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Abstract: Forest structural data are essential for assessing biophysical processes and changes,
and promoting sustainable forest management. For 18+ years, the Multi-Angle Imaging
SpectroRadiometer (MISR) instrument has been observing the land surface reflectance anisotropy,
which is known to be related to vegetation structure. This study sought to determine the performance
of a new MISR-High Resolution (HR) dataset, recently produced at a full 275 m spatial resolution,
and consisting of 36 Bidirectional Reflectance Factors (BRF) and 12 Rahman–Pinty–Verstraete (RPV)
parameters, to estimate the mean tree height (Hmean) and canopy cover (CC) across structurally
diverse, heterogeneous, and fragmented forest types in South Africa. Airborne LiDAR data were
used to train and validate Random Forest models which were tested across various MISR-HR
scenarios. The combination of MISR multi-angular and multispectral data was consistently effective in
improving the estimation of structural parameters, and produced the lowest relative root mean square
error (rRMSE) (33.14% and 38.58%), for Hmean and CC respectively. The combined RPV parameters for
all four bands yielded the best results in comparison to the models of the RPV parameters separately:
Hmean (R2 = 0.71, rRMSE = 34.84%) and CC (R2 = 0.60, rRMSE = 40.96%). However, the combined
RPV parameters for all four bands in comparison to the MISR-HR BRF 36 band model it performed
poorer (rRMSE of 5.1% and 6.2% higher for Hmean and CC, respectively). When considered separately,
savanna forest type had greater improvement when adding multi-angular data, with the highest
accuracies obtained for the Hmean parameter (R2 of 0.67, rRMSE of 31.28%). The findings demonstrate
the potential of the optical multi-spectral and multi-directional newly processed data (MISR-HR) for
estimating forest structure across Southern African forest types.

Keywords: vegetation structure; LiDAR; multi-spectral and multi-angular measurements; MISR;
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1. Introduction

Forests provide a broad range of ecosystem services, e.g., carbon sequestration, water regulation,
fuelwood and timber production [1,2]. Information on forest structure, such as canopy cover, tree height
or canopy volume, is needed to support the sustainable management of these resources [3]. Despite the
South African Government’s legal requirement of reporting on the state of national forests on
a three-year basis [4], there are no regularly updated national forest maps or spatial datasets describing
woody structural diversity, e.g., canopy cover, tree height. To date in South Africa, the only quantitative
spatial data on forests are available in the form of occasional global products, such as the 1 km global
tree height map [5], the 30 m global tree cover maps [6,7], or the 30 m Sub-Saharan African tree height
map [8]. However, there is uncertainty regarding the accuracies of these products at regional scales,
particularly in open forest ecosystems such as savannas, due to limited calibration outside boreal and
tropical forest or for tree height below 5 m [8–10].

Remote sensing (RS) technologies produce valuable data for mapping forest structural parameters
at a variety of spatial scales. They are particularly useful for providing dense and frequent coverage over
large areas, which thus enables the monitoring of forest structural parameters cost-effectively [11,12].
A number of studies have explored the capabilities of RS data for retrieving structural information of
plant canopies, including those derived from LiDAR [13,14], Synthetic Aperture Radar (SAR) [15–17],
or optical sensors or a combination of these [18–20]. Research using optical data mostly exploits
multispectral observations from nadir-pointing instruments and/or single view imagery [21,22].
However, most of the Earth’s continental surfaces, due to their three-dimensional characteristics,
are strongly anisotropic, i.e., for a given illumination (sun) angle the reflectance changes with the
viewing direction [23,24]. As a consequence, vegetation structural and biochemical variables largely
control the surface reflectance anisotropy [23,25–28], which is described by the bidirectional reflectance
distribution function (BRDF) [29]. The BRDF of a surface target is a function describing the ratio of
the spectral radiance reflected in a given direction to the irradiance received by this target according
to a specific illumination geometry; hence it measures reflectance changes with the illumination and
observation geometry [23]. In practice it is not possible to measure the BRDF directly, and it is estimated
by the bi-directional reflectance factor (BRF) [30,31]. Reflectance anisotropy has often been ignored or
considered to be a source of noise for mapping forests [32,33].

Mono-angular, generally nadir-pointing, instruments can collect multi-angular data by
accumulating data over repeated overflights or orbits (e.g., 16 days in the case of MODIS) [34,35].
However, this approach is inherently hindered by the daily evolution of the surface as well as
atmospheric changes [35]. Optical multi-spectral and multi-directional (MSMD) instruments may offer
promising opportunities [34,36–38]. MSMD instruments acquire quasi-simultaneous surface reflectance
measurements in multiple spectral bands at various observation angles [39]. Examples include the
POLarization and Directionality of the Earth’s Reflectance’s (POLDER) instrument or the Multi-Angle
Imaging SpectroRadiometer (MISR) [28]. The MISR instrument is hosted on the NASA’s Earth
Observation System (EOS) Terra platform, launched on 18 December 1999 [37]. At present, MISR is
the only multi-angular earth observation satellite instrument sampling the anisotropy of the reflected
solar radiation at sub-km spatial resolution. It uses nine cameras pointing at various angles fore and
aft of the platform, each acquiring data in four spectral bands: three in the visible and one in the
near-infrared range [26]. For any given location, all multi-directional data channels are acquired within
less than seven minutes [40,41].

Studies based on MISR data have shown that using multi-angular observations improves
the estimation of canopy structural parameters [40,42,43]. For instance, Heiskanen [44] reported
that tree cover and height could be retrieved more effectively from MISR surface BRF data in
Finland’s Fennoscandia tundra–taiga transition zone. At the 1.1 km spatial resolution, the relative
root mean square error (rRMSE) for tree height and tree cover were 35.4% and 49.2% when using
the spectral bands from the nadir camera only, and dropped to 25.4% and 36.9%, respectively,
when using the spectral bands from all 9 cameras. Further, theoretical and applied studies have
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established that synthetic parameters describing reflectance anisotropy of land surfaces can also
be used successfully to characterise the structural properties of vegetation [41,42,45]. One such
model is the Rahman-Pinty-Verstraete (RPV) model, which describes the BRF of a surface using
a combination of three parameters ρ0, k, and Θ [41,45–47]. The ρ0 parameter is a measure of the
mean spectral brightness of the target [26,48–50]. The k parameter controls whether the reflectance
anisotropy exhibits the usual bowl-shaped (k < 1), or a bell-shaped (k > 1) pattern, which has been
associated with heterogeneous canopy conditions [41,47] and the Θ parameter captures the degree of
forward or backward scattering [51]. Previous investigations suggested that multi-angular reflectance
measurements may lead to an improved characterization and monitoring of vegetation structural
properties [26,48,49,52].

The MISR instrument is designed to acquire observations with an across-track sampling distance
of 250 m at nadir and 275 m in all off-nadir cameras. However, due to the downlink restriction only
12 of the 36 data channels are transmitted at full spatial resolution in the default Global Mode: The four
spectral bands of the nadir camera and the red spectral band in each of the other eight cameras. The raw
measurements in the remaining 24 data channels are spatially averaged on-board the platform to yield
an effective 1.1 km pixel size. As a result, all MISR NASA-generated land surface products are delivered
at this spatial resolution, and most MISR-based studies have relied on 1.1 km or coarser datasets. This is
an important limitation in Southern Africa where forested landscapes are occupied by heterogeneous
savannas dominated by a grass layer and variable (20–70%) woody cover, or consist of remnants of
indigenous forests or stands of commercial plantation forests of variable but generally small stand sizes.
At the landscape scale, structural patterns along catenae vary over distances between 100 and 300 m
in savannas. Recently, however, the MISR High-Resolution (HR) processing system was developed
to reconstruct the original spectral observations at their full spatial resolution (275 m) in all 36 data
channels [53]. In addition, that system generates a suite of biogeophysical products—e.g., the RPV
model parameters, the Leaf Area Index (LAI), or the Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR), among others—at that same resolution [53]. We hypothesized that the newly
processed high resolution MISR MSMD data at 275 m spatial resolution across all the spectral bands
should yield improved canopy structural parameter estimates, compared to traditional nadir-pointing
instruments [37,38,44,54]. Pinty et al. [41] showed that the capacity to characterize the anisotropy
degrades rapidly with the spatial resolution beyond 1km, where all surfaces appear to be the same
“bowl-shape”. Hence, there is a great incentive in documenting the performance of anisotropic data at
finer spatial resolution [26,41,55].

The aim of this study was to assess to what extent two of the MISR-HR 275 m data products, namely
the 36 surface bidirectional reflectance factors (BRF) and the 12 RPV model parameters (ρ0, k, Θ in each of
the four spectral bands), may be used to estimate forest vegetation structural parameters (i.e., mean tree
height and canopy cover) in South African forests, including savannas woodlands, indigenous dense
forests, and commercial plantation forests. This study addressed three research questions:

• Do off-nadir MISR-HR products significantly improve the estimation of structural parameters
compared to those obtained with the nadir-pointing camera only?

• Which data channels or combinations thereof, have the greatest potential to improve the canopy
structure models performance?

• Does the performance of predicting structural parameters improve whilst using the MISR-HR
RPV model parameters (ρ0, k, Θ) compared to the full MISR-HR BRF multi-angle multi-spectral
dataset (i.e., 4 spectral bands at nine view angles)?

These questions were answered using various scenarios based on MISR-HR data channel
combinations elaborated in detail in Section 3.4. The inputs to our predictive models were the MISR
reflectance data (BRF) and derived products (the RPV model parameters), which are the explanatory
variables, generated by the MISR-HR processing system. High resolution airborne LiDAR data were
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used to derive the tree height and canopy cover products, which were used as reference data to train
and validate the models.

2. Materials and Methods

This paper explores the strength of quantitative relationships between two forest structural
parameters, tree height and canopy cover, derived from airborne LiDAR measurements at very high
spatial resolution (1 m) and selected MISR-HR products, namely the surface BRF in 36 data channels
and the 12 RPV data channels, for the two South African sites and for closely related acquisition
dates. The two pre-processed spectro-directional MISR-HR products were converted and re-projected
to TIFF WGS 84 images. A 275 m fixed grid snapped to the MISR pixels was used for extracting
LiDAR-derived forest structural parameters, MISR-HR BRF reflectance, and RPV parameter values.
The MISR-HR products were used as predictive (independent) variables with Random Forests (RF)
algorithms (Breiman, 2001) (Figure 1) to retrieve the forest structural parameters according to a number
of scenarios. The best model results were used to derive MISR-HR BRF-based maps of the structural
parameters at 275 m spatial pixel size. The overview of the methodology is summarized and compiled
in a flowchart (Figure 1).
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2.1. South African Forested Landscapes and Study Area

The study area consists of two sites, (i) the South African Lowveld including the southern
section of the Kruger National Park (KNP) and surrounding communal lands in the Mpumalanga
and Limpopo Provinces and (ii) the iSimangaliso St-Lucia region in the KwaZulu-Natal Province.
The sites were selected to capture the main forest types present in South Africa—including open forests
such as savannas or woodlands, denser closed canopy indigenous forests of high biodiversity value,
and commercial plantation forests.

The Lowveld site lies within the semi-arid savanna woodlands biome in the northeastern region
of South Africa (Figure 2a). Savannas are characterised by a heterogeneous mixture of herbaceous and
woody vegetation [56,57]. Rainfall is strongly seasonal, with a rainy summer season from October to
May and a dry season from June to September. Rainfall occurs mostly in the form of thunderstorms with
mean annual precipitation of 650 mm [58]. Mean annual temperatures reach 21 ◦C. These savannas
are dominated by granitic woody landscapes of fine- and broad-leaf deciduous trees and grassy
bushveld with a few scattered shrubs and trees in gabbro or basalt substrates [59,60]. The woody
canopy cover ranges from wooded grassland (5%) to almost closed woodlands (60–70%), with tree
height typically varying between 2 and 5 m. Woody Above Ground Biomass (AGB) is generally below
50 tons per hectare (T ha−1). Land tenures include state-owned communal lands, privately-owned
reserves (Sabie Sands Game Reserve) and state-owned conservation lands in the KNP (Figure 2a).
Fuelwood harvesting and livestock ranching are predominant in communal savannas and woodlands.
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Figure 2. The study area consists of two sites: (a) The Lowveld study site in the southern section of
the Greater Kruger National Park region in South Africa, and (b) the iSimangaliso study site in the
uMkhanyakude district in the KwaZulu-Natal province. (c) shows the two sites in the South African
context. The LiDAR and MISR acquisition footprints and regions of interest are displayed in plain
green and solid red line areas, respectively.

The second site is located in the northeastern part of KwaZulu-Natal province of South Africa,
in the iSimangaliso St-Lucia region (Figure 2b). Forested lands consist mostly of indigenous coastal
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forests (e.g., Dukuduku forest) and commercial forest plantations. This coastal area is characterized by
all year round rainfall (with a seasonal minimum between June and September) reaching 1250 mm yr−1,
and a mean temperature of 27 ◦C [61,62]. South African indigenous forests are fragmented into small
patches [61,63]. The Dukuduku coastal forest is the largest remaining indigenous coastal lowland forest
patch (estimated around 3500 ha in area) [64]. It is surrounded by informal settlements, a matrix of
sugarcane plantations, grassland as well as commercial Eucalyptus forest plantations. The coastal forest
in this region is a subtropical moist evergreen broadleaf forest with medium to tall trees which can grow
to about 20 m high [59,61]. The coastal forest region, in and around the Dukuduku forest, is species
rich and with a well-developed closed canopy with fairly dense understory shrubs and a tree cover in
excess of 70% [61]. The commercial forest plantations are mainly dominated by Eucalyptus spp. [65],
with a height of up to 30 m [66]. The E. grandis stands have rotation lengths varying from 6–12 years
and the AGB can be relatively high ranging between 106 and 225 (T ha−1) [67,68]. In this manuscript,
we refer to Lowveld and iSimangaliso Saint-Lucia for the two sites described above.

2.2. LiDAR Data

The forest structural parameters were derived from two discrete airborne LiDAR datasets. The first
dataset consisted of approximately 63,000 ha of savannas surveyed over the Lowveld study area during
April–May 2012 (Figure 2a), with the Carnegie Airborne Observatory-2 Airborne Taxonomic Mapping
Systems (CAO-2 AToMS) [69]. The CAO-2 LiDAR scanner system (1064 nm) was operated in discrete
mode at 1000 m above ground, with a laser pulse repetition frequency of 50 kHz, a laser spot spacing of
0.56 m, and yielded an average density of 6.4 points per m2 [17,70]. The second dataset (29,000 ha) was
acquired during April–May 2013 with a Leica ALS50 LiDAR, and a laser pulse repetition frequency
of 150 kHz in the iSimangaliso St-Lucia site (Figure 2b). The dataset was made available by the
iSimangaliso Wetland Park authority. The LiDAR point density was 1.5 points per m2. Both datasets
were collected at the wet to dry transition season. The senescence process was just starting in the
Lowveld region, and most trees were still in leaf-on condition prior to winter and leaf shedding.
Trees in the iSimangaliso St-Lucia landscape were also leaf-on as all species of the indigenous forests
and plantations are evergreen.

2.3. LiDAR Processing and Derived Structural Parameters

The LiDAR-based forest structural parameters were derived from canopy height models (CHM)
generated with a ground sampling distance of 1 m. The CHM was calculated by subtracting the Digital
Elevation Model (DEM, last “ground” returns) from the Digital Surface Model (DSM, first “canopy”
return), both derived from the raw LiDAR point clouds data as per the method outlined in [69].
A height threshold of 1 m was applied to all the CHM products, to exclude possible noise from
non-woody vegetation (e.g., grass). The following structural metrics were calculated: Mean tree height
(Hmean) and canopy cover (CC). The height threshold mentioned above implies that the structural
metrics are calculated from the woody vegetation component including shrubs and trees, but we will
refer to tree structural metric for simplicity. These structural parameters were computed as follows:

1. Tree height is defined as the vertical distance from the base of the tree to its treetop [71]. It plays
a key role in forest ecosystem studies, for instance for predicting species richness and species
distribution models [72,73] or for assessing fire severity and modelling fire escape mechanisms [74,
75]. It contributes to estimate variables such as canopy volume and biomass [76,77]. The mean
tree height (Hmean) parameter was calculated as the average of the CHM pixels excluding the
non-tree pixels (<1 m) within each MISR-HR 275 m pixel. This is a useful measure especially
in even-aged forests. There was a strong relationship between tree height estimated by the
CAO CHMs and field measurements (R2 = 0.93, p-value < 0.001 and standard error of 0.73 m),
as described in Wessels et al. [78].

2. Canopy cover (CC) is defined as the percentage area of a MISR-HR 275 m pixel covered by the
vertical projection of tree crowns. As a simple 2D structural measure, CC is a key descriptor of
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ecosystems and is useful for monitoring vegetation changes, for instance habitat connectivity
and fragmentation [79–81]. This parameter was estimated by calculating the percentage of CHM
pixels with a height above 1 m relative to the total number of LiDAR pixels included in a 275 m
MISR pixel. A strong relationship between CAO LiDAR-derived CC and field measurements
was previously demonstrated for the KNP dataset (R2 = 0.79, Root Mean Square Error (RMSE) of
12.4%) [17].

2.4. MISR Data and Processing

The MSMD satellite data used in this study were acquired by the MISR instrument, which features
nine cameras. One camera is pointing towards nadir (designated An at 0.10 zenith angle), while the
eight off-nadir cameras are pointing in the forward (f) and aft or backward (a) direction (designated Df:
70.30, Cf: 60.20, Bf: 45.70, Af: 26.20, Aa: 26.20, Ba: 45.70, Ca: 60.20 and Da: 70.60) [53]. Each MISR
camera uses a push-broom sensor, with separate detectors for the four spectral bands: blue (446.4 nm),
green (557.5 nm), red (671.7 nm) and near infrared (864.4 nm). The swath width is about 380 km wide.
As part of the pre-processing to Level 1B2, the four spectral bands of each camera are radiometrically
calibrated, geo-rectified and spatially co-registered [41,82]. A detailed description of the instrument and
processing can be found in Diner et al. [82]. As hinted earlier, to keep the data rate within the downlink
allocation, only 12 of the 36 MSMD data channels are transmitted at full spatial resolution in the
Global Mode of operation, and hence, all standard products generated by NASA Langley Atmospheric
Research Center are delivered at a spatial resolution of 1.1 km or coarser. Recently, a MISR-High
Resolution (HR) processing system [53,83] was designed to reconstruct observations at the original
spatial resolution of 275 m in all spectral bands and for all cameras. This system also produced
a full range of higher level products at 275 m spatial resolution, including RPV model parameters,
spectral and broadband albedos, as well as key vegetation products such as LAI and FAPAR [53,83].

The BRF and RPV products used in this study were generated with the MISR-HR processing
system, version 1.04-5, hosted at the Global Change Institute of the University of the Witwatersrand
in Johannesburg, South Africa [83]. The following data are used as inputs to generate the MISR-HR
products [53]:

1. The MISR L1B2 Terrain-projected Global Mode data, which contains top of atmosphere (TOA)
radiance measurements, resampled at surface level and topographically corrected.

2. The MISR L2 Terrain–projected bottom of atmosphere (BOA) bidirectional reflectance factors
(BRFs), generated by NASA’s standard processing system at 1.1 km spatial resolution.

3. Geometric Parameters Product (GPP).
4. Ancillary Geographic Product (AGP), which are the reference datasets containing the full

latitude/longitude information.

The first step in the MISR-HR processing routine consists of reconstructing radiance data at the
nominal “Top of the Atmosphere (ToA)” (the L1B3 product) at the full spatial resolution in all 36 data
channels. Those data are then converted to surface reflectance (BRF product) by isolating the surface
from the atmospheric contribution to the measurements. This process also screens out cloud-covered
areas. The MISR-HR 12 RPV model parameters (ρ0, k, Θ for each spectral band) are the result of the
third step in the MISR-HR processing system (http://www.misrhr.org/rpv) [53]. These parameters
are retrieved by inverting the RPV model against the nine surface bidirectional reflectance values,
separately in each of the four spectral bands. The bidirectional reflectance factor ρ can be represented
by the RPV model as follows [45,46]:

ρ(θs, θ, φ, ρ0, k, Θ) = ρ0M(θs, θ, k) FHG (g; ΘHG) (1)

http://www.misrhr.org/rpv
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where θS, θ and φ are the solar zenith angle, the observation zenith angle and the relative azimuth
between the directions of illumination and observation, respectively, ρ0 is the amplitude parameter of
the RPV model and M is the modified Minnaert function.

M(θS, θ, k) =
cosk−1 θS cosk−1 θ

(cos θS + cos θ)1−k (2)

M involves the power function of the zenith angle cosines governed by the k parameter which
describe the overall shape of the angular field, and

FHG(ΘHG, g) =
1 − Θ2

HG

[1 + 2ΘHG cos g + Θ2
HG]

3/2 (3)

FHG is the Henyey–Greenstein phase function, which uses the single parameter ΘHG to
characterize preferentially forward or backward scattering depending on its sign, and where

cos g = cos θ cos θS + sin θ sin θS cos φ (4)

Detailed descriptions of the RPV model and its parameters are available in the literature [40,42,45,46,55].
The MISR-HR BRF and RPV products were converted from the native HDF-EOS format to GeoTIFF and
re-projected from the original Space Oblique Mercator to UTM Zone (WGS 84 datum) projection to match
the LiDAR CHM data.

Two MISR acquisitions were processed: The first one took place on the 10 April 2012 (Path 168,
Orbit 65487, Block 110, covering the Lowveld site), and the second on the 6 April 2013 (Path 167,
Orbit 70744, Block 113, covering the iSimangaliso St-Lucia site). These MISR acquisition dates
were chosen primarily to correspond as closely as possible with the LiDAR data acquisition dates.
In addition, images at the end of the wet season (autumn) have additional possible benefits.
First, since grasses senesce earlier than trees, this period would produce a larger spectral contrast
between dry grasses and green woody canopies, compared to images taken in the middle of the season
when both grasses and woody canopies are green. Second, this period may also be more suitable
than the summer, because the sun zenith angle is larger and this condition produces a wider range of
projected shadows depending on vegetation structure and height, a condition which may enhance
surface reflectance anisotropy.

2.5. Data Analysis

Canopy structural properties derived from LiDAR data (Hmean and CC), as well as MISR-HR
BRFs and RPV products, were extracted using a regular 275 m spatial grid matching the MSIR-HR
pixels. Only MISR pixels with full corresponding LiDAR coverage were considered. LiDAR and
MISR-HR pixels which included 30% or more urban areas or cultivated fields were discarded using
the 2013–2014 South African National Land-Cover (LC) map [84]. In addition, samples were filtered
out when RPV values were retrieved with a high cost function value. The cost function value is the
mathematical criterion that is minimized during the RPV model inversion procedure, and high values
indicate poor data quality [53]. The differences in cost function values between the two sites most
likely would result from varying environmental conditions which occurred during the two MISR
orbits acquired one a year apart. Samples (i.e., MISR-HR data at pixel level) were removed from
the two study sites when the cost value was larger than 40, across all the three RPV parameters and
for all the bands. This threshold was selected through the assessment of the cost value histograms
(Figure 3), considering published materials on the subject [85], and the necessary trade-off between
a conservative threshold value for ensuring high RPV retrieval quality and maintaining a sufficient
number of samples in the iSimangaliso Saint-Lucia site. The threshold used led to the removal of
131 pixels out of 6281 pixels for the Lowveld and 1000 pixels out of 2194 in iSimangaliso Saint-Lucia.
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We used the non-parametric Breiman–Cutler Random Forest (RF) algorithm [86] to model the
relationship between structural LiDAR data and MISR data. Parametric models (e.g., multi-linear
regression models) lack the capability to adequately characterize forest complexity and suffer
from various limitations, such as the assumption of linearity, sensitivity to overfitting, or
multicollinearity [87,88]. Non-parametric models, Support Vector Machines [89], Artificial Neural
Network [90] and Random Forest [91,92], have gained popularity due to their ability to model complex
non-linear and multidimensional data [93,94]. RF is generally more robust to outliers and flexible in
modelling relationships for large data sets with a large number of explanatory variables [91,95,96].

The Breiman–Cutler RF algorithm is built from bootstrap aggregation (bagging) and randomly
selected subsets of explanatory variables, which create an ensemble classifier. RF regressions are
easier to implement than optimally pruned decision trees, as they only require two user-defined
inputs: ‘ntree’ which is the number of RF trees built in the forest and ‘mtry’ which is the number
of possible splitting variables for each of the nodes [95,97]. The ‘mtry’ was set to the square root of
the number of variables [98] (i.e., MISR predictor variables for a given scenario). The ‘ntree’ was
optimized by testing decreasing numbers of trees in steps of 100, starting with the default value of
500, and assessing the minimum mean square error (MSE) [98,99]. This resulted in varying tree sizes
per model, determined by the MSE. The models were implemented with the open source R software
environment for statistical computing and graphics [100]. Training and test data were created via
a 60/40% random split of the complete dataset and of the individual forest vegetation type.

The performance of the models was assessed using the coefficient of determination (R2), the root
mean squared error (RMSE) (Equation (5)), the relative root mean square error (rRMSE) (Equation (6)),
the bias (Bias) (Equation (7)), and the relative bias (rBias) (Equation (8)). RMSE and rRMSE were
used as estimates of error or accuracy. The rRMSE and rBias were expressed in percentages in the
Equations (6) and (8) respectively. The RMSE provides an estimate of modelling errors expressed in the
original measurement units, and the rRMSE normalizes the RMSE according to the mean, allowing the
comparison of models in which errors are measured in different units [101].

RMSE =

√
∑n

i=1 (ŷi − yi )
2

n
(5)

rRMSE =
RMSE

y
× 100 (6)

Bias =
∑n

i=1(ŷi − yi )

n
(7)
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rBias =
Bias

y
× 100 (8)

where ŷi is the MISR estimated mean tree height or canopy cover, yi is the LiDAR measured mean tree
height or canopy cover, n is the number of observations and y is the mean LiDAR measured tree height
or canopy cover. An analysis of variance (ANOVA) was used to test for any statistical significance
between the models by comparing the critical F-value and the F-statistics. It was reported with the
subscript of F as the first and second degrees of freedom which gave us the critical F value.

A number of scenarios were investigated to address the objectives of the study. The scenarios
were based on different combinations of MISR-HR multi-spectral and multi-angular datasets, as well
as the RPV anisotropic parameters. All the Lowveld samples were categorized as savanna vegetation.
In the iSimangaliso St-Lucia site, the 2013–2014 Land Cover map mentioned in Section 3.4 was used to
separate samples into indigenous forests and plantation forests. We analyzed the following scenarios:

• Scenario 0: The baseline reference scenario was set up to establish the expected performance of
a RF model using a traditional approach based on the red and NIR spectral bands similar to that
provided by the nadir-viewing instruments such as the MODIS instrument. These two MISR-HR
datasets bands (at 275 m) have a similar pixel size to that of MODIS dataset (i.e., 250 m).

• Scenario 1: The first scenario considered all four spectral bands from the An (nadir) camera.
This scenario was carried out to establish whether adding more spectral bands from the
nadir-pointing cameras improves the predictive capacity of the RF model.

• Scenario 2: This second scenario sought to evaluate if angular data is superior to spectral data
for the retrieval of the forest parameters, or vice versa. We developed a set of four models; each
including all view angles for a single spectral band (i.e., one RF model for each of the MISR bands
and involving all 9 cameras).

• Scenario 3: The third scenario assessed the RF model performance constrained by data in each
view angle separately. It consisted of eight models including all spectral bands for each individual
forward and aft viewing angle (i.e., off-nadir camera: Af, Bf, Cf, Df, Aa, Ba, Ca and Da).

• Scenario 4: The fourth scenario was carried out to ascertain whether the combined use of all MISR
angular and spectral data (i.e., the 36 MISR-HR BRF data channels) improves the forest structural
parameter retrievals compared to any of the previous scenarios and if it does by how much.

• Scenario 5: The fifth scenario assessed if the anisotropic BRF parameters provide additional
benefits compared to the raw MISR-HR BRF data (scenario 4). Here, we tested four models,
three models which assessed the performance of each individual RPV model parameter (ρ0, k, Θ)
considering all spectral bands, and one additional model combining all three RPV parameters for
all spectral bands.

3. Results

This section documents the variability of the LiDAR-based structural parameters across the study
sites (Table 1), the performance of the retrieval of canopy structural parameters for all MISR-HR BRF
and RPV model scenarios, for all vegetation types combined (Tables 2 and 3, Figures 5–7), and for the
scenarios 1 and 4, for the three vegetation types separately (savanna, indigenous forest and commercial
forest plantations) (Figure 8).
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Table 1. Descriptive statistics for the two LiDAR structural parameters, mean tree height (Hmean) and canopy cover (CC) per forest vegetation type, and for all the
forest vegetation types together at 275 m spatial resolution.

Lowveld-Savanna
n = 6150

iSimangaliso St-Lucia Indigenous Forest
n = 439

iSimangaliso St-Lucia Forest Plantation
n = 755

Combined Samples
n = 7344

Parameters Hmean CC Hmean CC Hmean CC Hmean CC

(m) (%) (m) (%) (m) (%) (m) (%)

Mean 3.6 24.3 6.19 48.9 11.7 50 4.6 29.6
SD 0.8 14.2 2.51 23.8 3.9 16.4 2.9 19.5

Min 1.2 0 1.02 0.9 1 1.6 1 0
Max 8.4 71.9 14.2 90.6 21.4 90.9 21.4 90.9
CV 0.2 0.6 0.4 0.5 0.3 0.3 0.6 0.7

Table 2. Validation statistics of the predictive models for the mean tree height (Hmean) and canopy cover (CC) parameters at 275 m spatial resolution, using different
spectral-angular combination of MISR BRF bands (all forest vegetation types or combined samples from Lowveld and iSimangaliso Saint-Lucia) (n = 7344).

Target Variable Hmean (m) CC (%)

View-Angle a (Spectral Bands b)
No. of
Inputs R2 RMSE

(m)
rRMSE

(%) Bias rBias
(%)

No of
Inputs R2 RMSE

(%)
rRMSE

(%) Bias rBias
(%)

Scenario 0 Nadir (red and NIR) 2 0.56 1.97 42.80 0.06 1.19 2 0.37 15.28 51.12 0.83 2.76
Scenario 1 Nadir(All) 4 0.66 1.73 37.36 0.07 1.43 4 0.51 13.36 44.69 0.21 0.71
Scenario 2 All(blue) 9 0.65 1.76 38.03 0.04 0.84 9 0.50 13.42 44.89 0.41 1.36

Scenario 2 All(green) 9 0.67 1.69 36.70 0.03 0.67 9 0.55 12.75 42.66 0.42 1.41
Scenario 2 All(red) 9 0.66 1.71 37.07 0.05 0.97 9 0.55 12.82 42.87 0.21 0.69
Scenario2 All(NIR) 9 0.66 1.72 37.27 0.02 0.39 9 0.54 13.16 44.22 0.32 1.06

Scenario 3 Off_Nadir_Df(All) 4 0.65 1.75 37.90 0.04 0.82 4 0.44 14.57 48.95 0.18 0.59
Scenario 3 Off_Nadir_Cf(All) 4 0.62 1.81 39.15 0.03 0.69 4 0.44 14.32 47.90 0.25 0.83
Scenario 3 Off_Nadir_Bf(All) 4 0.64 1.77 38.27 0.05 1.13 4 0.47 13.99 46.80 0.54 1.80
Scenario 3 Off_Nadir_Af(All) 4 0.66 1.72 37.29 0.06 1.30 4 0.49 13.58 45.43 0.32 1.07
Scenario 3 Off_Nadir_Aa(All) 4 0.66 1.73 37.44 0.04 0.87 4 0.49 13.59 45.45 0.45 1.50
Scenario 3 Off_Nadir_Ba(All) 4 0.66 1.74 37.68 0.02 0.35 4 0.47 13.88 46.43 0.47 1.56
Scenario 3 Off_Nadir_Ca(All) 4 0.66 1.75 37.83 0.04 0.93 4 0.49 13.89 46.67 0.04 0.14
Scenario 3 Off_Nadir_Da(All) 4 0.61 1.86 40.35 0.03 0.65 4 0.47 14.15 47.54 0.28 0.94

Scenario 4 All(All) 36 0.73 1.53 33.14 0.01 0.30 36 0.64 11.54 38.58 0.27 0.91
a All = Df, Cf, Bf, An, Aa, Ba, Ca and Da cameras or view angles. b The color names ‘blue’, ‘green’, ‘red’ and ‘NIR’ refer to the corresponding spectral bands, All refers to all spectral bands.
Hmean stands for Mean tree height and CC for canopy cover. The highest R2 value for each scenario is shown in bold.
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Table 3. Validation statistics of the predictive models for the mean tree height (Hmean) and canopy cover (CC) metrics at 275 m spatial resolution, using different
parameters of the MISR RPV (all forest vegetation types or combined samples from Lowveld and iSimangaliso Saint-Lucia (n = 7344).

Target Variable Hmean (m) CC (%)

RPV Parameters a No of
Bands R2 RMSE

(m)
rRMSE

(%) Bias rBias
(%)

No of
Bands R2 RMSE

(%)
rRMSE

(%) Bias rBias
(%)

Scenario 5 ρ0 (All) 4 0.65 1.76 38.22 0.00 0.00 4 0.49 13.90 46.69 −0.05 −0.15
Scenario 5 k (All) 4 0.62 1.83 39.59 0.01 0.24 4 0.48 13.94 46.84 0.00 0.01
Scenario 5 Θ (All) 4 0.48 2.14 46.32 −0.01 −0.11 4 0.43 14.71 49.42 0.14 0.47
Scenario 5All (All) 12 0.71 1.61 34.84 0.01 0.10 12 0.60 12.19 40.96 0.04 0.13

a ρ0, = Rho parameter, k= the Minneart function, Θ = Theta parameter. All refers to all spectral bands. All also refers to all the RPV parameters (ρ0, k, Θ). Hmean = Mean tree height and
Canopy cover = CC. The highest R2 value for the scenario is shown in bold.
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3.1. LiDAR Based Strucutural Variability

The descriptive statistics (mean, standard deviation SD, minimum, maximum and coefficient of
variation or CV) of the two LiDAR-derived parameters extracted at 275 m pixel size are shown in
Table 1. The mean tree height (Hmean) followed an expected trend across the vegetation types with
an increasing value from savannas (3.6 m) to indigenous forests (6.2 m), and then forest plantations
(11.9 m). Savannas in the Lowveld are dominated by relatively small trees as indicated by the low
Hmean CV (0.2) and with a range of mean tree height varying between 1.2 and 8.4 m. As expected,
savanna was the most heterogeneous vegetation type with the lowest mean CC (22.3%) and the
highest CC CV (0.6), while the maximum CC only reached 70%. The maximum Hmean was 14.2 m
and 21.4 m for indigenous forests and forest plantations, respectively, in the iSimangaliso St-Lucia site.
The mean CC for plantations and indigenous forests was higher than savannas at around 50% with
a CV varying between 0.3 and 0.5. Plantations follow a typical growth cycle starting from bare ground
up to a closed tall canopy, with height and cover varying significantly across stands of different ages.
However, the CVs for both Hmean and CC in the indigenous forests were higher than expected (0.4 and
0.5, respectively), and were possibly due to two types of forest of different heights (i.e., Northern
Coastal Forest and Mangrove Forest). Hence, the data exhibited a bimodal histogram, with two peaks
for Hmean at the 4–5 m and 7–8 m and for CC at the 30–40% and 80–90% (Figure 4a,b). In addition,
the wide range of Hmean and CC for indigenous forests may be exacerbated by bordering pixels in the
Dukuduku forest fragmented landscape. The combined LiDAR datasets (all three vegetation types)
cover a wide range of CC (0 to 90%) and height (1 to 21 m). However, the savanna samples largely
dominate the dataset with 83.7% coverage, while indigenous and plantation forests make up 6.0% and
10.3% of samples, respectively.

3.2. Retriaval Performance from Nadir Reflectance

The Scenario 0 allows comparing a traditional approach using only the red and NIR spectral bands
at 275 m spatial resolution at nadir (e.g., MODIS) with the Scenario 1, which includes two additional
spectral bands (blue and green) at nadir. The results showed that for both Hmean and CC, the relative
error value improved significantly when the number of bands was increased, with a decrease of 12.7%
and 12.6% in rRMSE for Hmean and CC, respectively (Table 2). The performance improvement of
Scenario 1 model was found to be statistically significant (F2, 7340 = 19.49, p < 0.05), for both parameters.

3.3. Comparison of Spectral Information Versus Angular Performance

The goal here was to establish whether spectral variability is more significant than angular
variability for retrieving structural parameters, or vice versa. Thus, we compared Scenario 1—four
spectral bands observed at nadir—against Scenario 2—single spectral band and multi-angular data
(Table 2, Figure 5a). The Scenario 2 showed very similar performance when compared to the
Scenario 1. The multi-angular green band model showed the smallest rRMSE, for both Hmean and CC,
with a higher performance for Hmean (rRMSE = 36.7% versus 42.7% for Hmean and CC, respectively).
However, this was only marginally lower than the model using all four spectral bands observed at
nadir, with an improvement of 1.8% and 4.54% for Hmean and CC, respectively. The overall results
indicated a minimal difference in model results when using multiple spectral bands observed at nadir
versus multiple angular bands for a single spectral band. There was no statistical significant difference
between Scenario 2 and Scenario 1 obtained for both the parameters (F5, 7335 = 4.36, p > 0.05).
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view angles) for mean tree height (Hmean) and canopy cover (CC) and (b) Relative root mean square 
for MISR BRF models Scenario 1 (Nadir 4 bands, blue, green, red and NIR) and Scenario 3 (single 
view angles—Af, Bf, Cf, Df, Aa, Ba, Ca and Da—with all four spectral bands) for Hmean and CC. 
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parameters the best angular configurations were either the nadir (An) or a small view angle close to 
nadir (Table 2, Figure 5b). Only a marginal difference in estimation error was observed for the Hmean 
parameter for the Af camera (rRMSE = 37.29%) compared to the An nadir camera of Scenario 1 
(rRMSE = 37.36%). For the CC parameter, the An nadir camera produced a lower error than any of 
the off-nadir cameras. For both parameters, the model performance generally decreased as the view 
angle increased (further from the nadir) with no apparent difference for the fore and aft view angles 
(Scenario 3) (Figure 5b). The only statistically significant differences observed between Scenario 3 
was between the Cf and Da cameras, (F1,7340 = 254.30, p < 0.05) for both parameters. 
  

Figure 5. (a) Relative root mean square error (rRMSE) for MISR BRF models Scenario 1 (Nadir 4 bands,
blue, green, red and NIR) and Scenario 2 (single spectral bands—blue, green, red and NIR—with all
view angles) for mean tree height (Hmean) and canopy cover (CC) and (b) Relative root mean square
for MISR BRF models Scenario 1 (Nadir 4 bands, blue, green, red and NIR) and Scenario 3 (single view
angles—Af, Bf, Cf, Df, Aa, Ba, Ca and Da—with all four spectral bands) for Hmean and CC.

3.4. Comparison of Single Angular MISR Cameras

Scenario 3 assessed the contribution of each off-nadir viewing angles individually (both forward
and aft), including all four spectral bands, to determine their ability to predict the forest structural
parameters and analyze off-nadir information content. The results showed that for both structural
parameters the best angular configurations were either the nadir (An) or a small view angle close
to nadir (Table 2, Figure 5b). Only a marginal difference in estimation error was observed for the
Hmean parameter for the Af camera (rRMSE = 37.29%) compared to the An nadir camera of Scenario 1
(rRMSE = 37.36%). For the CC parameter, the An nadir camera produced a lower error than any of
the off-nadir cameras. For both parameters, the model performance generally decreased as the view
angle increased (further from the nadir) with no apparent difference for the fore and aft view angles
(Scenario 3) (Figure 5b). The only statistically significant differences observed between Scenario 3 was
between the Cf and Da cameras, (F1, 7340 = 254.30, p < 0.05) for both parameters.
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3.5. Contribution of All 36 MISR Data Channels

The addition of all off-nadir bands to the nadir-only bands (Scenario 4, all 36 MISR data channels)
showed a significant improvement of the predictive model performances compared to the nadir two
spectral bands only (Scenario 0) or to the nadir four spectral bands (Scenario 1). Scenario 4 improved
the relative rRMSE performance by 22% and 25% for Hmean and CC, respectively, compared to Scenario
0, and by 11.3% and 13.7% compared to Scenario 1 (Figure 6a). The highest coefficient of determination
were also obtained for Scenario 4 with 0.73 and 0.64 for Hmean and CC, respectively (Table 2, Figure 5).
This compared to the modest prediction improvement obtained between Scenario 1, and Scenario
2 suggests that the performance of multi-angle data is enhanced when using multispectral data.
The model rBias decreased marginally for Hmean from 1.2–1.4 to 0.3% and from 2.8 to 0.9% for CC.
While we obtained a lower rBias for Hmean, in the scatterplot of the validation model we still observed
an overestimation of the prediction at the lower end of Hmean or CC, and an underestimation at the
higher end (Figure 6b,c). The differences between the Scenario 0 and Scenario 4 models, and the
Scenario 1 and Scenario 4, were both statistically significant and for both parameters (F34, 7308 = 1.63,
p < 0.05; F32, 7308 = 1.63, p < 0.05).

3.6. Contribution of MISR-HR RPV Model Paramters

Scenario 5 evaluated the effectiveness of the RPV parameters in predicting the forest structural
variables (Figure 7). We first assessed the RPV parameters (ρ0, k, Θ) separately for all four spectral
bands. The ρ0, parameter produced the highest correlation and lowest estimation errors, with R2 = 0.65,
rRMSE = 38.22% and R2 = 0.47, rRMSE = 46.69% for Hmean and CC, respectively (Figure 6a,b).
The poorest performances were obtained for Θ with R2 = 0.48, rRMSE = 46.32% and R2 = 0.43,
rRMSE = 49.42% for Hmean and CC, respectively. The best RPV model resulted from the combined
use of all 12 MISR-HR RPV parameters for both Hmean and CC parameters, with rRMSE = 34.84%
for Hmean and rRMSE = 40.96% for CC (Figure 7b). The 12 MISR-HR RPV parameter model did not
perform as well (statistical significant p-value < 0.05) as the MISR-HR BRF 36 band model (Scenario 4)
and produced a relative rRMSE of 5.1% and 6.2% higher for Hmean and CC, respectively. The Hmean

and CC had similar trends and patterns across all scenarios with Hmean models generally performing
better than CC models. Overall, for the combined forest type dataset the best model was obtained for
the Hmean parameter using the 36 BRF data channel (R2 = 0.73, rRMSE = 33.14%).

3.7. Model Performance across Vegetation Types

Overall, across all the vegetation types, there was a consistent model improvement with the
addition of multiple off-nadir viewing angles in Scenario 4 compared to Scenario 1 (Figure 8).
Nadir looking models in Scenario 1 produced consistently higher estimation errors and lower
correlation for all the vegetation types individually. The benefits of the off-nadir viewing angles were
higher for the savanna and indigenous forest models, where the estimation errors were consistently
reduced by 25–35% for both parameters. The Hmean for savanna and CC for indigenous forest
vegetation yielded the lowest estimation errors with rRMSE of 31.28% and 38.19%, respectively,
and with the highest correlation R2 of 0.67 and 0.57, respectively. The poorest performances were
consistently obtained for the forest plantation models for both scenarios (e.g., highest rRMSE = 79%
for Scenario 1) (Figure 8b).
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and NIR), Scenario 1 (Nadir 4 bands, blue, green, red, and NIR) and Scenario 4 (all 36 data channels, all view angles and spectral bands). (b) Density scatter plots of 
the validation models of observed versus predicted for all forest types (Lowveld savanna and iSimangaliso Saint-Lucia forest plantations and indigenous forests), 
Scenario 4, for Hmean and (c) for CC. The solid blue line is the regression line and the dashed red line indicates the 1:1 relationship. 

Figure 6. (a) Relative root mean square error for MISR-HR BRF models for the mean tree height (Hmean) and canopy cover (CC) for Scenario 0 (Nadir 2 bands, red and
NIR), Scenario 1 (Nadir 4 bands, blue, green, red, and NIR) and Scenario 4 (all 36 data channels, all view angles and spectral bands). (b) Density scatter plots of
the validation models of observed versus predicted for all forest types (Lowveld savanna and iSimangaliso Saint-Lucia forest plantations and indigenous forests),
Scenario 4, for Hmean and (c) for CC. The solid blue line is the regression line and the dashed red line indicates the 1:1 relationship.
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Figure 7. (a) Relative root mean square error and (b) coefficient of determination for Scenario 5 (MISR-HR RPV model parameters) for RPV model parameters ρ0 = 
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4 (all 36 data channels, all view angles and spectral bands) of the estimation of mean tree height (Hmean) and canopy cover (CC) across the three forest types
(savanna, plantations and indigenous forests).
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4. Discussion

In this study, we investigated the use of MISR High-Resolution (HR) data products at 275 m spatial
resolution—the 36 bi-directional reflectance factor data channels and 12 Rahman-Pinty-Verstraete
model parameters (ρ0, k, Θ in each of the 4 spectral bands)—to retrieve vegetation structural variables
for different forest types, using Random Forest models. This section discussed several findings
regarding the performance of multiple scenarios including the BRF multi-spectral nadir (Scenario 0
and 1), multi-angular and single spectral (Scenario 2), single off-nadir viewing angle (Scenario 3),
combined multi-spectral and multi-angular (Scenario 4), as well as the RPV models (Scenario 5) based
on the combined samples from the Lowveld and iSimangaliso St-Lucia sites. First, the RF model results
based on the multi-spectral MISR-HR BRF measurements at nadir (Scenario 1 indicated considerable
improvement over the traditional two bands approach (Red and NIR only, Scenario 0)) for both
vegetation structural parameters. However, the multi-spectral nadir only (Scenario 1) compared to
the single-spectral multi-angular model (Scenario 2) showed that equivalent results can be obtained
with either spectral or directional data for both mean tree height and canopy cover. This finding was
consistent with findings reported by other studies, that single band multi-angular information is not
sufficient to estimate vegetation structural parameters [90,102,103].

The results obtained for the single off-nadir viewing angle and multi-spectral model (Scenario 3)
for both vegetation structural parameters generally showed comparable results to the multi-spectral
nadir only looking model (Scenario 1). We also observed that small off-nadir angles (i.e., Af) yielded
lower errors than the off-nadir models with larger angles. This could be attributed to the fact that at
nadir, or small off-nadir viewing angles, a greater proportion of gaps is visible which would result
in increased reflectance as well as more structural information due to the higher visibility of the
shading associated to woody components closer to the ground. Inversely, at larger viewing angles,
the canopy gaps and shadows are less visible due to a change of perspective (side looking) and the
canopy surface could be perceived as being smoother and more homogenous irrespective of height
and cover [28,104]. The low accuracies obtained for both the single band multi-angle or single off-nadir
multi-spectral models supported findings from other studies [90,103,105,106], that suggested that
using only spectral or single angular information is less accurate in the estimation of vegetation
structural parameters, this despite the retrieval of the MISR data at 275 m pixel size. On the one
hand spectral reflectance data does not directly measure three-dimensional canopy structure hence
it cannot provide explicit information on it [107,108], but rely on indirect effects such as shadowing.
On the other hand single view data is limited in the estimation of vegetation structural data due to the
forests’ three-dimensional characteristics (i.e., size, shape of canopies, position of trees) which result in
varying reflection and distinctive pattern of shadows with varying view angles [23,25]. Various studies
highlighted that single-view is not adequate in capturing forest structure as compared to multi-angular
information [44,90,103].

The use of all the spectral and directional data (the 36 MISR data channels) in a single model
yielded the highest estimates for both the mean tree height and canopy cover. This result was found to
support several studies, which found improved retrieval of vegetation structural parameters when
using multiple off-nadir angles with multi-spectral bands compared to using spectral data only at
nadir [44,50,109].

This finding confirms the main hypothesis that increasing the number of off-nadir angular
measurements from the newly processed high-resolution MISR MSMD data would yield improved
canopy structural parameters estimates and lower estimation errors as compared to the nadir
only measurements.

The MISR-HR BRF 36 data channels estimation model performance was slightly better,
but comparable to the MISR-HR RPV all bands (12 bands) models for both forest structure parameters.
The results showed a small rRMSE (1–2%) difference between these two models and differences
were significant. In addition, the use of a non-parametric machine learning model such as Random
Forest may have assisted to extract the non-linear anisotropic information present in the BRF data
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and synthesized by the RPV parameters. Hence the study supports the findings that RPV parameters
contain vegetation structural information [26,48,55], which can be used in vegetation structural
studies. These results could warrant making use of all the MISR-HR RPV all bands (12 bands)
over MISR-HR BRF 36 data channels MISR-HR BRF 36 data channels which would mean data
dimensionality reduction.

Each vegetation types had important difference in the heterogeneity of cover and height, which
influenced the per vegetation type model results. The savanna (a spatially heterogeneous and open
canopy environment) modelling results, were the best of all the three forest types, with the lowest
estimation errors and highest coefficient of determination for Hmean, rRMSE = 32.28%, and R2 value
of 0.67 (Figure 8a,b). A possible explanation for the better model results in the savanna could be
due to its open and heterogeneous canopy structure, resulting in shadows cast by the trees on the
grassy background providing a stronger anisotropy signal. These conditions would not be prevalent
at the opposite side of the woody canopy cover range, either at closed or no woody canopy cover.
The indigenous forest exhibited fair results for the CC parameter which had the lowest estimation
error (rRMSE = 38.19%) and an R2 value of 0.57. However, the generated map (Figure 9) shown
that it is difficult to obtain high accuracy in extracting height classes in these savanna environments
in South Africa. The limited high precision in the derived map (Figure 9), could simply be due to
scale of estimation as a result of the spatial resolution of the data. Nevertheless, the overall findings
support the potential use and further research of multi-angular multispectral data in the estimation
of vegetation structural parameters at regional scales assuming data continuity (i.e., no data gaps)
but might not be the best data to be used within low cover heterogeneous vegetation types like the
savannas. However, the models for each vegetation type and both parameters resulted in considerably
larger relative estimation errors than in the combined sample models.

Amongst the two estimated structural parameters, the mean tree height was retrieved with the
highest accuracy (lower error level and higher R2) regardless of the tested scenarios. Similar results
have been reported in other studies, for instance [44]. These results could possibly be due to the
three-dimension nature of tree height better captured by the multi-angular data. Hence, mean tree
height maps were produced at 275 m spatial resolution for both study sites, using the Scenario 4
(MISR-HR BRF 36 data channel) predictive model due to its best performance. The map in Figure 9a
(Lowveld savanna area) and 10a (iSimangaliso St-Lucia site (i.e., indigenous forest and forest
plantatons), illustrates the spatial distribution and pattern of the estimated mean tree height across
the MISR image Blocks (Path 168 Block 110 and Path 167 Block 113). In both the maps, there are grey
regions which denote missing data in the MISR data. These data gaps are as a result of when the MISR
aerosol/ surface retrievals failed as a result of cloud or other atmospheric anomalies (i.e., topographic
shading). The maximum estimated mean tree height in and around the Lowveld savanna was about
~12 m and in the iSimangaliso St-Lucia site was about ~17 m. To assess the performance of the modeling
results, we compared the MISR estimates with the 2013–2014 South African National Land-Cover
(LC) map [84], and the 2011–2014 Sub-Saharan African tree height product (named HHansen, as per
its producer [8]). The LC map and the HHansen were produced at 30 m spatial resolution, and thus
both were resampled to 275 m resolution using the nearest neighbor interpolator. The LC map was
reclassified into proxies of vegetation height where bare ground and grassland were assigned a low
tree height, shrubland and woodland were assigned a medium tree height and forest plantations
and indigenous forests were assigned a high tree height. Water bodies, mines, and settlements were
masked and considered as non forest classes. The HHansen map only consider trees above 5 m only,
and thus is generally appropriate to identify the dominant dense woody formation of medium (5–10 m)
to tall (>10 m) height.

The MISR Hmean product generally illustrates the expected tree height gradient patterns of the
study sites well. The gradient start from the widely dispersed short trees of the savanna Lowveld
area (Figure 9a) to the medium to tall dense trees in indigenous coastal forests and commercial
forest plantation areas (Figure 10a) in the iSimangaliso Saint-Lucia area. In the Lowveld savanna
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area (Figure 9a), the red box denotes the area of interest (AOI) which is enlarged in Figure 9b–d for
discussion. Towards the eastern side within the AOI (Figure 9b), a general agreement of low height
1–5 m was observed. This resembles areas with very sparse and low height woody plants due to land
use pressure from the surrounding villages (in and around the Kildare and Justicia areas) [58,110].
On the other hand, tree height is usually 3–6 m in these savanna areas [111], which is also observed in
the histogram (Figure 4a). However, outside the AOI on the eastern side of the transect (Figure 9a),
it is noteworthy that discrepancies exist across the predominantly basalt geology. The estimated
tree heights are overestimated in these areas under low density cover with fine leaf and low height
vegetation (the sparse vegetation to no woody). The estimated tree heights are overestimated in these
areas under low density cover with fine leaf and low height vegetation (the sparse vegetation to no
woody vegetation (dominated mostly by grassland) [112]. In the south of Xanthia in the Bosbokrand
Nature Reserve (Figure 9b), higher trees (>6 m) were estimated which could be resulting from various
biotic factors (i.e., absence of mega-herbivore and fuelwood extraction) in correspondence to protected
areas. This was also in agreement with HHansen map, with tree height >5 m observed under the high
density cover.

In the iSimangaliso Saint Lucia site, in the dense vegetation areas south east of the AOI
(Figure 10b–d—in and around Dukuduku and along coastal forest), we observed a generally good
concistency between estimated mean tree height (7–17 m), LC map (medium-high) and HHansen map
(>12 m). In the case of the plantations, towards the western area in the AOI (Figure 10b, Mtubatuba
area) a general agreement in the estimated mean tree height (higher than 8 m) was observed. This was)
well captured by HHansen map (dominated by tree height >5 m).

The general MISR Hmean underestimation is visible in Figure 6b, in known areas of closed canopy
and tall trees. This MISR Hmean underestimation could possibly be due to saturation which seems to
occur at heights above 15 m (Figure 4b) [113–115]. The saturation of signal is a known phenomenon
in optical sensors, resulting from poor interaction between spectral data and higher volumes with
closed canopy of optical sensors. It is, important to acknowledge the possible challenges of our study:
(1) Low height range across the vegetation forest types and (2) the consistent overestimation of the
height vegetation in low density cover areas. Considering that the savanna is the dominating tree
vegetation type in South Africa, it becomes a limiting factor. However, due to the potential the results
showed in this study future work should look at the improvement of the estimation of these structural
parameters (i.e., test other models, include other earth observation data) as well as reduce the gaps in
the MISR data.
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extent covering the Lowveld savanna area derived from MISR-HR BRF 36 data channels. The grey 
areas denote the gaps in the MISR coverage. The red box (1) in (a) denotes the area of interest (AOI) 
for discussion, where detailed maps are shown in (b). Estimated MISR-HR BRF tree height, in (c) 
South African National Land-Cover (LC) map reclassified [84], and in (d) Sub-Saharan African forest 
tree height, with grey areas which denotes gaps as a result of the <5 m tree height threshold in the 
product from [8]. 

Figure 9. (a) Estimated tree height at 275 m spatial resolution across the MISR-HR Path 168 Block
110 extent covering the Lowveld savanna area derived from MISR-HR BRF 36 data channels. The grey
areas denote the gaps in the MISR coverage. The red box (1) in (a) denotes the area of interest (AOI)
for discussion, where detailed maps are shown in (b). Estimated MISR-HR BRF tree height, in (c) South
African National Land-Cover (LC) map reclassified [84], and in (d) Sub-Saharan African forest tree height,
with grey areas which denotes gaps as a result of the <5 m tree height threshold in the product from [8].
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d). The background color maps represents (b) Estimated MISR-HR BRF tree height, (c) South African 
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Figure 10. (a) Estimated tree height at 275 m spatial resolution across the MISR-HR (Path 167 Block
113) extent covering the iSimangaliso St-Lucia area (commercial forest plantations and indigenous
forest) derived from MISR-HR BRF 36 data channels. The grey areas denote the gaps in the MISR
coverage. The red box denotes the area of interest (AOI) for discussion, shown enlarged in letters (b–d).
The background color maps represents (b) Estimated MISR-HR BRF tree height, (c) South African
National Land-Cover (LC) map reclassified [84], (d) Sub-Saharan African forest tree height, with grey
areas which denotes gaps as a result of the <5 m tree height threshold in the product from [8].

5. Conclusions

This study investigated the capabilities of the newly processed high resolution (HR)
multi-angular and multi-spectral MISR data products, Bidirectional Reflectance Factors (BRF) and
Rahman–Pinty–Verstraete (RPV) model parameters, to estimate mean tree height and canopy cover
for the main South African forest types. To date, regional-scale vegetation structural baseline datasets
are lacking in South Africa, and the use of multi-angular data in semi-arid regions has been limited.
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A number of scenarios were tested based on different spectral and angular band combinations,
e.g., comparing multi-spectral and multi-angular BRF data channels to multi-spectral nadir only data,
single-off nadir viewing multi-spectral data as well as the RPV model parameter data, for combined
and individual forest types. For the combined forest types, it can be concluded that multi-spectral
and multi-angular data were more effective in the estimation of mean tree height and canopy cover,
than multi-spectral data alone. The most improved estimation accuracy amongst the three forest types
was obtained in the savanna region for mean tree height. In addition, the RPV model parameters (ρ0, k,
Θ) results showed somewhat poorer performance than the BRF 36 data channel estimation models,
but were nevertheless statistically significant. The results from the new MISR HR products (either the
off-nadir information or the RPV parameters) provides some level of confidence in the potential of this
freely available multi-angle data towards vegetation structural studies at a regional scale. MISR HR
products can provide a useful baseline for long-term monitoring due to the significant amount of data
available from MISR; indeed, MISR records extend back to the year 2000, close to two decades. To fully
exploit the potential of the HR MISR data, more research is warranted using multi-temporal data to
make use of phenology information, 2008). In the estimation of tree height, the gap in the data has
shown to be difficult to obtain a continuous high accuracy in tree height estimation. Thus, reducing
the data gaps in the MISR products (i.e., multiple orbit data) remains an important future milestone
towards continuous wall-to-wall vegetation structural parameter estimations [28]. Furthermore, the use
of high-resolution data sets (i.e., synthetic aperture radar data) could help to account for the sub-pixel
heterogeneity and improve the structural estimation results in combination the multi-angular data.

To date in South(ern) Africa’s savanna and indigenous forest, the only up-to-date tree height
information is in the form of global products which are not locally calibrated and preclude short
vegetation (i.e., below 5 m). Hence, the novelty contained in this study consists in: (a) Developing
an approach in which MISR-HR products are ‘calibrated’ to deliver the only vegetation height at
regional scale in South Africa (encompassing the savanna and indigenous forest), (b) corroborating the
findings of other studies confirming that the use of both multi-spectral and multi-directional data is
more reliable than relying on spectral data alone, for the first time using the newly processed MISR
data at high resolution, and (c) comparing and evaluating the differences and similarities of using
multi-angle multi-spectral or the RPV multi-angle outcome products, and showing that, at least in this
case, the information content is not exactly equivalent.
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