readers can refer to [37] The proposed
IKIM includes KIM with the von Karman covariance model given in (10) and SSO optimization used
to optimize the value of a.

1

0.9

0.8

Auto—-Covariance

Figure 3. C(r) in terms of r/a for different values of v.

The performance of the proposed EMD based on IKIM to decompose a signal x(t) can be
summarized as the following steps:
1. Setx1(t) = x(t).
2. Find the maxima of the signal x1(¢) and obtain the upper envelope ue(t) using the proposed IKIM.
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3. Find the minima of the signal x1(¢) and obtain the lower envelope le(f) using the proposed IKIM.

4.  Find the local mean m(t) = [ue(t) + le(t)] /2.

5. Setx1(t) = x1(t) — m(t) and determine if x1(t) is an IMF or not by checking the properties of IMF.
Repeat steps 2 to 5 until x1(t) becomes an IMF. Store the obtained IMFE.

6.  Setx(t) =x(t) — x1(b).

7. Repeat steps 1 to 6 until all IMFs and residual of signal x(t) are obtained.

The results obtained from applying the proposed EMD using IKIM to the test case of Figure 2
are shown in Figure 4, which are compared with the results of the conventional EMD using CS. It is
seen that the proposed EMD results in more accurate envelopes compared with the conventional EMD.
The fake overshoots and fake undershoots of the envelopes generated by the conventional EMD are
significantly mitigated in the envelopes generated by the proposed EMD. By generating more accurate
envelopes, more accurate IMF components can be produced by the proposed EMD.

Normalized signal

Time (s)

Figure 4. Comparison of envelopes generated by conventional EMD using cubic spline (dash-dot blue
line) with envelopes generated by the proposed EMD using Improved Kriging Interpolation Method
(IKIM) (solid red line).

3. Proposed Wind Power Prediction Approach

The structure of the wind power prediction approach proposed in this research work is shown
in Figure 5a. Within this approach wind power time series is first decomposed using the proposed
EMD based on IKIM. Each of IMFs and residual is separately predicted by means of a feature selection
method and a closed-loop forecasting engine. The feature selection method receives the historical
data of each IMF/residual time series as well as the historical and forecast values of the exogenous
variables, e.g., the historical and predicted values of wind speed and temperature provided by
Numerical Weather Prediction (NWP). Subsequently, the feature selection method separately selects
the candidate inputs that are informative for the forecast process of each IMF/residual. Since wind
power is a nonlinear function of the candidate inputs and these candidate inputs can be redundant
and interacting, the information-theoretic feature selection method of Maximum Relevancy.

Maximum Relevancy, Minimum Redundancy and Maximum Synergy (MRMRMS) [38] has been
used in the proposed wind power prediction approach. The forecasting engine of each IMF/residual
is fed by the selected candidate inputs of MRMRMS as shown in Figure 5b. By selecting more relevant,
less redundant and more synergetic candidate inputs, the forecasting engine can better extract the
input/output mapping function of each IMF/residual. However, since MRMRMS is not a contribution
of this article, it is not further discussed here. Details of this method can be found in [38]. Instead,
we focus on the forecasting engine in the following, which is one of contributions of this research work.

As seen from Figure 5b, the first block of the proposed closed-loop forecasting engine is
a pre-predictor, which is an NN-based forecaster. The output of this pre-predictor and the candidate
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inputs selected by MRMRMS feature selection method are given to a post-predictor, which is another
NN-based forecaster. Both of these NN-based forecasters (i.e., pre-predictor and post-predictor) have
Multi-Layer Perceptron (MLP) structure and Levenberg-Marquardt (LM) learning algorithm, which is
an efficient training mechanism for the prediction tasks [39]. However, these two forecasters have
different roles in the proposed forecasting engine. Pre-predictor forecasts the future values of the
associated time series (IMF or residual) using the candidate inputs selected by MRMRMS. This forecast,
i.e., the output of pre-predictor, is used as an initial prediction to initialize the feedback loop shown in
Figure 5b. Within this feedback loop, the NN-based forecaster of post-predictor predicts the future
values of the associated time series using both the selected candidate inputs of MRMRMS and the
output of pre-predictor. Since post-predictor has the forecast generated by pre-predictor, which is
an input close to the output, it is expected that post-predictor more accurately predicts the future
values of the associated time series compared with pre-predictor. The next element in the feedback
loop, i.e., comparator, evaluates this aspect. If the forecast of post-predictor is better than the forecast
of pre-predictor, the forecast of post-predictor is feed backed through the feedback loop to replace the
forecast of pre-predictor at the input of post-predictor. Then, post-predictor forecasts the output using
this more accurate input. Similarly, comparator compares the two forecasts at the input and output of
post-predictor and if a more accurate forecast is obtained at the output of post-predictor with respect
to its input, the process of the feedback loop is repeated.

e L = =
_

[ EMD | N
Wind Power . - i _'*l::;': Feature | ' i
Historical Data | | | b ; ! (| Glosed i
: ! ! | 1 | Selection | | | Loop | |:>
I:[> : '_' | . i 1| based on  [Forecasting
i | | E i INRMEREMS ! ! Engine | Final Wind
i _:’m i i . Power Forecast
il R S

_____________________ b __________’,: (a)

Fe ature Forecasting
Selection Engine
Comparator
Selected -
Candidate Forec asl' NN-based Forecast Better inal
Inputs by : . forecaster Fm

\ﬂ{\ﬂl\fs—' NN-based > Forecast? orecast
- forecaster

Post-predictor

Pre-predictor

Feedback loop (b)

Figure 5. Structure of proposed wind power prediction approach; (a) proposed closed-loop forecasting
engine (b).

When no better forecast can be generated by post-predictor or difference between the two forecasts
at the input and output of post-predictor becomes negligible, this process is terminated and the
last generated forecast by post-predictor is given as the final forecast of the proposed closed-loop
forecasting engine.

In practice, since we do not have the output of forecast samples (e.g., hourly wind powers of
the next day), validation samples are used instead of forecast samples to evaluate the accuracy of the
forecasts generated by pre-predictor and post-predictor. Validation samples are a part of historical data
which is not used as training samples and kept unseen for the forecasting engine. Thus, by evaluating
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the error of validation samples or validation error we can obtain an estimation from forecast error.
To attain an accurate estimation of forecast error, validation samples should be as similar as possible to
the forecast samples. Thus, in this research work, the hourly samples of the day before the forecast day
(which are the closest samples to the forecast samples) are selected as the validation samples.

The flowchart of the whole proposed wind power prediction approach is shown in Figure 6. In this
flowchart, the performance of the proposed approach including its various components is illustrated.

Wind Power Time Series

Find the local mean (m(t)) |

Set x1(f) = x(f) | “ b
l ! - Candidate set of / \:
. . . E !
Find the maxima k:} P B inputs and target !
]! IKIM |1 | 5 1 :
[R5} h
Find the minima |@ ) MRMRMS feature !
ﬂ . § selection :
L :
i !

Selected candidate inputs

-

{

Setxl(t)=x1(t)—m(t)| | @ """ ol

Yes
Set x(t) = x(t) - x1(t) |

Forecasting Engine

!

All IMFs and residual? S

Better Forecast?

Y
g
=
3
g
[ 3
54
2
Q
A
J

~

Wind Power Prediction
Proposed EMD

Figure 6. Flowchart of the whole wind power prediction approach.

4. Numerical Results

The effectiveness of the proposed prediction approach, illustrated in Figure 5a, is extensively
evaluated using real-world test cases in this section.

4.1. Sotavento Wind Farm in Spain

Sotavento wind farm is located in Galicia, Spain. It has 24 wind turbines with 17.56 MW nominal
power and 38.5 GWh predicted annual production [40]. All data of this test case has been obtained
from [40]. The results produced by the proposed prediction approach for this test case are given in
Table 1 and compared with the results of eight other wind forecast methods. The first three comparative
methods of Table 1 are correlation analysis with Hybrid Iterative Forecast Method (HIFM) [8], two stage
MI-MR feature selection with MLP forecasting engine [8], and MI-MR feature selection with HIFM [8].
The results presented for these methods in Table 1 have been quoted from [8]. The next five comparative
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methods of Table 1 consist of classic EMD based on CS as well as KIM based on Gaussian model,
KIM based on Exponential model, KIM based on linear model, and KIM based on spherical model
which are previous versions of KIM presented in the literature. By comparing with these five methods
the effectiveness of the proposed EMD based on IKIM can be evaluated. The same test conditions
including the same set of candidate inputs (consisting 200 lagged wind speed hourly values), the same
training period (consisting 50 days previous to each forecast day partitioned to 49 days as training
period and one day prior to the forecast day as validation set), and the same test periods (consisting
the third week of the months February, May, August, and November pertaining to year 2005) have
been considered for all forecast methods of Table 1. Since wind speed prediction results in terms of
Root Mean Square Error (RMSE) have been presented in [8], this forecast process and error criterion
have been considered for all methods of Table 1. RMSE is defined as:

LN L7172
RMSE (m/s) = lNZ(XACT(t) - XFOR(t)) ] (11)

where Xcr(;) and Xpog() indicate actual and forecast values of the time series (here, wind speed time
series) for hour ¢; and N indicates the length of the forecast horizon in terms of hour (here, 24 h for
day-ahead forecast). RMSE of each test week, presented in Table 1, is average of its seven daily.

Table 1. Obtained Root Mean Square Error (RMSE) results for day-ahead wind speed forecast of
Sotavento wind farm in the four test weeks of year 2005.

Test Correla%ion MI-MR lfeature MI-MR Feature EMD. + KIM.+ KIM + ) K.IM + KIM.+
Week Analysis + Selection + Selection + Cubic Gaussian  Exponential Linear Spherical  Proposed
HIFM [8] MLP [8] HIFM [8] Spline Model Model Model Model
Feb. 7.56 7.68 5.71 5.08 5.37 2.26 2 1.56 0.98
May 5.82 5.96 4.26 4.14 4.07 3.37 3.07 24 1.32
Aug. 6.93 7.01 5.92 4.37 4.08 2.03 19 1.28 0.87
Nov. 597 6.04 4.55 441 4.83 3.35 3.11 2.08 1.34
Ave. 6.57 6.68 5.11 4.5 4.59 2.75 2.52 1.83 113

RMSE values are computed using (11). The last row of Table 1 shows average RMSE results of the
four test weeks. The RMSE results of Table 1 show that the proposed prediction approach has much
lower wind speed forecast errors than all other methods in all test weeks. The comparisons of Table 1
illustrate high forecast accuracy of the proposed approach for wind speed prediction.

4.2. Alberta Test Case

In this test case, we focus on the prediction of the aggregated wind power pertaining to the
wind farms of Alberta, Canada [41]. The results produced by the proposed prediction approach
for this test case are presented in Table 2 and compared with the results of 10 other methods
including persistence method [25], Back Propagation NN (BPNN) [25], Radial Basis Function Neural
Network (RBFNN) [25], Adaptive Neuro-Fuzzy Inference System (ANFIS) [25], NN based Particle
Swarm Optimization (NNPSO) [25], Wavelet Transform (WT) plus BPNN [25], WT plus RBENN [25],
WT plus ANFIS [25], WT plus NNPSO [25], and Mutual Information with Interaction Gain (MI-IG)
feature selection plus NN plus Chaotic SSO (CSSO) [42]. The results of the first nine comparative
methods of Table 2 have been quoted from [25] and the results of MI-IG+NN+CSSO have been quoted
from [42]. The same test conditions of [25,42] have been also considered for the proposed approach.
Based on [25,42], the test period includes four test days of 2009 (which consist of 3 December, 4 May,
7 July, and 15 October) and the error criteria include Mean Absolute Percentage Error (MAPE),
Normalized Mean Absolute Error (NMAE), and Normalized RMSE (NRMSE). These error criteria are
defined as:



Sustainability 2017, 9, 2104 11 of 18
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where Xacr(), Xror(), and N are as defined for (11) except that wind power times series instead of
wind speed time series is considered here; and Xjy indicates aggregated nameplate capacity pertaining
to the wind farms. Table 2 illustrates that the proposed approach has better wind power forecast
results than all 10 comparative methods in all four test days and considering all three error criteria.
These comparisons clearly illustrate effectiveness of the proposed prediction approach for wind
power forecast.

In another numerical experiment performed on the Alberta test case and reported in Table 3,
the proposed approach is compared with five other methods including persistence method [43], Radial
Basis Function (RBF) neural network [43], MLP neural network [39], Wavelet Neural Network (WNN)
with Mean Squared Error (MSE) [43], and WNN with Maximum Correntropy Criterion (MCC) [43].
The results of these five comparative methods have been quoted from [43]. The same test conditions
of [43] have been considered for the proposed approach in this numerical experiment. Thus, based
on [43], 6-h forecast horizon (instead of 24-h forecast horizon adopted for the numerical experiments of
Tables 1 and 2), four test weeks (including the second week of March, June, September, and December
of year 2012), and the error criteria NRMSE and NMAE have been considered for the numerical
experiment of Table 3. This table shows that the proposed approach has better wind power forecast
results than all five comparative methods in all four test weeks and in terms of both NRMSE and
NMAE error criteria.
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Table 2. Obtained results for wind power forecast of the Alberta test case in the four test days of year 2009.

Test Da Error Persistence  BPNN RBFNN ANFIS NN-PSO WT + WT + WT + WT + MI-IG + NN + Proposed
y Criterion [25] [25] [25] [25] [25] BPNN [25] RBFNN [25]  ANFIS[25] NNPSO [25] CSSO [42] 4
MAPE 10.03 13.62 10.41 14.81 9.54 11.26 8.26 11.08 7.28 712 4.18
3 December NMAE 4.18 432 4.61 475 4.09 4.29 4.19 4.55 3.87 4.02 3.23
NRMSE 541 5.73 5.84 6.13 5.38 5.44 543 591 5.07 4.86 3.32
MAPE 11.31 12.42 11.07 13.51 11.41 11.73 9.22 11.76 8.73 8.50 5.43
4 May NMAE 4.58 4.88 4.61 471 4.51 4.67 4.18 4.39 4.11 4.12 3.12
NRMSE 6.11 6.38 5.89 6.43 6.20 6.09 5.41 6.22 5.83 5.92 413
MAPE 21.58 17.44 16.72 19.30 12.26 14.11 12.39 16.38 11.27 10.12 7.32
7 July NMAE 8.48 7.46 7.21 7.75 5.94 6.97 7.04 7.18 5.29 5.10 4.14
NRMSE 11.25 9.23 8.88 10.16 7.33 8.96 8.36 9.63 7.02 6.76 5.44
MAPE 14.79 13.93 12.73 12.04 12.82 11.67 14.86 11.08 5.48 5.63 4.07
15 October NMAE 7.48 7.26 7.31 7.76 6.85 7.14 7.08 7.32 6.17 6.08 521
NRMSE 9.19 8.79 8.99 9.38 7.43 8.22 8.60 8.93 7.21 6.43 5.73
MAPE 14.43 14.35 12.73 14.91 11.51 12.19 11.18 12.57 8.19 7.84 525
Average NMAE 6.18 5.98 5.93 6.24 5.35 5.77 5.62 5.86 4.86 4.83 3.92

NRMSE 7.99 7.53 7.4 8.02 6.58 7.18 6.95 7.67 6.28 5.99 4.65




Sustainability 2017, 9, 2104 13 of 18

Table 3. Obtained results for wind power forecast of the Alberta test case in the four test weeks of

year 2012.
I March Test June Test September December

Methods Error Criterion Week Week Test Week Test Week Ave.
Persistence [43] NRMSE 13.71 15.14 18.44 12.49 14.95
ersistence [ NMAE 10.08 10.79 13.11 8.84 10.71
RBF [43] NRMSE 18.32 1457 18.62 14.11 16.40
NMAE 13.32 10.45 13.77 10.24 11.95
NRMSE 15.36 15.62 19.80 12.32 15.78
MLP [43] NMAE 12.42 11.56 14.54 9.02 11.89
) NRMSE 12.38 14.99 17.66 11.65 14.17
WNN with MSE [43] NMAE 9.36 10.64 12.49 8.53 10.26
) , NRMSE 12.23 12.48 16.68 11.58 13.24
WNN with MCC [43] NMAE 9.22 9.64 11.73 8.22 9.70
Proposed NRMSE 10.10 10.54 1421 9.32 11.04
P NMAE 7.32 747 9.14 6.36 7.57

4.3. Blue Canyon Wind Farm

The Blue Canyon wind farm includes 45 turbines with a nameplate capacity of 74 MW [44].
The results obtained from the proposed approach for this test case are presented in Table 4 and
compared with the results of three other methods including persistence method [5], Correlation
Analysis (CA) + Bayesian Clustering by Dynamics (BCD) + Support Vector Regression (SVR) [5],
and Modified Hybrid Neural Network (MHNN) + Enhanced Particle Swarm Optimization (EPSO) [11].
The results of the persistence method and CA + BCD + SVR have been quoted from [5] and the results
of MHNN + EPSO have been quoted from [11]. The same test conditions of [5,11] have been considered
for the proposed approach in this numerical experiment. Accordingly, the test period is the month of
June, 2005 in Table 4. Furthermore, three forecasting horizons of 1-h ahead, 24-h ahead, and 48-h ahead
are considered in this numerical experiment. From the results of Table 4 it is seen that the proposed
method outperforms all three comparative methods in terms of both NMAE and NRMSE error criteria
and all three forecast horizons.

Table 4. Obtained results for wind power forecast of the Blue Canyon wind farm with different
forecast horizons.

Test Conditions

Persistence Method [5] CA+BCD + SVR[5] MHNN + EPSO [11] Proposed

Forecast Horizon Error
1-h. ahead NMAE 7.84 6.65 4.12 3.87
1-h ahead NRMSE 11.93 10.54 7.52 5.43
24-h ahead NMAE 21.24 14.38 7.90 6.64
24-h ahead NRMSE 29.84 19.74 12.60 10.29
48-h ahead NMAE 25.42 15.73 10.51 7.89
48-h ahead NRMSE 34.81 21.24 16.58 14.32

Finally, to give graphical insight about the wind power prediction accuracy of the proposed
approach, the forecast, actual, and forecast error curves for a sample day 25 June 2005 are shown
in Figure 7. This figure shows that while wind power actual curve has irregular patterns and
sudden changes, the forecast curve generated by the proposed approach reasonably follows the
actual curve and the forecast error curve has small values, which indicate good performance of the
proposed approach.
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Figure 7. Forecast, actual, and forecast error curves for 25 June 2005 of the Blue Canyon test case.

5. Discussion

In this research work, the effectiveness of the proposed prediction approach has been extensively
illustrated through four numerical experiments for both wind speed and wind power forecast on three
real-world test cases. In these four numerical experiments, the proposed prediction approach has
been compared with many other forecast methods in terms of various error criteria and with different
forecast horizons. In the first, second, third, and fourth numerical experiment, the proposed method
has been compared with eight other methods, 10 other methods, five other methods, and three other
methods, respectively. Thus, the paper presents a total of 26 numerical comparisons between the
proposed approach and other wind power forecast methods. Among these 26 numerical comparisons,
21 comparative results have been taken from previous works. It has been shown that the proposed
method outperforms all other methods in these 26 numerical comparisons. Moreover, significant
differences are seen between the results of the proposed method and other comparative methods.
For instance, in terms of average results obtained in the second numerical experiment (which have
been presented in the last row of Table 2), the proposed approach has (7.84 — 5.25)/7.84 x 100%
= 33.0% lower MAPE, (4.83 — 3.92)/4.83 x 100% = 18.8% lower NMAE, and (5.99 — 4.65)/5.99 x 100%
= 22.4% lower NRMSE than MI-IG+NN+CSSO which is the most accurate comparative method in this
numerical experiment. To the best of our knowledge, other published wind power forecast works have
less numerical comparisons than our paper.

In addition to tabular results, a graphical illustration of the performance of the proposed approach
has been presented. It has been shown that wind power time series has irregular patterns as well as
sudden changes and ramps. However, unlike these complex behaviors of wind power time series,
the forecast curve generated by the proposed approach reasonably follows the actual curve and the
forecast error curve has small values, which indicate good performance of the proposed wind power
forecast method.

6. Conclusions

This paper presents a new wind power prediction approach. Higher effectiveness of the proposed
approach compared with 26 other wind power forecast methods has been extensively illustrated in the
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paper. By providing more accurate wind power forecasts than previous methods, the proposed wind
power prediction approach can be useful for both wind farm owners and power system operators.
With more accurate wind power forecasts, wind farm owners can gain more profits in electricity
markets and power system operators need less reserves to cope with the uncertain nature of wind
power which in turn decreases the operation cost of wind power-integrated power systems. In addition
to wind farms and power systems, the proposed wind power prediction approach can be also useful
for microgrids. With more accurate wind power prediction results, a microgrid operator can better
manage its wind units and transactions with the upstream grid to decrease its operations costs and
obtain more benefits.

Within the proposed approach, wind power time series is first decomposed through a new
EMD based on IKIM. In this way, a complex wind power time series is decomposed to its
various frequency components, which can be analyzed and predicted more effectively. Afterwards,
an information-theoretic feature selection method selects the most effective candidate inputs to predict
each component. A closed-loop forecasting engine learns the input/output relation between these
selected candidate inputs and the output, i.e., the future value of the associated time series. Unlike
conventional open-loop forecast methods, the proposed closed-loop forecasting engine uses an effective
feedback of the output to enhance the efficiency of the training process.

While the proposed prediction approach has high forecast accuracy, it can provide point forecast
for wind power. Extending the proposed approach to probabilistic forecast, i.e., predicting wind power
density function, can be considered as the future work. Predicting wind power density function can be
used, for instance, to generate scenarios which are required in stochastic programming methods.

Author Contributions: Nima Amjady has designed the proposed wind power prediction approach; Oveis
Abedinia has implemented its software code.

Conflicts of Interest: The authors declare no conflict of interest.
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KIM Kriging Interpolation Method

EMD Empirical Mode Decomposition
IKIM Improved KIM

CS Cubic Spline

NN Neural Network

HIFM Hybrid Iterative Forecast Method
ARMA Auto-Regressive Moving Average
RNN Ridgelet Neural Network

DE Differential Evolution

EPSO Enhanced Particle Swarm Optimization
RBF Radial Basis Function

LM Levenberg-Marquardt

BFGS Broyden, Fletcher, Goldfarb, Shannon
BR Bayesian Regularization

FT Fourier Transform

STFT Short-Time FT

WT Wavelet Transform

IMF Intrinsic Mode Function
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MRMRMS  Maximum Relevancy, Minimum Redundancy and Maximum Synergy
MLP Multi-Layer Perceptron

RMSE Root Mean Squared Error

BPNN Back Propagation NN
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