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Abstract: Synthetic aperture radar (SAR) tomography (TomoSAR) estimates scene reflectivity along
elevation coordinates, based on multi-baseline measurements. Common TomoSAR approaches are
based on every single range-azimuth cell or the cell’s neighborhood. By using an additional synthetic
aperture for elevation, these techniques have higher resolution power for elevation, to discriminate
scatterers with differences in location in the same range-azimuth cell. However, they cannot provide
sufficient range resolution power to discriminate these scatterers by joining different spectra to a
wider range spectrum, which limits the resolution power of TomoSAR. Therefore, in this paper,
we proposed using a compressive sensing (CS) technique to reconstruct range and elevation signals
from multi-baseline SAR images. This TomoSAR method not only retrieves the vertical signals
but also improves the resolution in the range, which helps improve the resolution power of the
TomoSAR technique. We present the theory of the CS-based two-dimensional TomoSAR technique
and compare it to the CS-based one-dimensional TomoSAR technique. The excellent resolution power
and scatterer localization accuracy of this novel technique are demonstrated using simulations and
real data obtained by RADARSAT-2 in Lanzhou, China.

Keywords: synthetic aperture radar; SAR Tomography; compressive sensing; urban environment

1. Introduction

The study of urban environments and dynamics is a key research field in the geoscience
community. The acquisition of quantitative spatial information for urban environments is crucial
for this field, such as the three-dimensional (3D) structure parameters of buildings, which play an
important role in urban planning, disaster monitoring, construction of communication basing, and
digital cities. However, the two-dimensional (2D) synthetic aperture radar (SAR) images of the scene’s
reflectivity are actually the 3D distributed backscattering amplitudes projected onto a 2D plane [1],
which cannot provide 3D information, especially the elevation information. Thus, a simple method to
obtain elevation information is using multi-baseline SAR interferometric (MB-InSAR) acquisitions [2].
Using this method, the formation of an additional synthetic aperture for elevation can provide
resolution power for vertical elevation determination. Thereafter, SAR Tomography (TomoSAR)
can be used to retrieve the reflectivity profile for elevation from the multi-baseline measurements
(Figure 1) [1,3].
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Figure 1. One-dimensional (1D) synthetic aperture radar tomography (TomoSAR) model.

Several TomoSAR methods exist: nonparametric spectral analysis methods, like Fourier
beamforming and Capon [4,5], are fast and robust in focusing artifacts, whereas parametric spectral
analysis methods such as multiple signal classification (MUSIC) [6], truncated singular value
decomposition (TSVD) [7], and weighted subspace fitting (WSF) estimators [8] obtain better vertical
resolution. The compressive sensing-based method not only provides a good compromise between the
parametric and nonparametric spectral analysis methods, but can achieve superior resolution with a
small number of acquisitions and unevenly spaced orbits [9-18].

The spatial resolution in the height direction, orthogonal to the ground plane, depends on the
elevation resolution, orthogonal to the range, which discriminates the scatterers such as that on
ground and on the wall of building in Figure 2. The spatial resolution in the height direction also
depends on the range resolution that can discriminate the scatterers such as the adjacent scatterers
on the wall of the building in Figure 2, which is related to the transmitted signal bandwidth [10].
However, the current single-look or multi-look TomoSAR methods mentioned above are based on
an azimuth-range pixel (Figure 1) or their neighbor pixels to reconstruct the reflectivity function
along the elevation direction and to provide resolution power for elevation. Therefore, limited by the
elevation resolution, these approached cannot discriminate scatterers that are located at very close
elevation coordinates but at different ranges, such as the adjacent scatterers on the wall of building
(Figure 3). To distinguish such scatterers, a better method is to enhance the range resolution if a larger
signal bandwidth is available. This is possible because the sensed reflectivity’s spectrum band in
multi-baseline acquisition is larger than that of a single pass [19]. Therefore, the range resolution may
first be improved and then TomoSAR can be implemented. However, a problem that occurs is that the
range resolution improvement influences the phase information, which results in incorrect inversion
results for elevation.
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Figure 2. The spatial resolution in the vertical direction depends on the elevation and range resolution.
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Figure 3. The elevation resolution in an azimuth-range cell.
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Another way to enhance range resolution is the use of 2D spectrum analysis techniques [20-24], but in
practice, a uniform distribution baseline is required, or else these techniques cannot be used. Moreover,
the high-resolution analysis techniques are generally based on the computation and characterization
of the signal covariance matrix. These approaches cannot be implemented in practice due to the high
dimension of the resulting signals, whose covariance matrix estimation would require an extremely
high number of samples. This serious limitation was overcome in this study through the use of
estimation techniques that estimate the parameters or signals with a large dimension, but a sparse
structure, i.e., composed of a small number of contributions. Considering that the elevation signals
of urban areas are sparse in the object domain, the range-elevation signals to be reconstructed also
are sparse, which is a key prerequisite for Compressive Sensing (CS) theory [25-28]. To overcome the
limitations mentioned above, we propose applying the CS technique to super-resolution reconstruction,
both for range and elevation. Unlike existing approaches, the CS-based range-elevation dimensional
TomoSAR, or the CS 2D TomoSAR method, can not only provide reconstruction with a low number of
irregularly spaced acquisitions, but can also improve the range and elevation resolution.

This paper is outlined as follows. In Section 2, a general tomographic SAR imaging model and
the CS methodology in SAR tomography are outlined, and the 2D tomographic SAR imaging model as
well as the proposed CS 2D TomoSAR method are derived. The datasets used are listed in Section 3.
In Section 4, the performance of our approach is demonstrated using simulated experiments and by
MB-PolInSAR datasets acquired by RADARSAT-2 at C-band over Lanzhou, China. Finally, conclusions
are drawn in Section 5.

2. Methodology

2.1. One-Dimensional Tomographic SAR Imaging Model

Assume M SAR images are available over the subject area. The mth image after the MB-InSAR
acquisition geometry is shown in Figure 1, in which the SAR sensors move along M parallel orbits
over the same area, for sake of simplicity. Without loss of generality, let us consider m;th orbit to be a
reference orbit with a look angle of 6. Using this process, the reference azimuth x is the along-track
direction of the m;th orbit, the reference range r is its across-track direction, and the reference elevation
direction s is orthogonal to the slant plane which is the (x,r) plane. The baseline distance between
the reference orbit and the mth position, noted as b;;, can be decomposed into b, ,,,, a component
parallel to the slant-range direction, and a perpendicular component b ,,,, aligned with the cross-range
direction. After SAR imaging processing of echo signals acquired from each pass and coregistration of
these data to the reference data, a stack of range-azimuth focused images are generated. The focused
complex-valued images u, (x/,7’) of an azimuth-range cell (x,7’), for the mth acquisition, can be
modeled in the following form [3]:

u (X, 7") = ffdxdrf(x’ —x, 7' =) /ds'y(x,r,s) exp {—j{{rRm(r,s)}, m=1,..., M 1)

where A is the operating wavelength, f(+) is the postfocusing (compressed) 2D point spread function
(PSF), 7(+) is the 3D scene reflectivity function so the integrals are extended to the illuminated scene,
and Ry, (+) is the distance between the target and sensor.
Without any spectral windowing, the postfocusing PSF f(-) is:
x/ r/
f(x',7") =sine(=)sinc(—) )
Px Or
where p, and p, are the azimuth and range resolution, respectively. In the current tomographic SAR
imaging model, we assumed the postfocusing PSF would approximate an ideal 2D Dirac function.
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So, for a fixed azimuth-range cell (x},7}), the calculation of triple integral in Equation (1) can be
transformed into a single integral, only in the vertical direction as follows:

As/2 4
Am
wn(st,rf) = [ 2(s)exp |~ Ra(s)] ®
—As/2
where As is the extent of the illuminated scene in the vertical direction. Through deramping and

approximation by discretizing the continuous reflectivity function along s, in the presence of noise ¢,
the discrete space system model of Equation (3) can be written as [3]:

g=R,y+e 4)

where g is the column vector with M elements

An As/2 An
8§m = exp {JARm(O)} ./_As/ﬂ(s)e’(p [—]ARm(S)]d&

R.isan M x N mapping (steering) matrix with Re s xn = exp(—j27éms,), where:

2b),

= -— 5
G =>4 ©)
is the spatial (elevation) frequency. v is the discrete reflectivity vector with N elements v, = v (sy).
sy 1=1,..., N) denotes the discrete elevation position. This results in the 1D tomographic SAR

imaging model.
2.2. Two-Dimensional Tomographic SAR Imaging Model

In this section, we will derive the 2D TomoSAR imaging model. From Equations (1) and (2), after
deramping the 2D SAR image u(x’, ") can be modeled in the following form:

u(x',r') = ff dxdr sin ¢(

/ /
— 7’) sinc(x — x) /ds'y(x, r,s)exp {—jMR(r,s)] (6)
Or Ox A

Here, we only assumed the function associated to the azimuth variables x in the postfocusing
PSF f(x,7") to approximate an ideal Dirac function. In other words, the azimuth dependence of u and
 can be omitted. Accordingly, we shifted from a 3D to a 2D estimation problem in the range direction
r and elevation direction s. Thus, Equation (6) becomes :

u(r') = / sinc(:)  (7(r',s) exp |:—j4/(TR<1’/,S):| )ds (7)

where x is convolution. So, the Fourier transform of u(r’) is given by [29]:

U() = [ rect( LTS+ fors)ds ®

Bw

1, x € —%,
rect(x) =
0/ X é - %/
By is bandwidth of the SAR system, fj is the center frequency of the SAR system, and 7 (-) stands for
the Fourier transform of (-).

where

©)

NI o=
_
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Moreover, we assumed that the range resolution is enhanced, which is p, /1, wheren, > 1, and
then the Fourier transform of the 2D signal can be written as:

um(fy) = /rect( fr )T (fr + fo,s)ds (10)

T]rBW

Therefore, from Equations (8) and (10) we have

U(fr) = u(fr) (11a)

or
FT[u(r)] |, = FT[u™ ()] r (11b)
/I sinc(;—:) * ('y(r’,s) exp[—j‘*T”R(r/,s)]) exp|—j27nfpr']dr'ds 110

= Jfsinc(5 7« (v(7,5) exp [~/ 5R(r,5)|) expl—j2rfr'|dr'ds
forany f, € [—BTW, BTW .

As with the previous analysis in Section 2.1, we assumed that the same stack of M complex SAR
datasets were acquired. For the image acquired along the generic mth orbit, its Fourier transform
across the range direction can be obtained from Equation (8):

Up(fy) = /rect(i)T(ﬁ + fo— Afm,s)ds (12)

By

where

Afy = A g (13)

r'tan6

We also assumed that the range resolution is in by n, > 1 times. Then, for the Fourier transform
of the mth image across range direction, we obtain from Equation (10):

() = [ rect(Z) T+ fo = A 51 a9

rBW
As before, for any f, € {— BTW, BTW] , we have:
Un(fy) = Un (fr), m=1,2,...,.M (15)

For K contiguous pixels {u(r}) }f;ol along the range direction, we have:
/ : T / A,
u(ry) = /smc(p—) * (77 (r,8) exp _]TR(TI«S) )ds, k=0,1,...,K—1 (16)
r

Its discrete Fourier transform is given by:

K-1
-~k

Ufy) =Y u(r) exp{—]an?},fer 1,...,K—-1 (17)

k=0
After the range solution is enhanced by 1, > 1 times, for K-, contiguous pixels {u (r}(’) 1126_1

along the range direction in the same area, its discrete Fourier transform is given by:
et kfr
um(f)= Y. u(r)exp|—j2m , fr=01,...,Kxn,—1 (18)
k=0 K,
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From Equation (11), we let:
un(f,+Ak)=U(fr), fr=0,1,..., K—-1 (19)

where Ak is any positive integer with 0 < Ak < K(n, —1).
From Equations (15) and (19), for the image acquired along the generic mth orbit, we also have:

Uy (fr + Ak) = U (fy), fr=0,1,...,K—1 (20)

Equation (20) can be written in matrix notation:

U=uR, 1)
where U is M x K matrix with
Uy
U,
U= . (22)
Um
and
u, = [Um(l),um(Z),...Um(K—l)] (23)

R, is (K x 11,) x K matrix with

Rﬁ"zexp[—jZnK{zkn },fr =0,1,...,Kxn,—1, k=0+Ak1+Ak,..., K—1+Ak  (24)
r

uis M x (K x n,) matrix with

Uy f, = Uy (r}y) = / sinc(prrf’nV) * (7 (r}r,s) exp [jﬁTRm (r}r,s)} )ds (25)

From Equation (4), we know that:
u=R.X (26)

where X is N x (K x 1,) unknown reflectivity matrix along range r and elevation s with

Yuf, =Y (rf sn) (27)

Thus, by replacing u# in Equation (21) with Equation (26), the 2D tomographic SAR imaging model
can be obtained:
U = R.XR, (28)

The linear expression of Equation (28) is given by:
vec(U) = R! Q) Revec(X) (29)
where ) is the Kronecker product and vec(-) denotes the matrix to vector operator.

2.3. Compressive Sensing-Based 2D SAR Tomography Method

Based on the 2D TomoSAR imaging model derived above, we applied the compressive sensing
technique to the 2D TomoSAR inversion. This novel approach of compressive sensing for sparse
signal reconstruction [24-28] proposes that the signal f € R" can be measured from m corrupted linear
measurements b = Af + z, where A is an m X n sensing matrix, where m is typically much smaller than
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n, and z is an arbitrary and unknown vector of noise. The theory asserts that if f has approximately
sparse representation in one basis ¥ that is also incoherent with A, then it is possible to recover f from
a small number of projections b by L; minimization:

min|[¥ 7|, subject to [Af ~b]l, < ¢ (30)
f

where ¢ is an upper bound on the noise level. This minimization problem in Equation (30) can be
solved using basis pursuit methods [30]. In this paper, the basis pursuit estimate is computed using
the CVX tool (http:/ /cvxr.com/cvx/).

For urban areas, the elevation signals to be reconstructed are sparse in the object domain. Then,
the signal in the range-elevation plane is also assumed to be sparse. So, the sparse reflectivity profiles
vec(X) can be recovered based on the 2D TomoSAR imaging model in Equation (29) and the CS theory
in Equation (30) in the presence of noise through L; minimization:

miny, (vec(X)) s. t. |[vec(U) — RF (R) Revec(X)|| < ¢ (31)

Notably, the matrix RTT &® R, is a Kronecker product of two Fourier basis. Therefore, R,T X R, and
identity orthogonal basis I are maximally incoherent, which means that with overwhelming probability,
RT ® R, obeys the restricted isometry property (RIP) to guarantee sufficiently sparse reconstruction
in the presence of noise. The proposed CS 2D TomoSAR method can discriminate the scatterers not
only along elevation direction but also along the range direction. The process of the method is shown
in Figure 4, which shows that the main different with CS 1D TomoSAR is that the proposed CS 2D
TomoSAR method use the Range-Doppler Signal I/ in a stack of SAR images (see Figure 5).

Extraction Range-Doppler Signal U

in Range-Elevation Plane
U is M x K matrix, where m elements in ith row represent m pixels in
ith images along range direction (Figure 5).

v

Acquisition of 2D frequency domain signal U
in Range-Elevation Plane
U=7ft(l,1)
DFT of each row vector of ‘U: the signal in range is transformed from the
time domain to the frequency domain.

v

Acquisition of 2D time domain SP signal X

in Range-Elevation Plane using CS
min,, (vec(X))
s.t.vec(U) = RTQR, vec(X)

R, steer matrix in elevation; R,: DFT in range.

¥

Information Extraction of 2D time domain signal X

in Range-Elevation Plane

Figure 4. Flow diagram of compressive sensing-based two-dimensional range-elevation TomoSAR
(CS 2D TomoSAR) method.
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Figure 5. Range-Doppler Signal I/ in the range-elevation plane.

3. Datasets

To demonstrate the potential of the outlined approach, we used a stack of M = 7 focused C-band
fully polarimetric SAR images of the urban site of Lanzhou, China, acquired by RADARSAT-2 from
9 July to 30 November 2012. The system parameters are shown in Table 1. The spatial resolution was
about 4.99 m in the slant range direction. The baseline information is reported in Table 2. The master
image was acquired 30 November 2012. The total baseline span was 405.87 m, resulting in a Rayleigh
elevation resolution of 61.13 m. Before we completed the tomographic processing on the test site,
a preprocessing of those MB-PolInSAR data was performed, including registration, flat earth phase
removal, and atmospheric error phase removal [31].

Table 1. RADARSAT-2 SAR parameters.

Wavelength Range Incidence Total Baseline Azimuth Range Spacing
(m) (km) Angle Span (m) Spacing (m) (m)
0.0555 895 30° 405.87 5.17 4.73

Table 2. Baseline parameters.

Baseline (m)

Flight Date (2012) Flight Date of Master Image: 30 November 2012

9 July 141.12

2 August 251.43
26 August —153.12
19 September —138.31
11 October —92.42
6 November —132.73

4. Numerical Experiment

In this section, we investigate the performance of the CS 2D TomoSAR method in the following
two ways: (1) we used some simulated experimental results based on our experimental parameters
to investigate the advantages of the tomographic approach; and (2) real data experiments of the
tomographic approach are presented.

4.1. Simulated Experiments

We first investigated the reconstruction performance of the technique. In simulated experiments,
the signals with different reflectivity were simulated with seven acquisitions with a signal-to-noise
ratio (SNR) of 20 dB. The acquisition parameters are displayed in Section 3 and the simulated original
signals in the elevation-range plane are displayed in Figure 6. Three groups of simulated signals
were used. In the second group, the range difference between the two scatterers that were located in
difference range positions was equal to the range resolution, and the elevation difference between the
two scatterers that were located in different elevation positions was equal to the elevation resolution.
In the bottom-left of the figure, the range difference and the elevation difference are smaller than the
range and elevation resolution respectively. In the upper-right of the figure, the range and elevation
difference are larger than the range and elevation resolution, respectively.
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Figure 6. Original signal in the range-elevation plane.

We use the Fourier Beamforming, CS 1D TomoSAR, and CS 2D TomoSAR methods to recover the
original signal with a SNR of 20 dB. Figure 7 shows the recovery signals with the Fourier Beamforming,
CS 1D TomoSAR, and CS 2D TomoSAR methods in the elevation-range plane. For the Fourier
Beamforming method, due to the limited elevation and range resolution power, the scatterers whose
distance was less than or equal to the range and elevation resolution could not be distinguished
(Figure 7a). 1D TomoSAR method could only discriminate the scatterers along the vertical direction; it
could not discriminate those scatterers whose distance was less than or equal to the range resolution
(Figure 7b). However, the CS 2D TomoSAR method achieved excellent resolution reconstruction of
signals, both in the elevation and range directions (Figure 7c).

(a) [
300 |
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E 200 .
c
o
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>
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50 |- i . .
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Figure 7. Reconstruction signal in the range-elevation plane: (a) Fourier Beamforming; (b) CS 1D
TomoSAR method; and (¢) CS-2D-TomoSAR method.

Next, we investigated the resolution power of the approach through simulation experiments
to determine the closest range or elevation distance of two scatterers that could be discerned with
a detection rate of more than 90%. We only analyzed the worst case (i.e., the signals have the same
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reflectivity) with the acquisition parameters provided in Section 3. In this experiment, the signals were
simulated for scatterers with a SNR of 20 dB.

)

2

In first of all, we investigate the super-resolution power of the approach along range direction.
We assume the two scatterers are in the same elevation but difference range position, i.e., the
range distance between the two scatterers Ar > 0 m and the elevation distance between the
two scatterers As = 0 m. Based on the CS 2D TomoSAR method, 500 independent numerical
experiments were implemented. The detection rate of two scatterers with difference range
distance Ar is shown in Figure 8a. We can see that the closest range distance of two scatterers
such that they can be discriminated with a detection rate more than 90% is nearly 1.8 m. In other
words, the range resolution of the CS 2D TomoSAR method in this case is 1.8 m, which is much
smaller than the range resolution of the SAR data.

Then, we investigate the super-resolution power of the approach along elevation direction. We
assume the two scatterers are in the same range but at different elevation positions, i.e., the range
distance between the two scatterers Ar = 0 m and the elevation distance between the two scatterers
As > 0 m. Based on the CS 2D TomoSAR method, 500 independent numerical experiments also
were implemented. The detection rate of two scatterers with difference elevation distance As is
shown in Figure 8b. We can see that the closest elevation distance of two scatterers such that they
can be discriminated with a detection rate more than 90% is nearly 10 m. In the other word, the
elevation resolution of the CS 2D TomoSAR method in this case is 10 m, which is also much smaller
than the Rayleigh resolution in elevation. Moreover, we compared the elevation resolution of the
CS 1D TomoSAR method with the one from our proposed method. Under the same experiments
parameters and number of independent numerical experiments, the elevation resolution of the CS
1D TomoSAR method is 18 m, which is nearly twice that of the CS 2D TomoSAR method.

25
Ar [m]

(b) ,

Detection Rate [%]

<—~C$S 2D TomoSAR

o1 / ‘ +-CS 1D TomoSAR|

0 4 P L L
0 10 20 30 40 50 60 70
as [m]

Figure 8. Detection rate as a function of (a) Ar at As =0 m and (b) As at Ar =0 m.
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Finally, we investigated the estimation accuracy of our proposed method. In the experiments, the
experimental parameters were as same as in the above experiments.

(1) We first investigated the distance estimation accuracy of the two scatterers by fixing the elevation
distance between the two scatterers. We analyzed the estimation accuracy under four different
conditions, where the elevation distances between two scatterers As were 0, 6, 10, and 30 m.
Figure 9a shows that when As is 30 m, the CS 2D TomoSAR method provided good estimation
accuracy with a decreasing Ar. This is because the elevation distance between the two scatterers
was larger than the elevation resolution of the method. When As was 10, which was equal to
the elevation resolution of the CS 2D TomoSAR method, the estimation accuracy of the CS 2D
TomoSAR method converged to a higher value with decreasing Ar, due to the limited elevation
resolution. When As was 0 m, the estimation accuracy of the CS 2D TomoSAR method converged
to a higher value with decreasing Ar until Ar was 1.8 m. This was due to the limitation in the
range resolution. Notably, the worst estimation accuracy of the CS 2D TomoSAR method occurred
when As was 0 m, which was smaller than when As was 10 m. Moreover, when As was 6 m, the
worst estimation accuracy of the CS 2D TomoSAR method was between As = 0 m and As = 10 m,
and the resolution power was also between As = 0 m and As = 10 m.

(2) Then, we investigated the distance estimation accuracy of the two scatterers by fixing the range
distance between the two scatterers. We also investigated the analysis results of the estimation
accuracy under four different conditions, where the range between the two scatterers (Ar) were
0,1, 1.8, and 2.4 m. Figure 9b shows that when Ar was 2.4 m, the CS 2D TomoSAR method
provided good accuracy with decreasing As. This is because the range distance between the two
scatterers was larger than the range resolution of the method. When Ar was 1.8 m, which was
equal to the range resolution of the CS 2D TomoSAR method, the estimation accuracy of the CS
2D TomoSAR method converged to a higher value with decreasing As, due to a limited elevation
resolution. When Ar was 0 m, the estimation accuracy of the CS 2D TomoSAR method also
converged to a higher value with decreasing As until As was 10 m, because of the limitation in
the elevation resolution. Notably, the worst estimation accuracy of the CS 2D TomoSAR method
was when Ar at 10 m was larger than with Ar at 1.8 m. Moreover, when Ar was 1 m, the worst
estimation accuracy of the CS 2D TomoSAR method was between Ar = 0 m and Ar = 1.8 m,
and the resolution power was also between Ar = 0 m and Ar = 1.8 m. We also compared the
estimation accuracy of the CS 1D TomoSAR method with our proposed method. Under the same
experimental parameters and number of independent numerical experiments, the estimation
accuracy of CS 1D TomoSAR method was always worse than that of the CS 2D TomoSAR method.

—&-As=30.0 m, CS 2D TomoSAR

©-As=10.0 m, CS 2D TomoSAR

——as= 6.0 m, CS 2D TomoSAR

1| —+—as= 0.0 m, CS 2D TomoSAR

RMSE [m]

0.5 1 15 2 25 3 3.5 4 45 5 5.5

ar [m]

Figure 9. Cont.
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(b) 10’ T T T T T T

—e—Ar=2.4m, CS 2D TomoSAR| |
—&-Ar=1.8 m, CS 2D TomoSAR
—+—Ar=1.0 m, CS 2D TomoSAR| |

Q ~4-Ar=0.0 m, CS 2D TomoSAR| |
1 - U\ ~=-Ar=2.4 m, CS 1D TomoSAR
O\ N ~=-Ar=1.8 m, CS 1D TomoSAR | |
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“~ar=0.0 m, CS 1D TomoSAR|

as [m]

Figure 9. Estimation accuracy of the distance between two scatterers as function of (a) Ar at As of 0, 6,
10, and 30 m, and (b) As at Ar =0, 1, 1.8, and 2.4 m.

4.2. Real Data Experiments

This section is devoted to reporting the tomographic results of our method using the real data
introduced in Section 3. In addition to facilitating the performance of the CS 2D TomoSAR method, we
used the CS 1D TomoSAR method to compare with the new method.

4.2.1. Tomographic Profiles

To provide an example of how the CS 2D TomoSAR method can be used, we performed
tomographic processing for 96 contiguous range positions (the yellow dashed line segment in the test
zone shown in Figure 10) on the stack of seven focused and coregistered C-band HH channel SAR
images in Lanzhou, China. From the optical image in Figure 10, some large oil storage siloes are in this
scene, and those man-made targets can be easily recognized in the SAR image (Figure 10b). Moreover,
those objects have good coherence (Figure 10c). From Figure 10, only one oil storage silo is on the
yellow line. Figure 10e shows the close-up photo of the oil storage silo on the test line. The height of
the storage silo is 26 m, which was measured by a hand-held laser range finder in field experiments.
The direction of illumination of the microwave is from left to right. So, on the yellow line section, the
scatterers on the facade that face the illumination will be reconstructed.

llumination
direction

Figure 10. Cont.
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Figure 10. Experiments on test area: (a) Google Earth image; (b) SAR image; (c) coherence image;

(d) and (c) a zoom of target building in red rectangle in (a) and (b); and (e) target building (oil storage
silo with a height of 26 m) on the test line.

Figure 11 shows the reconstruction profile results of the test line in the elevation and range
directions. Figure 11a is the result of the CS 1D TomoSAR method, Figure 11b,c are the results
of the CS 2D TomoSAR method with the range resolution enhanced by two-fold and 1.5-fold,
respectively. These results are consistent with our expectations from the tomographic processing
of the elevation-range section considered, i.e., there is a sequence of reconstructed facade scatterers
facing to the illumination in all the results. However, a few of the reconstructed scatters from the
ground were found because the coherence of the signals from ground were low (Figure 10b). Due to
the overlay, the sequence of the reconstructed fagade scatterers was tilted. To present a more immediate
view of the results, coordinate transformation from the range to ground distance was implemented. The
red, yellow, and blue rectangles in Figure 11d compare the detailed reconstruction results between the
CS 1D TomoSAR and CS 2D TomoSAR methods. Through comparing the two results in Figure 11a,b,
due to the influence of the range resolution, the number of the facade scatterers reconstructed by CS
1D TomoSAR method was very small, and by improving the range resolution by using the CS 2D
TomoSAR method, more scatterers were located very close to the elevation coordinates, but at different
range coordinates, were separated. Moreover, from the tomogram of the test line obtained with the CS
2D TomoSAR method, we calculated that the distance between the ground and roof scatterers was
about 28.98 m. The true height of this building is 26.0 m. The height estimation error with our real data
was 2.98 m and the relative error was 11.5%. For the CS 1D TomoSAR method, the distance between
the ground and roof scatterers was about 29.94 m, which is somewhat larger than the inversion result
of the CS 2D TomoSAR method.
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Figure 11. Elevation-range sections of tomographic reconstruction over the test line, obtained with
(a) CS 1D TomoSAR method; (b) CS-2D-TomoSAR with the range resolution enhanced two-fold; and
(c) CS-2D-TomoSAR with the range resolution enhanced 1.5-fold; (d) The comparison of the detailed
reconstruction results between the CS 1D TomoSAR and CS 2D TomoSAR methods. The color is
associated to the estimated scattering magnitude of objects.

From the results of the method, the estimation of the CS 2D TomoSAR method is shown to
be effective.
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4.2.2. 3D View of the Building

To demonstrate the potential of the CS 2D TomoSAR method for urban area analysis, we
performed tomographic processing on a building (Figure 10d). This target was selected because
the coherence image of the target was structurally complete. Figure 12a shows a 3D schematic
representation of the building. The target building has two parts: one facade facing the illumination
and a circular roof. The back facade was missed because the microwave is blocked by the front facade.
Figure 12b,d show the 3D visualization of the scatterers reconstructed with SAR tomography on the
target building. Figure 12b is the result of the CS 1D TomoSAR method, and 487 scatterers were
reconstructed. Figure 12c,d are the results of the CS 2D TomoSAR method with the range resolution
enhanced by 1.5 times and 2 times, respectively. The results are consistent with the 3D schematic
representation of the building. As before, with the improvements in range resolution, more scatterers
on the target were reconstructed by the CS 2D TomoSAR method and nearly 691 and 832 scatterers
were reconstructed where the range resolution was enhanced by 1.5 times and 2 times, respectively.
Figure 13 shows a 3D visualization of the scatterers reconstructed with SAR tomography on the
building zone. By using the CS 1D TomoSAR method, 7316 scatterers were reconstructed. However,
when the range resolutions were enhanced by 1.5 times and 2 times by using the CS 2D TomoSAR
method, 9709 and 12,205 scatterers were reconstructed, respectively.

Height [bin]
Height [bin]

Height [bin]
Height [bin]

Figure 12. (a) 3D view of the target building and 3D visualization of the scatterers reconstructed
with SAR tomography, after coordinate transformation from range to ground distance; obtained with
(b) the CS 1D TomoSAR method, (c) CS-2D-TomoSAR with the range resolution enhanced 1.5-fold
and (d) CS-2D-TomoSAR with the range resolution enhanced two-fold. The color is associated to the
estimated height.
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Figure 13. Three-dimensional visualization of the building zone of the scatterers reconstructed with
SAR tomography, after coordinate transformation from range to ground distance, obtained with (a)
CS 1D TomoSAR method; (b) CS-2D-TomoSAR with the range resolution enhanced 1.5 times; and
(c) CS-2D-TomoSAR with the range resolution enhanced two-fold. The color is associated to the
estimated height.

From the results of the method, the CS 2D TomoSAR method provides more detailed information
about the buildings than traditional 1D TomoSAR. With a large number of point clouds, the method is
helpful for 3D modeling of urban areas.

5. Conclusions

In this paper, we proposed a CS-based 2D TomoSAR method. Based on an assumption that the
signals in the range-elevation plane are simultaneously sparse, this method allows the joint recovery
of the reflectivity range-elevation profiles. The CS 2D TomoSAR method enables the excellent vertical
resolution by simultaneously using an additional synthetic aperture for elevation and a wider range
spectrum, which is an important advantage over the 1D TomoSAR method.

The simulated experiments show that, compared to the 1D spectrum analysis methods, the CS
2D method has two main advantages: (1) The technique significantly enhances the resolution in the
vertical direction. Unlike 1D spectrum analysis methods that are limited by the elevation resolution,
the high resolution power of the CS 2D method depends on the range resolution that is much higher
than the elevation resolution. The scatterers can be separated by this approach, provided that their
distance along the horizontal direction is larger than the range resolution. (2) The technique also can
significantly improve the estimate accuracy.

Real data experiments showed that the CS-based 2D TomoSAR method can be successfully
employed to reconstruct scatterers in urban areas. The 2D TomoSAR method not only has better
performance for height estimation but also can provide more 3D backscattering information than the
CS-based 1D TomoSAR method.
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