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Abstract: Fast and accurate airport detection in remote sensing images is important for many
military and civilian applications. However, traditional airport detection methods have low detection
rates, high false alarm rates and slow speeds. Due to the power convolutional neural networks in
object-detection systems, an end-to-end airport detection method based on convolutional neural
networks is proposed in this study. First, based on the common low-level visual features of
natural images and airport remote sensing images, region-based convolutional neural networks
are chosen to conduct transfer learning for airport images using a limited amount of data. Second,
to further improve the detection rate and reduce the false alarm rate, the concepts of “divide and
conquer” and “integral loss” are introduced to establish cascade region proposal networks and
multi-threshold detection networks, respectively. Third, hard example mining is used to improve
the object discrimination ability and the training efficiency of the network during sample training.
Additionally, a cross-optimization strategy is employed to achieve convolution layer sharing between
the cascade region proposal networks and the subsequent multi-threshold detection networks,
and this approach significantly decreases the detection time. The results show that the method
established in this study can accurately detect various types of airports in complex backgrounds
with a higher detection rate, lower false alarm rate, and shorter detection time than existing airport
detection methods.

Keywords: airport detection; remote sensing images; region-based convolutional neural networks;
divide and conquer; integral loss; hard example mining

1. Introduction

Object detection based on remote sensing images is currently a research topic of interest in the
field of image processing. As military and civilian infrastructures, airports play important roles in
various processes, such as aircraft transportation and energy supply. However, because airports have
complex backgrounds and varying shapes and sizes, accurate and real-time airport detection remains
problematic and challenging.

Deep learning has become a leading research topic in industry and academia. Zhu et al. [1]
proposed that deep learning has been rapidly developed in image analysis tasks, including image
indexing, segmentation, and object classification and detection. At the same time, deep learning also
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promotes the development of remote sensing image analysis. Object detection is an important task in
remote sensing image analysis. Compared with traditional classifiers based on manually designed
features, convolutional neural networks have better representation characteristics of abstract features.
Therefore, more and more scholars have begun to study object detection based on convolutional
neural networks in remote sensing images, such as vehicle detection [2,3], oil tank detection [4],
aircraft detection [5], and ship detection [6]. To date, a variety of airport detection methods have been
proposed, and they can be divided into two categories: edge-based detection [7–12] and detection
based on region segmentation [13,14]. Edge-based detection focuses on the characteristics of the
lines at edges, and achieves airport detection through the detection of runways. This approach
is fast and simple but susceptible to interference from non-airport objects with long straight-line
features. Airport detection based on region segmentation focuses on the distinct structural features of
airports, but such methods have significant efficiency issues that are difficult to overcome due to the
problem of overlapping sliding windows. In summary, the major problems and shortcomings of the
aforementioned methods are as follows. The sliding window strategy lacks objected detection, and it
has high temporal complexity and window redundancy. Additionally, the manually designed features
of this method are not sufficiently robust to account for variations derived from airport diversity.

In recent years, deep learning has provided new methods of airport detection. The transfer
learning ability of convolutional neural networks (CNNs) has been used to recognize airport runways
and airports [15,16]. CNNs have also been used to extract multi-scale deep fusion features from
images that were then classified using support vector machine methods [17]. However, these methods
mainly use only the powerful feature extraction or classification capabilities of the associated CNNs,
and the region proposal methods are based on manual methods such as edge or region segmentation,
in which the limitations of traditional methods remain. In 2014, Girshick et al. [18] proposed
region-based convolutional neural networks (R-CNNs), which made breakthroughs in object detection
and considerably improved object detection based on deep learning. Girshick [19] proposed a region of
interest (RoI) pooling layer to extract a fixed-length feature vector from the feature map at a single scale.
To further improve the accuracy and speed of R-CNNs, Ren et al. [20] later proposed Faster R-CNNs,
a successor to R-CNNs, which uses region proposal networks (RPNs) to replace the selective search
(SS) algorithm [21] as the region proposal method. This approach enables the sharing of convolutional
layers between the RPNs and the subsequent detection networks, which significantly improves the
speed of the algorithm. The training of a deep learning model requires a large amount of sample data,
but the number of airport remote sensing images is insufficient for training a network model. However,
the large number of successful applications of transfer learning theory [22] in object recognition and
detection tasks represents a potential direction for solving the problem of inadequate airport data.

Thus, in this study, using an end-to-end Faster R-CNN as the basic framework and based
on the establishment of a remote sensing image database, we perform transfer learning with
pretraining models, improve and optimize the network model and ultimately achieve fast and accurate
airport detection.

The main contributions of this study are as follows.
A fast and accurate detection model is developed for airport detection based on remote sensing

images. Unlike the conventional methods that involve a sliding window with manual operations
and simply use a CNN as the classification tool, the method developed in this study integrates object
detection in a deep network framework that enables the sharing of the convolution layer between the
front-end cascade RPNs and the subsequent multi-threshold detection networks, and this method
features an entire end-to-end framework.

A remote sensing image database is established, and the amount of data is artificially increased
using a data expansion technique to prevent the overfitting of the training model. This approach
provides the foundation for subsequent applications of the deep learning model in the field of
airport detection.
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The concept of “divide and conquer” is introduced to improve the RPN and establish the network
structure by proposing a cascade region. This technique is simple to implement and has a very small
additional computational cost; moreover, it can enhance airport detection performance by improving
the quality of the candidate boxes.

The loss function of the detection networks indiscriminately processes the detection boxes that
have an intersection over union (IoU) greater than the threshold, which leads to poor positioning
accuracy; thus, multiple IoU training thresholds are introduced to improve the loss function and the
accuracy of airport detection.

Hard example mining is employed to use hard examples in model training to improve the
object discriminative ability and training effectiveness of the networks. This method yields optimal
performance for the network model.

2. Materials and Methods

We first introduce the network architecture of Faster R-CNN, and then present some specific
improvement of the proposed method. The flowchart of the proposed algorithm is shown in Figure 1.
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Figure 1. The airport detection network architecture is shown in the blue frame, and the cascade region
proposal network architecture is shown in the green frame.

2.1. Related Work

The overall structure of the Faster R-CNN is shown in Figure 2, in which one image is used as the
input, and the prediction probability value and object detection box of the object category are used as
the output. This method mainly involves RPNs and detection networks, which include RoI pooling
layers, fully connected layers, and classification and regression layers. Because the two networks share
the convolutional layer, which enables object detection to be unified in a deep network framework,
the entire network framework has end-to-end characteristics.
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Figure 2. Schematic diagram of the Faster R-CNN.

2.1.1. Region Proposal Networks

After the convolutional feature map processed by the RPNs [20] is outputted by the shared
convolutional layer, the rectangle candidate box sets, as shown in Figure 3, are generated. RPNs uses a
sliding window that is 3× 3 in size to perform the convolutional operation on the feature map, in which
each sliding window is mapped to a lower-dimensional vector. After the convolutional operation
using the 1 × 1 convolution kernel, the results are outputted to classification layers and regression
layers to simultaneously conduct object classification and position regression for the candidate boxes.
Notably, the classification process determines the presence or absence of a discriminative object rather
than a specific category, and position regression refers to the translation scaling parameter of the
candidate box.
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To accommodate multi-scale objects, candidate boxes with multiple sizes and aspect ratios at each
location on the convolutional feature map are considered. The parametric representation of a candidate
box is called an anchor, and each anchor corresponds to a set of sizes and aspect ratios. For each
sliding window, three sizes (1282, 2562, and 5122 pixels) and three aspect ratios (1:1, 1:2, and 2:1)—i.e.,
9 types of anchors—are considered to address the multi-scale objects in the image. For the positioning
accuracy of the bounding box, employ the IoU formula. The IoU indicates the degree of overlap
between bounding box A and the ground truth B, as shown in the Equation (1). The larger the IoU,
the more accurate the positioning of bounding box A.

IoU = (A ∩ B)/(A ∪ B) (1)

To train the RPNs, each anchor is assigned a binary tag. A positive tag (object) is assigned to two
types of anchors: the anchor that has the highest IoU for a certain “ground truth” box, and anchors that
have an IoU greater than 0.7 for any manually tagged box. A negative tag (non-object) is assigned to any
anchor that has an IoU lower than 0.3 for all the manually tagged boxes. Based on the multi-task loss
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principle [12], the two tasks—object classification and candidate box regression—are simultaneously
completed and, thus, the loss function of the RPNs is defined as follows:

L({ pi}, { ti} ) = 1/Ncls∑
i

Lcls(pi, pi
∗) + λ/Nreg∑

i
pi
∗Lreg(ti, ti

∗) (2)

where i is the index of the anchor in a small batch of samples and pi is the prediction probability of the
event that the i anchor contains the object. If the true tag of the anchor is positive, then pi

∗ = 1. If the
true tag of the anchor is negative, then pi

∗ = 0. Here, ti represents the parameterized coordinates
of the candidate box, and ti

∗ represents the coordinates of the manually tagged box. Ncls and Nreg

are normalization constants that represent the number of samples in the small batch and number of
anchors, respectively. Here, λ is an adjustable equilibrium weight, and Lcls and Lreg are classification
and regression losses, respectively, which are defined as follows:

Lcls(x, y) = −logxy (3)

Lreg(ti, t∗i ) =

{
0.5
(
ti − t∗i

)2 i f
∣∣ti − t∗i

∣∣ < 1∣∣ti − t∗i
∣∣− 0.5 otherwise

(4)

2.1.2. Non-Maximum Suppression

In the candidate boxes generated by the RPNs, multiple candidate boxes could surround the
same object and overlap in large numbers. Therefore, based on the object classification score of the
candidate box, Non-maximum suppression (NMS) is used to eliminate candidate boxes with a low
score and reduce redundancy. Essentially, NMS is an iteration-traversal-elimination process in which
the number of candidate boxes can be drastically reduced through setting the IoU threshold without
affecting the accuracy of airport detection.

2.1.3. Region of Interest Pooling Layer

Many incidences of overlap among thousands of candidate regions (the region within a candidate
box) can be present and result in a high time cost for feature extraction. Because of the existence of a
certain mapping relationship between the candidate region feature map and the complete feature map,
feature extraction can be first performed on the entire image and, then, the corresponding RoI feature
vector of the candidate region is mapped directly without repetitively extracting features, thereby
reducing the time cost of the model. Mini-batch sample training is used for the convolutional operations
of the shared candidate regions. For each mini-batch, B, N candidate regions are sampled; i.e., a total
of B/N candidate regions are used from the same image and share the convolutional operations.

2.2. The Proposed Method

2.2.1. Transfer Learning

For each of the object tasks, traditional machine learning algorithms must be retrained, but transfer
learning can learn the common features of multiple tasks and apply them to new object tasks [22].
The lower convolutional layers in the CNNs only learn low-level semantic features, such as edges
and colors, which are identical in airport images and normal natural images, as shown in Figure 4.
The higher convolutional layers extract more complex and abstract features, such as shapes and other
combined features, and the final convolutional layers and fully connected layers play decisive roles in
various tasks. Therefore, in new airport detection tasks, the parameters of the lower convolutional
layers in the pretraining model remain unchanged or are iterated at a small learning rate to ensure that
the common features previously learned can be transferred to a new task. In this study, the pretraining
network VGG16 [23] in ImageNet [24], a large-scale recognition database, is used to initialize the
weight parameters of the shared convolution layers. Then, the airport database is used to perform
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fine-tuned training. The result shows that transfer learning using the initial values of VGG16 is
very effective.
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2.2.2. Cascade Region Proposal Networks

The ideal region proposal method is to generate as few candidate boxes as possible but to
cover every target in the image, while a large number of background regions still exist in the airport
candidate boxes generated by the RPNs. The performance can be enhanced by reducing the number of
candidate boxes generated by clustering [25], and the quality of the candidate boxes can be improved
by reordering the candidate boxes via the CNNs [26]. These methods inspired us to adopt the strategy
of “divide and conquer” to improve the RPNs, and we propose the cascade RPNs structure shown in
Figure 5.
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Figure 5. The structure of the cascade RPNs.

Two standard RPNs are connected in tandem, of which the first generates candidate boxes using
the correspondence between the sliding window and the anchor, and the second generates candidate
boxes using the correspondence between the input candidate boxes and the anchors on the feature
map. Based on the classification score of each candidate box, NMS is used after each RPN to further
reduce redundancy. To match the network model with the airport detection task, the dimension and
aspect ratio of the anchors in the RPNs are set based on the airport size and shape features in the
dataset and experimental verification, as shown in Table 1.

Table 1. Parameter values.

Size (Pixels) Aspect Ratio

Value (1282, 1922, 2562) (1:1, 2:3, 3:2)
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2.2.3. Multi-Threshold Detection Networks

The RoI feature vector is exported to the fully connected layer and ultimately outputted from two
peer output layers. One outputs the prediction probability of the background and the object from the
K category, and the other outputs the regression value of the detection box of the object from the K
category tk =

(
tk
x, tk

y, tk
w, tk

h

)
. Overall, loss function L is used in joint training.

Lloc(tu, v) = ∑
i∈{x,y,w,h}

R(tu
i , vi) (5)

L(p, u, tu, v) = Lcls(p, u) + [u ≥ 1]Lloc(tu, v) (6)

[u ≥ 1] =

{
1 u ≥ 1

0 u = 0
(7)

where Lcls(p, u), Lloc(tu, v), v =
(
vx, vy, vw, vh

)
and u(0 ≤ u ≤ K) are the classification loss,

the regression loss of the detection box, the regression object value of the detection box, and the
prediction object value of the category, respectively R in Equation (5) is the loss function of robustness,
details of which can be found in reference [14]. When using loss function L to train the candidate
boxes, if the IoU of the candidate box and a certain manually tagged box is greater than the threshold
of 0.5, then the candidate box is assigned to the category of manually tagged box u; otherwise, u = 0;
i.e., it falls into the background category, as shown in Equation (7).

In Equation (6), the classification loss simply divides all detection boxes into two categories and
indiscriminately processes detection boxes with an IoU greater than the threshold value, which leads
to poor final airport positioning accuracy. In fact, candidate boxes with a high IoU should be detected
better than those with a low IoU. Airport detection is not only about pursuing a high recognition rate;
the accuracy of airport positioning is equally important, and enhancing the positioning accuracy can
improve the final airport detection rate. Therefore, in this study, the classification loss is improved.
Specifically, classification loss is defined as the integral of Lcls under IoU threshold g. For simplicity,
a rectangular method is used to approximate the definite integral:

∫ 100

50
Lcls
(

pg, ug
)
dg ≈ 50/n∑

g
Lcls
(

pg, ug
)

(8)

where ug is the prediction object value of the category when the threshold is g; pg is the prediction
probability when the threshold is g; and n is the number of divisions in the interval of the definite
integral. The term Lcls

(
pg, ug

)
is detailed in Equation (3), and the final loss function can be rewritten

as follows:
L(p, u, tu, v) = 1/n∑

g

[
Lcls
(

pg, ug
)
+
[
ug ≥ 1

]
Lloc(tu, v)

]
(9)

where n = 4 for the threshold g ∈ {50, 60, 70, 80} and the prediction probability ultimately outputted
by the network model is the average of pg at various thresholds. We refer to our modified networks as
“Multi-threshold” detection networks.

2.2.4. Hard Example Mining

The sample training set always contains a large proportion of easy examples and a few hard
examples, of which the former have little training significance and the latter, characterized by diversity
and high loss values, have a considerable impact on the classification and detection results. Utilizing
these hard examples can enhance the discrimination ability of the network based on the object.
The issue of category imbalance is not a new challenge, and the idea of dataset bootstrapping [27] has
been successfully applied in the training process of many detection tasks. This method is also known as
hard example mining. Recently, the A-Fast-RCNN object detection model [28], which uses generative
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adversarial nets to produce occlusion and deformation examples, is also regarded as an example
mining approach. Example mining is most important for airports with limited data. Thus, in this study,
the concept of hard example mining is employed to make example training more efficient. The overall
structure of the method is shown in Figure 6.
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We propose a simple yet effective hard example mining algorithm for training detection networks.
The alternating steps are: (a) for some period of time a fixed model is used to find new examples to add
to the active training set; (b) then, the model is trained on the fixed active training set. More specifically,
the original detection network is duplicated into two sets designated Network A and Network B,
which share network parameters. Network A involves only forward operations, and Network B is a
standard detection network with both forward and backward operations.

The flowchart of the hard example mining is shown in Figure 7. First, for an input image at
stochastic gradient descent (SGD) iteration, t, a convolutional (conv) feature map is computed by
using the conv network. Second, the corresponding feature maps are generated for their respective
candidate regions, instead of a sampled mini-batch, through RoI pooling layers, and then outputted
to Network A for forward transfer and the calculation of the loss value. This step only involves RoI
pooling layer, fully connected layers, and loss computation. The loss represents the current network’s
execution of each candidate region. Third, the hard example sampling module sorts the loss values of
all the candidate regions and selects B/N examples for which the current network performs worst.
Finally, B/N hard examples are outputted to Network B for normal model training. The input to
Network A is all the candidate regions P of N images rather than the mini-batch B, and the batch
input to Network B is B. Most forward calculations are shared between candidate regions, so the extra
calculations required to forward all candidate regions are relatively small. In addition, since only a
small amount of candidate regions is selected to update the model, the backward pass is not more
expensive than before.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 17 
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2.3. Network Training

To overcome training difficulty issues and avoid overfitting due to small sample sizes, the weights
of the shared convolutional layers are initialized with the pretraining network VGG16, and the weights
of the remaining layers are initialized based on a Gaussian distribution with a mean of 0 and a standard
deviation of 0.01. The basic learning, momentum and weight decay coefficients of the network are
0.001, 0.9, and 0.0005, respectively. To enable the sharing of convolutional layers between the cascade
RPNs and multi-threshold detection networks, an alternate optimization strategy is adopted to train
the entire network in four steps.

Step 1 involves training the cascade RPNs and outputting the airport candidate box sets. After the
initialized candidate boxes of the pretraining network VGG16 generate network weights, end-to-end
fine-tune training is performed. After the training is completed, the airport candidate box sets
are outputted.

Step 2 involves training the candidate box detection network. After the network weights are
tested by the initialized candidate boxes of network VGG16, the airport candidate boxes generated in
Step 1 are used to train the multi-threshold detection network. At this time, the two networks do not
share convolutional layers.

Step 3 involves fine tuning the cascade RPNs and outputting the airport candidate box sets.
The cascade RPNs are initialized using the final weights of the detection network obtained from Step 2
to set the weights of the shared convolutional layers, and only the layers unique to the cascade RPNs
are fine tuned. After training is completed, the airport candidate box sets are outputted. During this
process, the two networks share convolutional layers.

Step 4 involves fine tuning the training network model again. The weight parameters of the
shared convolutional layers and cascade RPNs are kept constant, the fully connected layers of the
detection network are tuned using the airport candidate boxes outputted in Step 3, and ultimately,
the convolution layer-sharing airport detection network is obtained.

3. Results

3.1. Dataset and Computational Platform

The experimental data are from Google Earth, and the original images, all of which are 600 × 600
pixels in size, are of 300 airports in locations around the world. The training validation set is composed
of 1000 airport images, which are obtained through data expansion of the 200 original airport images;
another 100 original airport images are used as the test set. The airport data set is formed in reference
to the standard data set V0C 2007. To prevent overfitting, the images are flipped at a probability of 0.5
during training. The experimental environment included an i7-7700 processor running at 3.6 GHz,
16 G of memory, and an NVIDIA GTX1080 (graphics card). All the results in the experiment are
averages from multiple random experiments.

The number of remote sensing images is very limited, and these data are not labeled with type
information. End-to-end methods can achieve good performance, but they need large numbers
of labeled samples. However, limited by the quantity of labeled data in remote sensing images,
they suffer from bad generation performance. It is obvious that the amount of labeled data has become
an important factor blocking end-to-end methods development. Thus, we must artificially expand the
training data and label them. Common data expansion methods include horizontal/vertical flipping,
rotation/reflection, cropping, zooming, shifting, scaling, noise adjustment, and contrast adjustment.
These methods are implemented to expand the data through the built-in Image Data Generator in
Keras. Keras is a high-level neural networks API, written in Python and capable of running on top of
TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being
able to go from idea to result with the least possible delay is key to doing good research. For airport
objects, rotation, shifting and vertical flipping are used to expand airport images, in which all the
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operations are randomly adopted, as shown in Figure 8. Specifically, Figure 8a shows the original
image, and Figure 8b shows the images after data expansion.
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3.2. Results on Test Set

The detection rate (DR) and false alarm rate (FAR) are used to evaluate the performance of the
model and are defined, respectively, as follows:

DR =
numbero f detectedairports

numbero f ariports
× 100% =

TP
TP + FN

× 100% (10)

FAR =
numbero f FalseAlarms

numbero f detectedobjects
× 100% =

FP
TP + FP

× 100% (11)

Here TP denotes the number of true positive samples; TNdenotes the number of true negative
samples; FP denotes the number of false positive samples; and FN denotes the number of false
negative samples. The intersection-over-union (IoU) is calculated by the detected bounding box
and the ground-truth of objects. If IoU is bigger than 0.5, we considered that the airport is detected.
In addition, the average processing time is adopted to evaluate the computational speed of the
algorithms. The run time for the algorithm in five trials was recorded and averaged.

Figure 9 shows some of the test results using the method developed in this study. In these
experiments, the airport background includes roads, buildings, rivers, mountains, and other features,
and in the bottom row, airport images with some unique shapes are shown. The test results show
that the airport regions in the images are all accurately identified, which indicates that the proposed
method can accurately detect airports with a variety of complex backgrounds.
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To prove the superiority of the proposed method to traditional methods, existing airport
detection methods are selected for comparative experiments. Based on the available software code
for other airport detection methods, simulation experiments of these methods were conducted in the
experimental environment of this study, and the DR, FAR, and average run time of each method were
recorded and then compared. The comparison results are shown in Table 2. Of these methods, method
1 [8] is an edge-based airport detection method, method 2 [13] is an airport detection method based on
region segmentation, and method 3 [16] is an airport detection method based on CNN. In addition,
Faster R-CNN refers to the results obtained by a Faster R-CNN method after transfer learning based
on the airport database and the modification of the corresponding parameters. Method 4 [29] uses
Faster R-CNN algorithm with some specific improvements.

Table 2. Comparison of the results of different methods.

Method Detection Rate (DR) (%) False Alarm Rate (FAR) (%) Average Processing Time (s)

Method 1 65 27.8 2.6
Method 2 71 27.6 >100
Method 3 83 29.7 21.3
Method 4 90 9.6 0.2

Faster R-CNN 88 15.5 0.2
Our method 95 6.9 0.2

Table 2 shows that the performance of Faster R-CNN and the method proposed in this study are
superior to that of the other methods. Of the methods considered, the method proposed in this study
has the highest DR, the lowest FAR, and the shortest average run time.

The work in [8] utilizes the segmentation of images to extract statistical information and Hough
transforms to get the line features, so it is very sensitive to complex lines. The work in [13] relies on
sift features to determine candidate regions, but the sift features that some airports can extract are very
limited, and the robustness of sift features is also not strong. All in all, reference [8] and reference [13]
use sliding windows and manually designed features to achieve airport detection. The weakness
of the manually designed features, including edge and textures, lies in the difficulties of finding
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proper representations through uncertain experience and limited expert knowledge. Because the
calculation efficiency of the sliding window through image traversal is very low and the robustness
of the manually designed features is not strong, their detection results are not satisfactory. The work
in [16] introduces an airport detection method using deep CNN with a line-based region proposal
method. Because deep CNNs could learn rich highly abstract features to represent objects effectively,
Reference [16] could significantly improve the DR. However, because it extracts region proposal
through line segment detection based on prior knowledge, its detection performance is limited,
especially in regard to the detection time. Faster R-CNN, reference [29] and our method integrate
feature extraction, candidate box selection, and object classification and regression in an end-to-end
deep network framework, which fully uses the powerful feature representation ability of the CNN.
Additionally, the RPN and detection network share convolutional layers, thereby greatly improving
the accuracy and speed of airport detection. Therefore, their detection performance is far superior to
the previous method, especially relating to the detection time. The work in [29] increased detection
performance by adding additional scale and aspect ratios compared to Faster R-CNN. However, we use
the cascade RPN, multi-threshold detection networks and hard examples to improve the Faster R-CNN
algorithm. The experimental results show that our improvements are better than those of reference [29].
In summary, our method outperforms previous airport detection methods.

4. Discussion

4.1. Sensitivities to Parameters

In Table 3 we compare the DR with different pretraining networks: Zeiler Fergus Network
(ZF Net), VGG_CNN_M_1024 and VGG16. In order to compare the time more accurately, the time
value is accurate to 3 decimal places. As the level of the network structure deepens, the performance
of the algorithm increases, but the time also increases. Therefore, considering the detection rate and
time overall, VGG16 is selected as the pretraining network.

Table 3. Detection results using different pretraining networks.

Method DR/% Average Run Time/s

ZFNet 83 0.051
VGG_CNN_M_1024 87 0.062

VGG16 95 0.124

In Table 4 we investigate the settings of anchors. By default, we use three scales and three aspect
ratios (95% DR in Table 4). If using just one anchor at each position, the DR drops by a considerable
margin (of 2–3%). The DR is higher if using three scales (with one aspect ratio) or three aspect ratios
(with one scale), demonstrating that using anchors of multiple sizes as the regression references is an
effective solution.

Table 4. Detection results using different settings of anchors.

Settings Anchor Scales Aspect Ratios DR (%)

1 scale, 1 ratio 1282

2562
1:1
1:1

91
91

1 scale, 3 ratio 1282

2562
(1:1, 2:3, 3:2)
(1:1, 2:3, 3:2)

94
93

3 scale, 3 ratio (1282, 1982, 2562) (1:1, 2:3, 3:2) 95

In Table 5 we compare the results arising from different values of the parameter λ in Equation
(2). In order to make the two terms in Equation (2) roughly equally weighted after normalization,
by default we use λ = 10. Table 5 shows that our results are only slightly affected when λ is within the



Remote Sens. 2018, 10, 1516 13 of 17

range of about two orders of magnitude (1 to 100). This indicates that the results are insensitive to a
wide range of λ.

Table 5. Detection results using different values of λ.

λ 0.1 1 10 100

DR (%) 93 94 95 94

4.2. Analysis of Improvement

To verify the effectiveness of the cascade RPN, the improved loss function, and the hard example
mining method, comparative experiments were conducted using the controlled variable method.

The results of the comparison experiments involving the region proposal methods are shown in
Table 6. The cascade RPN significantly improves DR (by 3%) without increasing computational time.
Because an RPN uses very little time for all network processes, the time required by a cascade RPN
is negligible.

Table 6. Results of different region proposal methods.

Method RPN Cascade RPN

DR (%) 88 91
Average processing time (s) 0.121 0.124

The comparison experiment results involving the loss function are shown in Figure 10. The X-axis
is the IoU threshold during image testing, and the Y-axis is the corresponding DR. Here, g = 50
represents the IoU threshold of the loss function in Equation (5), which is constant at 0.5. The results
show that the DR of the method developed in this study is always higher than that of the model
method that corresponds to g = 50, and the difference between the two methods gradually increases
as the IoU threshold increases. This result indicates that the improved loss function leads to more
accurate positioning that enables the model to achieve a higher DR, and as the IoU threshold increases,
the positioning advantage becomes increasingly profound.
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During the model training process, the average loss value (i.e., the mean of the loss functions of
all candidate regions) is recorded every 20,000 iterations, and the comparison experiment is performed
on the test set. The results are shown in Figure 11 and Table 5.
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Figure 11 shows that during the entire training process, the model with hard example mining
has a low loss value, which indicates that the hard example mining method can effectively reduce the
loss value of the training process and make model training more efficient. Table 7 shows that the hard
example mining method improves DR by approximately 4% without increasing computational time.
Notably, in the training process, hard examples are fully utilized in this method, which makes model
training more efficient; hard example mining increases the training time of the model but does not
affect the detection time.

Table 7. Comparison of the results.

Method DR (%) Average Run Time (s)

Without hard example mining 88 0.124
Method proposed in this study 92 0.124

4.3. Application to Aircraft

As an important object in the airport, the aircraft is also of interest; thus, we have also applied the
model to airplane detection. All airplane images are collected from satellite images of 300 of the world’s
airports in Google Earth, with a spatial resolution of 1.19 m. Aircraft images from 150 airports are
selected as training and verification sets with a total of 1500 images; their sizes ranged from 375 × 375
to 400 × 400. The aircraft images in the remaining 150 airports are used as test sets, with image sizes
between 900 × 800 and 1000 × 900. The detection results on the airplane test images are shown in
Figure 12. Figure 12 shows that the method of this paper can be applied to airplane detection. On our
computational platform, it takes about 0.139 s to process an image with a detection rate of 90.28% and
a false alarm rate of 11.6%.
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5. Conclusions

In this study, we designed an end-to-end airport detection method for remote sensing images
using a region-based convolutional neural network as the basic framework. In this method, transfer
learning of the pretraining network is used to solve the problem of inadequate airport image data,
and the cascade RPNs improve the quality of the candidate boxes through further screening and
optimizing the candidate boxes. After fully accounting for the influence of the IoU training threshold
on the positioning accuracy, the multi-threshold detection networks are proposed, which ultimately
enhance DR. Mining hard examples makes training more efficient, and the sharing of convolutional
layers between the cascade RPNs and the detection networks during model training greatly improves
the efficiency of airport detection. The experimental results show that the method proposed in this
study can accurately detect various types of airports in complex backgrounds, and that it is superior to
existing detection methods. A gap remains between the processing speed and instantaneity, which will
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be the focus of our future studies. Nonetheless, the proposed method is of theoretical and practical
significance for real-time and accurate airport detection.

In this paper, using the Faster R-CNN algorithm as the basic framework, we achieved
state-of-the-art detection accuracy and computational speed. In addition, there would be value
in testing other CNN-based object detection algorithms, such as You Only Look Once (YOLO) and
Single Shot Detector (SSD). This will also be a topic of our future research work.
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