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Abstract: Portraying urban functional zones provides useful insights into understanding complex
urban systems and establishing rational urban planning. Although several studies have confirmed
the efficacy of remote sensing imagery in urban studies, coupling remote sensing and new human
sensing data like mobile phone positioning data to identify urban functional zones has still not
been investigated. In this study, a new framework integrating remote sensing imagery and mobile
phone positioning data was developed to analyze urban functional zones with landscape and human
activity metrics. Landscapes metrics were calculated based on land cover from remote sensing images.
Human activities were extracted from massive mobile phone positioning data. By integrating them,
urban functional zones (urban center, sub-center, suburbs, urban buffer, transit region and ecological
area) were identified by a hierarchical clustering. Finally, gradient analysis in three typical transects
was conducted to investigate the pattern of landscapes and human activities. Taking Shenzhen, China,
as an example, the conducted experiment shows that the pattern of landscapes and human activities
in the urban functional zones in Shenzhen does not totally conform to the classical urban theories.
It demonstrates that the fusion of remote sensing imagery and human sensing data can characterize
the complex urban spatial structure in Shenzhen well. Urban functional zones have the potential to
act as bridges between the urban structure, human activity and urban planning policy, providing
scientific support for rational urban planning and sustainable urban development policymaking.

Keywords: urban functions; human activity; data fusion; mobile phone; SPOT-5; Shenzhen

1. Introduction

Cities are human settlements where people engage in different activities and interact with the
man-made space and natural environment. Global urban area occupies less than 2% of the Earth’s land
surface, but consists of more than 50 percent of the world’s population [1]. In China, the urbanization
rate has increased from 26.4 percent in the year 1992 to 57.4 percent in 2016 as 400 million people
have mitigated to cities [2]. From a global view, it is estimated that total urban population will rise
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to five billion in the year 2030. This transition has enormous economic, social and environmental
consequences [3,4]. Targeting the aim of sustainable cities, remote sensing has been widely used to
monitor the spatial structure, economy and environment of cities [5–10].

Many studies have been conducted on urban morphology to portray urban spatial structure [11–15].
Several significant theories have been developed, such as the concentric zone theory, the sector theory,
the multiple nuclei theory and the polycentric theory. These advanced theories capture the urbanization
process and benefit associated land management and urban planning. One stand of urban morphology
study is to investigate the function provided by urban space. Urban functional zone is a mixture of urban
functions and characterized by the role of urban space in the whole city, like urban center, sub-center,
suburbs, ecological area, etc. [16,17]. The identification of urban functional zones provides useful insights
for urban planners to capture the urban growth and make sustainable development policy.

Urban functional zone analysis traditionally relies on land use and land cover (LULC), which
can be acquired by labor- and cost-intensive land survey. Remote sensing is another fast and
efficient approach to capture land cover and land use data to facilitate related studies. For example,
Aubrecht and León Torres [15] classified mixed or residential areas from nighttime light (NTL) images.
Yang and Lo [18] used time series Landsat TM images to extract land use/cover change data of the
Atlanta, Georgia, metropolitan area in the United States. The landscape gradient from the urban center
to the rural area has been observed to illustrate urban growth [19–25]. Using several landscape metrics,
Lin et al. [17] extracted land use from Pleiades images to investigate the urban functional landscape
pattern in Xiamen, China. Yu and Ng [24] classified land use from Landsat TM images and performed
gradient analysis to analyze spatial and temporal urban sprawl dynamics in this city. These studies
focus on the spatial features in the city, but ignore the effect of human activity. However, in the highly
urbanized cities in Asia, such as Singapore, Hong Kong, Beijing and Shenzhen, most land parcels are
covered by man-made infrastructures that are a mix between residential, businesses and work function.
Such complex urban environments raise a great challenge in understanding urban structure using only
remote sensing imagery.

A city is a complex system that includes human beings and the natural environment. Human
activity has a significant impact on urban morphology because of the interaction of urban space and
human beings. Human beings are un-ignorable components of the city. So are the humanistic aspects
involved [4,26–29]. However, human activities have not been well integrated with remote sensing, due
to the lack of massive human activities data. Ubiquitous location awareness technologies such as the
Global Navigation Satellite System (GNSS), mobile phone positioning and Wi-Fi positioning allow
humans to act as sensors to perceive the surrounding environment [30,31]. Massive human sensing
data are available, such as vehicle GPS data [32–34], mobile phone records [35–40] and social media
data [41–44]. These large-volume human sensing data record the time and the position of people;
therefore, they provide much useful information about human activities in the city [35,39].

Human sensing data provide us with unprecedented opportunities to reveal human activity
distribution and the implied urban function. They enable us to image the city in alternative approaches.
Ratti et al. [35] mapped the cell phone usage at different times of the day. Their results provided
a graphic representation of city-wide human activities and the evolution through space and time.
Considering the relationship between human activities and land use, Pei et al. [37] developed
a clustering approach to classify land use with time series aggregated mobile phone data. Using
NTL images as the proxy of human activity, Chen et al. [36] identified the urban center or sub-center
and the surface slope to indicate the urban land use intensity gradient by considering human
activities implicitly. Recently, Cai et al. [44] fused NTL images and social media check-in data to
identify the polycentric structure in megacities, including Beijing, Chongqing and Shanghai, China.
These pioneering studies support the potential of human sensing data in urban studies. However,
human sensing data have still not been integrated with remote sensing imagery to portray urban
functional zones [45].
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In this study, we present a novel data fusion framework integrating remote sensing imagery
and the highly penetrating mobile phone positioning data to analyze urban functional zones
comprehensively. Landscape metrics were calculated based on land cover from SPOT 5 images. Human
activities data were extracted from mobile phone positioning data. By coupling them with urban cells,
urban functional zones were identified using hierarchical clustering. Gradient analysis [17–20,46] in
three typical transects was applied to portray the landscape and human activity pattern from urban
center to urban border. An experiment in Shenzhen, China, was conducted to validate the proposed
framework. The results were explored to address the following questions: (1) What are the general
patterns of landscapes in different urban function zones (taking Shenzhen as a case)? (2) What are
the general patterns of human activity in different urban function zones (taking Shenzhen as a case)?
(3) What is the composite effect of remote sensing imagery and human sensing data in portraying
urban functional zones? The answers to these questions will demonstrate the spatial dynamics of both
landscape and human activity in the city. They deepen the understanding of the city growth and help
urban planners make sustainable development policies.

2. Study Area and Dataset

2.1. Study Area

Shenzhen is a coastal city in the south of China, located at the east of the Pearl River Delta,
with an area of 1996 km2 (Figure 1). As the first Special Economic Zone (SEC) of China, Shenzhen
has experienced rapid urbanization since 1983 [47]. Shenzhen has expanded from a small village
with 0.6 million people to a megacity with a population of 16 million in 2015 [48]. It consists of
10 administrative districts, with the urban center (including Futian and Luohu) in southern Shenzhen,
where Shenzhen city began. In recent years, the urbanized area of Shenzhen gradually expanded from
the urban center to the west (Nanshan and Baoan), the north (Longhua and Guangming) and the east
(Yantian, Longgang, Pingshan and Dapeng).

Figure 1. The study area in China.

2.2. Dataset

2.2.1. Remote Sensing Images

The multispectral and the panchromatic SPOT-5 images collected on 30 November 2013 were used
to map the land covers of Shenzhen in this study. These multispectral images and the panchromatic
images were fused using a pansharpening method embedded in PCI Geomatica and then mosaicked
using the ENVI software. The obtained image has 37,368 × 19,440 pixels, 4 spectral channels and
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2.5 m/pixel. The final images were obtained by cropping the mosaicked image using the vector
covering Shenzhen city as shown in Figure 2. It implies that most of Shenzhen is covered by built-up
areas and green land. Most of the built-up areas are aggregated at the south, west, north and in central
Shenzhen. East Shenzhen, which is reserved as a natural park, has many forests, mountains and
beaches. We used these remote sensing images to extract land cover in Shenzhen.

Figure 2. The SPOT-5 images.

2.2.2. Mobile Phone Positioning Data

The mobile phone positioning data used were provided by a dominant mobile communication
company in Shenzhen. They were recorded by the 5349 cell towers of this company, covering the whole
city. This dataset contains time series positions of 9.2 million mobile phone users during one workday
in March 2012. The positions of mobile phone users were recorded at a half-hour interval; thus, there
are 48 records for each user if the user’s mobile phone does not turn off. For a user, each positioning
record has four fields, including a user ID (i), a time stamp (t), longitude (xit) and latitude (yit).
The spatial resolution of location is restricted at the cell tower level, which is approximately 100–500 m.
In total, there are 245 million records in this dataset. Figure 3 displays the spatial distribution of cell
towers and mobile phone positioning data. It demonstrates that many cell towers are distributed in
the urbanized area. A few cell towers are located in the forest along roads in east Shenzhen. It also
indicates that more mobile phone positioning data are aggregated at the urban center in the south,
but less in the north, which implies the difference of human activity intensity. Using this useful data,
daily human activities (in-home, working and social activity) of mobile phone users were extracted to
portray urban function zones with land cover data from remote sensing imagery. It should be noted
here that human activities are have regularity; therefore, it is reasonable to fuse these one-day mobile
phone positioning data with remote sensing imagery.

Figure 3. Spatial distribution of mobile phone positioning data: (a) 5349 cell towers in Shenzhen;
(b) 245 million mobile phone positioning records.
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3. Methodology

A data fusion framework coupling remote sensing imagery and human sensing data is presented
to portray urban functional zones. The workflow is illustrated in Figure 4. Urban landscapes are
extracted from remote sensing imagery; city-wide human activities are recognized from massive
mobile phone positioning data. Coupling landscapes and human activity metrics in the urban cell,
a hierarchal clustering method is used to identify urban functional zones. Finally, the pattern of
landscapes and human activities in different urban functional zones and typical transects is analyzed.

Figure 4. The workflow of the presented framework.

3.1. Landscapes

3.1.1. Image Segmentation

An object-based image analysis (OBIA) approach was used to quantify the landscapes from SPOT
5 images. The OBIA approach is usually used for classifying high spatial resolution remote sensing
images, because of the high accuracy by employing spectral, textural, spatial and contextual features.

In this approach, the SPOT-5 image was first partitioned into non-overlapping regions, which were
used as basic units for classification, instead of individual pixels. Many image segmentation methods
could be used for this task, such as watershed transformation [49] and the graph-based method [50].
However, the most popular method used in remote sensing applications is the multi-resolution/scale
image segmentation method [51], because it can produce multi-resolution and high-quality results.
In this study, the region merging-based multi-scale image segmentation method was used [52], and
the multi-scale regions were recorded using the bi-level scale-sets model (BSM) [53]. The BSM
records the hierarchical regions using a scale-indexed tree structure and is very efficient to retrieve the
segmentation results of different scales and to estimate an optimal scale parameter.

In the implementation of the BSM, the criterion proposed by Baatz and Schäpe [54] was used,
which was the most widely-used criterion in multi-resolution image segmentation. There are two key
parameters that control the quality of the segmentation results: the weight of color features wcolor and
the weight of compactness wcompt. A high wcolor will result in a segmentation result with high spectral
homogeneity, however, with irregular shapes. A high wcompt will make the regions more compact.
From a number of experiments, two empirical parameters wcolor = 0.3, wcompt = 0.5 were set.

Another key parameter for an OBIA approach is the scale parameter a for the multi-scale image
segmentation. In the BSM work, segmentation results of different scales could be retrieved efficiently,
and the optimal one could be chosen using some unsupervised methods, such as the estimation of scale
parameter (ESP) method [55], the global score (GS) method [56] and the overall goodness F-measure
(OGF) [57]. In this study, different segmentation results from the minimum scale to the maximum
scale were retrieved, with an interval of 1. Then, the OGF method was used to estimate the optimal
scale parameter, which was used to control the fineness of the final result. A larger a will result in
a finer result. To avoid the irreparable negative impact of under-segmentation from a number of
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experiments, we used a large parameter a = 3, where the final result was slightly over-segmented.
Then, this segmentation result was used for feature extraction and classification.

3.1.2. Object-Based Image Classification

The classification is used to enrich the land cover information for segmented objects. Land cover
is recognized with a supervised classification method. For every segmented object, spectral, shape and
textural features are extracted for the classification.

The minimum, maximum, mean value, the standard deviation of the original four spectral
channels and the mean of normalized difference vegetation index (NDVI) were used as the spectral
features. The area index and the perimeter shape index [58] were used as the shape feature. Since the
focus of this study is to analyze the structure of the city, a specific texture index named PANTEX [59]
was used. The PANTEX procedure employs grey-level co-occurrence matrix (GLCM) contrast measures
to calculate a rotation-invariant isotropic texture index. It is sensitive to dense residential buildings [60].
Thus, it is usually used to extract built-up areas from high spatial resolution remote sensing images
in a high-density city like Shenzhen. In this study, the maximum, minimum and mean value of the
PANTEX index of each segment were used as the texture features. Based on these features, all the
segmented objects were classified using the support-vector-machine (SVM) classifier [61]. Six hundred
and twenty-nine objects distributed around the city were selected as the samples to train the SVM
classifier, and then the classifier was applied to label the class for each segmented object. Finally, all
segmented objects were classified into five type land covers, including built-up area, road, green land,
water and developing areas. Taking 600 samples randomly distributed in the city, the accuracy of land
cover was evaluated. Our results indicate that the land cover results achieved an overall accuracy
95.33% and a Kappa coefficient 0.9433. Figure 5 displays the obtained land cover map. It suggested
that Shenzhen has been highly urbanized as many areas are covered by built-up area or green land.

Figure 5. Land cover from SPOT-5 images.

3.1.3. Landscape Metrics

Landscape metrics quantify the specific spatial characteristics of LULC. A suite of landscape
metrics has been developed for landscape analysis, such as class area (CA), patch density (PD),
the number of patches (NP), patch shape index (PSI) and Shannon’s diversity index (SHDI) [61–63].
Table 1 lists the landscape metrics used in this study. The class-level metrics contain total class area
(CA) and the patch density (PD). The landscape-level metrics include NP and SHDI. This is calculated
by Equation (1):

SHDI = −∑m
i=1 piln(pi), (1)

where pi is the proportion of the landscape occupied by patch types i and m is the number of types.
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Table 1. Spatial landscape metrics selected in this study.

Name Description

Total class area (CA) Total area of one class landscape
Patch density (PD) Patch count per square km of one class landscape

Number of patches (NP) Total number of patches

Shannon’s diversity index (SHDI) Equals minus the sum, across all patch types, of the proportional
abundance of each patch type multiplied by that proportion

The vector data of the landscapes were converted to a raster format at a pixel size using ArcGIS
10.2. Landscape metrics were then calculated at the class and landscape levels using the raster version
of the FRAGSTATS program (Version 4.2) [64].

3.2. Human Activity

3.2.1. Activity Detection

The raw mobile phone positioning data lack activity semantic information such as “in-home”,
“working” or “social activity”. Because of the natural rhythm of human beings, human activities
display regularity in both space and time [65]. Therefore, it is reasonable to recognize human activities
from sequential mobile phone positioning data. It should be noted here that daily human activities
refer to in-home, working and social activity (i.e., shopping, education, sports, etc.) that take more
than one hour.

City-wide daily human activities were extracted from massive mobile phone positioning data.
Potential human activities without type information were first detected. A user’s mobile phone
records were sorted by time and connected as a spatial-temporal trajectory (Figure 6a). Then, if two
consecutive records are at the same location, in other words, the user does not move, a potential
activity is identified, such as p1–p2, p5–p6, p7–p8 in Figure 6b; such that, the trajectory was split into
two types of segments: the vertical segments representing human activities at fixed places and the
slope segments indicating a move between places.

Figure 6. Human activity detection from mobile phone records. (a) The trajectory of a mobile phone
user; (b) trajectory segmentation. Vertical segments denote human activities at fixed places. Slope
segments denote moves between places.

It should be noted that the positioning jump between neighbor towers exists because of signal
noises, i.e., the point p3. To overcome this issue, following Tu et al. [39], a distance threshold d was
used to filter false moves: if the distance from a point to the next point is less than d, the move can
be omitted, and this point can be merged into current points of a potential activity. Considering the
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positioning error of mobile phone sensing data, we set d to 500 m. After processing all mobile phone
positioning data person by person, city-wide human activities without type information were obtained.

3.2.2. Rule-Based Activity Labeling

Daily human activities have a natural regularity because of the rhythm of human beings [60].
Regarding mobile phone positioning data, the spatial-temporal characteristics of trajectory indicate
the information about the home and workplace of a user [38]. Considering the diurnal rhythm of
human beings [33], the potential human activities were labeled with “in-home”, “working” and “social
activity” according to time windows. The time window for in-home activity was set as [0:00, 6:00],
while the time window for working activity was set as [9:00, 17:00]. The semantic information of
potential human activities was enriched as follows:

• In-home activity labeling: For a user, if the total duration in a fixed place is more than half of
the early morning period [0:00–6:00], this place will be defined as home. All potential activities
located at the home of this person are recognized as in-home activities.

• Working activity labeling: If the total duration in a place is more than half of the daily working
period [9:00–12:00] and [14:00–17:00], this place will be defined as the workplace. Considering
the living style, the time [12:00, 14:00] for lunch is eliminated from working time to avoid
biases. Finally, all potential activities located in the workplace of this user are defined as the
working activities.

• Social activity labeling: The remaining non-in-home or non-working activities are labeled as
social activities.

Finally, 31,669,042 activities were obtained for the 9.2 million users. Table 2 reports the summary
of human activities. Among these, 14,470,460 potential human activities were labeled as in-home,
10,459,657 as working and 6,738,925 as social activities. Figure 7 displays the distribution of human
activities. It indicates that three types of human activities cover most of the area of Shenzhen, in line
with the built-up area in Figure 5 generally. However, very few human activities are found in the
lakes, mountains and forests. To verify the accuracy of the results, they were compared with the
household travel investigation of 2010 in Table 2. This suggests that they are matched well as the
biggest gap is 2.9%, appearing for in-home activities. Therefore, they are acceptable for the integration
with landscapes from remote sensing imagery.

Table 2. Comparison of human activities from human sensing data with household travel investigation.

Name In-Home Working Social Activities

Count 14,470,460 10,459,657 6,738,925
Ratio 45.7% 33.0% 21.3%

Ratio in the household travel investigation 2010 dataset 42.8% 34.3% 22.9%

Figure 7. Human activity from mobile phone records. (a) Density of in-home; (b) density of working;
(c) density of social activity.



Remote Sens. 2018, 10, 141 9 of 20

3.2.3. Human Activity Metrics

A set of metrics summarizing in-home, working and social activities is used to quantify human
activities, including the mean µj, the standard variation σj and the ratio rj of each type of activity
(j = in-home, working and social activity), the number of cell towers, the average area of cell tower
area and the density of human activity.

3.3. Hierarchical Cluster Analysis

The whole city was split into a grid with a resolution of 2000 m, following the approach of
Lin et al. [17]. Landscape metrics and human activity metrics were integrated in spatial cells. Therefore,
each grid cell was described by a vector v = {vs, va} combining both landscape metrics vs and human
activity metrics va. The landscape metrics vs contains CAi and PDi (i = built-up area, road, green land,
water and developing area) at the class level and NP and SHDI at the landscape level. The human
activity metrics includes the mean µj, the standard variation σj and the ratio rj of each type activity
(j = in-home, working and social activity), the number of cell towers (NCT), the average area of the cell
tower service area (ACTSA) and the density of human activities, d.

The hierarchical cluster analysis [66] was used to group grid cells from the bottom to the top. Before
the clustering, both landscape and human activity metrics were normalized. Ward clustering [67,68] for
minimizing the increased distance of within-cluster distance was used. The within-cluster distance is
defined as Equation (2).

DA = ∑m
i∈A ‖ i−mA ‖ 2 (2)

where i is an element in Cluster A, mA is the center of Cluster A and m is the number of elements.
The increased distance merging two clusters is defined as Equation (3):

∆DAB =
m+n

∑
i∈A∪B

‖ i−mA∪B ‖ 2 −
m

∑
i∈A
‖ i−mA ‖ 2 −

n

∑
i∈B
‖ i−mB ‖ 2 (3)

where i is an element in Cluster A or Cluster B, mA and mB are the centers of cluster s and m and n are
the number of elements in Cluster A and B.

Finally, grid cells in the different clusters were identified as the proper urban functional zones
with expert knowledge. Gradient analysis in three typical transects was conducted to investigate the
pattern of landscapes and human activities.

4. Results

4.1. Urban Functional Zones

All urban cells are divided into six categories that represent typical urban function zones: urban
center, sub-center, suburbs, transit region, urban buffer and the ecological area. The dendrogram
generated by the hierarchal cluster analysis (Figure 8a) suggests the similarity of grid cells with the
same urban functions. The spatial distribution of urban cells with different functions is displayed in
Figure 8b. The urban center contains 42 cells, most of which are in Nanshan, Futian and Luohu district.
The sub-center has 108 cells, appearing at the west and the north of Shenzhen, and only two appear in
east Shenzhen. The suburb has 78 grid cells, most gathering at northeast Shenzhen. The urban buffer
contains 40 cells, at the boundary of the urbanized area or the ecological area. The ecological area
has 119 cells to provide ecological service for the public. The transit region has 89 cells, connecting
different functional areas.
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Figure 8. Urban functional zones. (a) The dendrogram. (b) Clustering result (with six clusters).

Table 3 reports the composition of landscapes and human activities in urban functional
zones. It indicates that built-up area and green land are two main landscapes in Shenzhen city.
From a city-wide view, the ranking of landscapes is: green land > built-up area > developing area >
water > road. Regarding urban functional zones, the compositions of landscapes are different. Urban
center, sub-center and suburbs have a similar ranking: built-up area > green land > road, developing
area or water. However, sub-center rather than urban center has the most built-up area, which defies
common sense. This implies that the land cover is not sufficient to identify urban center and sub-center
in Shenzhen. Transit regions have the most developing area at 57.3 ha per urban cell. Urban buffer
near lakes has less built-up area (46.2 per cell), but more water (77.6 per cell). The remaining ecological
area is dominated by green land, about 330.9 ha per cell. These results characterized the status of the
landscape in different urban functional zones.

Table 3. Composition of landscape and human activity.

Name No. of Cells Area (km2)
Landscape Composition (ha/cell) Human Activity (n/ha)

Built-Up
Area Water Green Land Road Developing

Area In-Home Working Social
Activity

Global 476 1845 148.6 17.8 186.3 14.0 24.3 78.4 56.7 36.5

U
rb

an
fu

nc
ti

on
al

zo
ne

s

Urban center 42 164.2 206.7 15.0 146.1 12.7 10.4 322 260.7 195.2
Sub-center 108 425.8 268.8 10.4 76.2 29.4 9.7 128.4 82 51.5

Suburbs 78 308.5 226.9 13.1 131.8 13.1 14.8 60 45.4 24.1
Transit region 89 342.8 109.8 17.6 188.7 11.3 57.3 28 18 7.8
Urban buffer 40 141.4 56.2 77.6 196.6 20.3 12.9 21 15.2 11

Ecological area 119 462.3 28.8 8.6 330.9 1.3 27.8 13.5 8.3 3.8

These results also suggest that human activities are differentiated in the six urban functional
zones. The ranking of three kinds of human activities in all functional zones is: in-home > working
> social activity. Although urban center and suburbs share similar landscapes, urban center has the
most in-home (332 per ha), working (260.7 per ha) and social activity (195.2 per ha). Sub-center has the
second most in-home (128.4 per ha), working (82 per ha) and social activity (51.5 per ha), which are less
than that in urban center. The suburbs have median in-home (60 per ha), working (45.4 per ha) and
social activity (24.1 per ha). The ecological area has the least in-home (13.5 per ha), working (8.3 per ha)
and social activity (3.8 per ha). Considering the intensity of human activities, the ranking is: urban
center > sub-center > suburbs > transit region > urban buffer > ecological area. These variations of
human activities suggest the differentiation of functions.

The dendrogram in Figure 8a further demonstrates the clustering hierarchy, which suggests the
composite effect of both landscape and human activity. It can be seen that, if the cluster number is
reduced, the group of ecological area and urban buffer will be firstly merged because of the similar
landscape and human activity. The spatial distribution of the corresponding cells also suggests that
they share spatial boundaries. If the cluster number further reduces, suburbs and transit regions will be
merged. After that, the third merging will appear at the sub-center and urban center. Such a hierarchy
validates the composite effect of landscape and human activity on revealing the urban functional zones.
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Six representative urban cells in different urban functional zones were examined to evaluate
these results. The locations of these cells and the corresponding land cover and human activities are
displayed in Figure 9. Results in these cells indicate that many errors of the land cover results appear
in the built-up area, the road and the developing area. This demonstrates that representative cells of
urban centers, sub-centers and suburbs have large ratios of built-up landscape, where human activities
are aggregated, while the other three cells contain much green land. Regarding human activities,
it suggests that, from Cell (1)–(6), the density of in-home, working and social activity decreases,
accompanied by the number of cell tower polygons. This implies that there is not much difference in
human activities in the urban buffer and ecological areas.

Figure 9. Representative urban cells. (a) Locations of urban cells; (b) SPOT-5 images, land cover and
human activities.

4.2. Gradient Analysis of Landscapes and Human Activity

Gradient analysis helps to investigate spatial and temporal urban sprawl dynamics [19,20].
Three representative transects were selected to further analyze the patterns of landscapes and human
activities, as Figure 10 shows. All of them are rooted in central business areas of Futian district.
The northwest transect (a) directing to Baoan is composed of 13 2 km × 2 km urban cells. The north
transect (b) directing to Longhua has 13 urban cells. The northeast transect (c) directing to Longgang
has 15 urban cells. In total, 41 cells were selected for the following gradient analysis.
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Figure 10. Representative transects.

4.2.1. Pattern of Landscapes

The class area of five landscapes from remote sensing images in three transects is displayed in
Figure 11a. It illustrates that landscapes change sharply from urban center to urban border. The built-up
landscape is dominated in the zones with urban center, sub-center and suburbs, where we functionally
expect five cells (a0–a1, b2–b4), where many green land patches are designed to keep the balance
between urban development and ecological service. The water and the road landscape are numerous,
most of which are less than 50 ha in a cell except for the a4, a9 and b8 cells. There is a small number
of developing areas, especially in the urban center. The peak number of developing areas appears at
the transit regions, a6 and a7, 54.5 ha per cell. Regarding green land, there are more than 200 ha in
ecological cells. This suggests the high degree of urbanization in Shenzhen as 24 cells are built-up area
and necessary green land and water.

Figure 11b shows the pattern of patch density. It demonstrates that all five landscapes are
less than 70 patches per ha. Basically, green land and road landscape have a higher patch density,
which partially indicates the fragmented landscapes disturbed by human beings; while built-up area,
water and developing area have a lower density, suggesting connected landscapes. Although the
class area of the five spatial landscapes are similar in urban center and sub-center, the patch density
is different in these six functional zones. The patch density of road landscape and green land is
higher in sub-center zones. This means more fragmented roads and green landscapes, which may be
due to self-development in these places, where urban development does not completely follow the
government’s plan.

Figure 11. Cont.
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Figure 11. Patten of landscapes along urban gradient. (a) Class area; (b) patch density; (c) number of
patches and Shannon’s diversity index (SHDI).

Figure 11c illustrates the variations of the number of patches (NP) and SHDI. A large NP suggests an
intensive human distribution on natural environments. It demonstrates that the peak of NP appears at
the sub-center (a12 and b7) and urban center (b1, c1 and c4), where the most human activities occur (see
Figure 3). The valley of NP is with the ecological area (a2) and sub-center (a12). Regarding SHDI, which
represents the diversity of landscapes in a cell, it starts with a medium value in the urban center, increases
in the sub-center, decreases in the ecological area and achieves the most in the transit region (a7).

4.2.2. Pattern of Human Activities

Characteristics of human activities along the urban gradient are presented in Figure 12. Figure 12a
displays the intensity of three types of human activities. The basic trend along the urban gradient is
declining. The head cells of all three transects have a higher density of human activities at more than
200 thousand per ha. As the distance to the head cell increases, all three human activities reduce to less
than 200 thousand per ha. In Transect a, all three type human activities reduce to the lowest value in
the ecological area, Cell a8; it then returns to a median value in the sub-center, Cells a10–a12 at the
end of this transect. Finally, this value achieves the lowest at less than 50,000 at the corresponding
end. In Transect b, the density of in-home, working and social activities also decreases from the urban
center to the sub-center and the transit region. The same trend also appears at Transect c, where the
density of human activities in the cells follows the ranking: urban-center (c0–c2) > sub-center (c3–c4) >
suburbs (c6–c13) > transit region (c5) > ecological area (c14).
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Figure 12. Spatial pattern of human activities along the urban gradient: (a) density; (b) ratio.

Figure 12b displays the ratios of human activities in each cell. As the distance to the head cell
increases, a general increasing trend can be seen from the ratios of in-home. The in-home ratio achieves
the peak at a5, b4 and c14 respectively in the corresponding transects. Conversely, the working ratio
decreases firstly and then increases, which indicates many jobs in the urban center. Regarding social
activity, the ratio starts with a high value at the urban center and achieves the lowest in the transit
region (a7), sub-center (b9) or ecological area (b13 and c14). These different trends characterize the
differentiation of the function of urban space.

Combined with the landscapes from remote sensing images and the human activities from
mobile phone positioning data, these important integrated characteristics help us to distinguish urban
functional landscape patterns in Shenzhen city.

4.3. Comparison

To further evaluate the effect of the data fusion, we also grouped all urban cells with the landscape
metrics from remote sensing imagery or human activities from mobile phone positioning data with the
same hierarchical clustering. The obtained results were compared to those in Section 4.1.

Figure 13 shows the dendrogram and spatial distribution of the clustering results with the
landscapes. There are two branches at the root, rather than three branches in Figure 8a. One branch
is with Clusters A and B, which mostly covers the natural area, as Figure 13b displays. The other
branch is with Clusters C, D and E, covering many man-made places. Table 4 further reports the
cross-comparison between this result with the clusters in Section 4.1. It indicates that Cluster A shares
42 cells with the ecological area. Clusters B and C are composited of cells with five types of functions,
without sub-center or ecological area, respectively. Cluster D is dominated by the transit region
function (54 cells), associated with 17 urban buffer cells. Cluster C is dominated by 71 suburbs cells,
associated with 12 ecological cells. Cluster E is mixed with 34 urban center cells, 103 sub-center cells,
4 suburbs cells and 3 transit regions.
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Figure 13. Cluster result with landscapes: (a) the dendrogram; (b) clustering map.

Table 4. The comparison of different clustering results.

Urban Center Sub-Center Suburbs Transit Region Urban Buffer Ecological Area
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g A 0 0 0 0 4 42

B 1 0 1 25 19 65
C 3 3 2 54 17 0
D 3 2 71 8 0 12
E 34 103 4 3 0 0
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A 0 1 7 31 21 68
B 0 20 39 51 7 46
C 0 0 0 9 0 0
D 10 79 32 7 11 5
E 31 8 0 0 0 0

Figure 14 shows the dendrogram and the cluster results of human activities. With the knowledge
of human activities in the city, it demonstrates that the clustering hierarchy mainly follows the density
of human activities, except that Cluster C almost has no human activities. Cluster E shares 31 cells with
urban centers. Cluster D has common cells with all six types of urban function zone. The most common
cells appear at the sub-center, consisting of 79 cells. Clusters B and A both contain cells with five urban
functions, but without urban centers. In other words, human activities are not well distinguished from
the ecological area or the low degree of urbanized area with the low-density human activity.

Figure 14. Cluster result with human activity: (a) the dendrogram; (b) clustering map.

In summary, the comparison between the clustering results of single source sensing data suggests
that remote sensing or human sensing (taking mobile phone positioning data as an example) has its
own drawbacks in highly or lowly urbanized areas, respectively. The fusion of remote sensing imagery
and mobile phone positioning data shows a good performance in portraying urban functional zones in
highly urbanized cities like Shenzhen, China.
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5. Discussion

The experiment in Shenzhen, China, demonstrates that urban functions differentiate from urban
center to urban border, because of the spatially-varying composition of landscape and human activities
in this modern city. There are six urban functional zones in Shenzhen, including urban center,
sub-center, suburbs, urban buffer, transit region and ecological area. The spatial distribution of
these urban functional zones conforms to the classic urban spatial structure theories to a certain degree.
For example, there is one urban center in the south, three sub-centers in west and north Shenzhen and
one suburb core in northeast Shenzhen (Figure 8b), all of which have relatively high density of the
built-up area and human activities. This urban spatial structure validates that the development of
Shenzhen is aiming at the multi-clusters structure in the Shenzhen Comprehensive Plan 2010–2020 [69],
which also complies with the polycentric theory [70]. The intensity and composition of human activities
in these zones further indicate that the suburbs are inferior to sub-centers, which lag behind the aim of
the Shenzhen Comprehensive Plan 2010–2020.

It can also be seen that the urban center is aggregated with the most working, social and in-home
activities. Following the direction of three typical transects, the intensity of human activity declines
greatly from the urban center to the suburbs. The ratio of in-home is lower in the urban center, but
higher in the sub-center or suburbs. The ratio of working has a reverse trend. These variations are in
line with the concentric zone theory. However, landscapes in these three zones are similar (Table 3),
which does not conform to the classic concentric zone theory.

Compared with traditional urban studies relying on LULC, the proposed framework enables
the portraying of urban functional zones by integrating landscape metrics from remote sensing
imagery and human activity information from the new mobile phone positioning data, providing
comprehensive urban knowledge for city planners, e.g., the description of the urban spatial structure,
the accurate assessment of urban development status, etc. Actually, a number of studies has
been conducted to analyze urban landscapes or urban functions [17–24], without human activities
information, but more and more human sensing data give us an alternative approach to mapping the
spatial structure of the city [35,37,41]. Fusing human sensing data with remote sensing imagery in
urban studies has seldom been reported or analyzed in the literature. This study fills the gap with
a novel framework, which differs from the previous studies in three main aspects.

(1) Daily human activities have been extracted for urban studies. Massive human sensing data
like mobile phone positioning data and social media data contain much information about human
activities. However, they do not explicitly report human activities; therefore, they are used as proxies
of human activity in several studies [37,44]. Considering the rhythm and the regularity of human
activities, three main human activities are extracted from mobile phone positioning data. This useful
information provides us alternative images about the city (Figure 7).

(2) Both landscape metrics and human activity metrics have been used to describe urban space.
Previously, most related studies used only landscape metrics inferred from remote sensing imagery to
analyze urban space [17–24]. The humanistic aspect of urban space has been ignored. We integrate
landscape metrics from SPOT-5 images and human activities from mobile phone positioning data to
describe the urban cell. Using these useful metrics, we adopt hierarchal clustering to identify urban
functional zones. The experiment in Shenzhen testifies that the fusion of remote sensing imagery
and human sensing data can well characterize the complex pattern of the urban functional zones
in Shenzhen.

(3) The pattern of landscape and human activities along the urban-suburbs gradient has been
investigated. Although landscape gradient analysis has achieved success in many studies, for example
Luck and Wu’s research in Phoenix, Arizona, USA [19], Yu and Ng’s study in Guangzhou, China [24],
Lin et al.’s work in Xiamen, China [17], etc., it is not effective in Shenzhen, a highly urbanized city with
more than 40% of the area covered by built-up land, as Section 4.3 demonstrates. By fusing landscape
metrics and human activity, this study uncovers comprehensive patterns of landscape and human
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activities across the city. It reveals that there is a significant gradient in human activity from the urban
center to suburbs and the ecological area.

6. Conclusions

Portraying urban functional zones provides a useful description of urban space usage. It helps
urban planners to understand the urban development status and the urban spatial structure; therefore,
it benefits both urban planning and sustainable urban development. This article presents a novel
data fusion framework coupling remote sensing imagery and human sensing data to identify urban
functional zones in a megacity. LULC were classified from SPOT 5 images with the bi-level set
segmentation and the SVM classifier to calculate landscape metrics. Daily human activities were
extracted from massive mobile phone positioning data. By integrating landscape metrics and human
activity metrics, six urban functional zones including urban center, sub-center, suburbs, transit region,
urban buffer and ecological area were identified using a hierarchical clustering method. The gradient
of landscapes and human activities was revealed in three typical transects rooted in the urban center.

The experiment was conducted in Shenzhen, China. The results indicate that there are different
compositions of landscapes and human activities in different urban functional zones. Following the
gradient from the urban center to suburbs and ecological area, the intensity and the composition
of human activities vary significantly. Landscape metrics are similar in urbanized areas (including
urban centers, sub-centers and suburbs), where the intensity and the composition of human activities
are differentiated. On the other hand, landscape metrics are distinguished at the less urbanized
areas (including an urban buffer, transit region and ecological area). This proves that existing urban
development of Shenzhen has gone far beyond the explanation capacity of the classical theories. It also
demonstrates that the fusion of remote sensing imagery and human sensing data can well characterize
the complex pattern of the urban functional zones in Shenzhen.

In the future, we plan to collect more mobile phone positioning data. Although previous studies
have verified the regularity of human activity, long-term mobile phone positioning data are expected
to examine the reliability of human activity labeling. We also plan to conduct an experiment in another
city to validate the robustness of the proposed framework. On the other hand, the presented data
fusion framework will be extended to be integrated with other human sensing data, like open street
map (OSM), geo-tagged photos, social media data, vehicle trajectories, etc. Expanded resources will
further deepen the understanding of complex urban spatial structure.
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