Next Article in Journal
Assessing the Impact of Canopy Structure Simplification in Common Multilayer Models on Irradiance Absorption Estimates of Measured and Virtually Created Fagus sylvatica (L.) Stands
Next Article in Special Issue
Antarctic Ice Sheet and Radar Altimetry: A Review
Previous Article in Journal
An Improved ASTER Index for Remote Sensing of Crop Residue
Previous Article in Special Issue
Ultrawideband Microwave Sensing and Imaging Using Time-Reversal Techniques: A Review
Article

Estimating Flow Resistance of Wetlands Using SAR Images and Interaction Models

1
Instituto de Astronomía y Física del Espacio (IAFE), Ciudad Universitaria, 1428 Buenos Aires, Argentina
2
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales (FCEyN), Dpto. de Física, Ciudad Universitaria, Pab. I, 1428 Buenos Aires, Argentina
3
Universidad de Buenos Aires, Facultad de Ingeniería (FIUBA), Grupo de Medios Porosos, Av. Paseo Colón 850, C1063ACV, Buenos Aires, Argentina
4
Università di Roma “Tor Vergata”, Facoltà di Ingegneria, Dipartimento di Informatica, Sistemi e Produzione (DISP), Via del Politecnico 1, 00133 Roma, Italy
*
Author to whom correspondence should be addressed.
Remote Sens. 2009, 1(4), 992-1008; https://0-doi-org.brum.beds.ac.uk/10.3390/rs1040992
Received: 23 September 2009 / Revised: 4 November 2009 / Accepted: 10 November 2009 / Published: 13 November 2009
(This article belongs to the Special Issue Microwave Remote Sensing)
The inability to monitor wetland drag coefficients at a regional scale is rooted in the difficulty to determine vegetation structure from remote sensing data. Based on the fact that the backscattering coefficient is sensitive to marsh vegetation structure, this paper presents a methodology to estimate the drag coefficient from a combination of SAR images, interaction models and ancillary data. We use as test case a severe fire event occurred in the Paraná River Delta (Argentina) at the beginning of 2008, when 10% of the herbaceous vegetation was burned up. A map of the reduction of the wetland drag coefficient is presented. View Full-Text
Keywords: wetland management; marsh hydraulic conductivity; Synthetic Aperture Radar (SAR); microwave interaction model wetland management; marsh hydraulic conductivity; Synthetic Aperture Radar (SAR); microwave interaction model
Show Figures

Figure 1

MDPI and ACS Style

Salvia, M.; Franco, M.; Grings, F.; Perna, P.; Martino, R.; Karszenbaum, H.; Ferrazzoli, P. Estimating Flow Resistance of Wetlands Using SAR Images and Interaction Models. Remote Sens. 2009, 1, 992-1008. https://0-doi-org.brum.beds.ac.uk/10.3390/rs1040992

AMA Style

Salvia M, Franco M, Grings F, Perna P, Martino R, Karszenbaum H, Ferrazzoli P. Estimating Flow Resistance of Wetlands Using SAR Images and Interaction Models. Remote Sensing. 2009; 1(4):992-1008. https://0-doi-org.brum.beds.ac.uk/10.3390/rs1040992

Chicago/Turabian Style

Salvia, Mercedes, Mariano Franco, Francisco Grings, Pablo Perna, Roman Martino, Haydee Karszenbaum, and Paolo Ferrazzoli. 2009. "Estimating Flow Resistance of Wetlands Using SAR Images and Interaction Models" Remote Sensing 1, no. 4: 992-1008. https://0-doi-org.brum.beds.ac.uk/10.3390/rs1040992

Find Other Styles

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop