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Abstract: Due to sensor limitations, hyperspectral images (HSIs) are acquired by hyperspectral sensors
with high-spectral-resolution but low-spatial-resolution. It is difficult for sensors to acquire images
with high-spatial-resolution and high-spectral-resolution simultaneously. Hyperspectral image
super-resolution tries to enhance the spatial resolution of HSI by software techniques. In recent years,
various methods have been proposed to fuse HSI and multispectral image (MSI) from an unmixing
or a spectral dictionary perspective. However, these methods extract the spectral information from
each image individually, and therefore ignore the cross-correlation between the observed HSI and
MSIL. It is difficult to achieve high-spatial-resolution while preserving the spatial-spectral consistency
between low-resolution HSI and high-resolution HSI. In this paper, a self-dictionary regression based
method is proposed to utilize cross-correlation between the observed HSI and MSI. Both the observed
low-resolution HSI and MSI are simultaneously considered to estimate the endmember dictionary
and the abundance code. To preserve the spectral consistency, the endmember dictionary is extracted
by performing a common sparse basis selection on the concatenation of observed HSI and MSI. Then,
a consistent constraint is exploited to ensure the spatial consistency between the abundance code of
low-resolution HSI and the abundance code of high-resolution HSI. Extensive experiments on three
datasets demonstrate that the proposed method outperforms the state-of-the-art methods.

Keywords: hyperspectral image super-resolution; data fusion; self-dictionary regression

1. Introduction

With the developments of hyperspectral sensors, hyperspectral images (HSIs) have been widely
used in numerous applications [1-3], such as remote sensing classification [4-6], change detection [7]
and target detection [8]. A hyperspectral sensor captures high-spectral-resolution information
by constructing a continuous radiance spectrum for every pixel in the HSIs. However, due to
the instrument limitation, it is difficult for hyperspectral sensors to simultaneously acquire
high-spatial-resolution HSI. Moreover, the low-spatial-resolution in HSI will result in mixed pixels and
greatly degrade the further processing in the remote sensing applications [9,10]. Therefore, enhancing
the spatial-resolution of HSI has become an important issue in the remote sensing community [11-13].

To mitigate this issue, HSI super-resolution [14,15] has been investigated to enhance the
spatial-resolution of HSI. As a software technique, HSI super-resolution does not modify
the sensor array or the imaging optics. HSI super-resolution is supposed as an inverse
problem [11,16,17]: the original high-spatial-resolution HSI can be recovered from the low-resolution
observations [14,18,19]. Fundamentally, the missing spatial information in low-resolution HSI can
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be compensated by utilizing the prior knowledge in a high-resolution coincident image of the same
scene [20], such as panchromatic image (PAN), RGB image and multispectral image (MSI).

Recently, many HSI super-resolution methods [12,21-23] have been proposed to fuse
low-resolution HSI with a high-resolution coincident image. An overview of recent state-of-the-art
hyperspectral and multispectral image fusion methods can be found in [23,24]. A general trend in
the existing methods is to exploit the spatial information by spectral mixture analysis (hyperspectral
unmixing) [25]. In spectral mixture analysis, the HSI can be described by a mixture of some “pure”
spectral signatures (the so-called endmembers). These spectral signatures are the spectra of the
underlying materials presented in the observed scene. Based on the spectral mixture analysis,
the original high-resolution HSI can be unmixed into endmember dictionary (or endmember spectra)
and abundance code (or abundance matrix). The endmember dictionary denotes the “pure” spectral
signatures, while the abundance code indicates the proportions of endmember spectra within each pixel.
The high-resolution HSI can be estimated by combining the endmember dictionary and the abundance
code. In this way, HSI super-resolution is transferred to estimate the endmember dictionary and the
abundance code. The main limitation of these super-resolution methods is that their performance
largely depends on the accuracy of estimating endmember dictionary (or endmember spectra) and
abundance (or code of the dictionary) [26,27].

In the past several decades, a lot of research has been made to develop the efficient estimation of
the endmember dictionary and the abundance code. Because the MSI captures the same scene with
HSI, the endmember dictionary or the abundance code should be the same [27,28]. The endmember
dictionary is extracted from the low-resolution HSI and the abundance code is estimated by the
spatial fractional abundances of MSI. For example, Yokoya et al. proposed coupled nonnegative
matrix factorization (CNMF) to estimate the endmember dictionary and abundance code from HSI
and MSI, respectively. To efficiently estimate the endmember dictionary and the abundance code,
various constraints are considered such as spatial smoothness, the nonnegativity and sparsity
constraints. Simoes et al. [26] proposed a convex subspace-based formulation by considering a
total variation abundance regularization. Zou et al. [29] proposed a double regularization HSI
super-resolution by introducing the spatial structure information and the nonnegative factorization.
Veganzones et al. [27] proposed a local dictionary learning to exploit locally low rank property
for HSI super-resolution. Zhao et al. [19] proposed a joint spatial and spectral regulation for HSI
super-resolution. Dong et al. [30] proposed a non-negative structured sparse representation to exploit
the spatial correlation among the learned sparse codes. However, most methods are inspired by
a simple assumption [26,27,31]: the spectral information extracted from one of the images should also
be able to explain the other one. The hyperspectral super-resolution image can be reconstructed by
combining the endmember dictionary and the abundance code. In these conventional dictionary-based
methods, the endmember dictionary is extracted from the low-resolution HSI and the abundance code
is estimated by the spatial fractional abundances of MSI. Only the observed low-resolution HSI is
used to estimate the endmember dictionary and the observed MSI is used to estimate the abundance
code. These methods usually ignore the cross-correlation between the observed HSI and MSI, which is
helpful in obtaining high quality reconstructed images.

In this paper, a self-dictionary sparse regression (SDSR) method is proposed to fuse the HSI and
MSI. Both the observed low-resolution HSI and MSI are simultaneously considered to estimate the
endmember dictionary and the abundance code. The proposed method first extracts the endmember
dictionary by self-dictionary sparse regression, and then estimates the abundance code by constrained
least squares and consistent constraint. (1) To extract the endmember dictionary, the proposed
method performs a common sparse basis selection on the concatenation of observed HSI and MSI.
The endmember dictionary is learned by finding a smallest (or sparse) subset of spectral signatures to
represent the whole set of spectral signatures. In particular, the learned endmember dictionary can
preserve the spectral consistency between the observed HSI and MSI, since HSI and MSI share the same
sparse basis. (2) Although the abundance code can be estimated based on the learned endmember
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dictionary, directly estimating the abundance code of the MSI is difficult. This is because the number
of multispectral bands is usually lower than the number of induced endmembers, estimating the
abundance of MSI is an ill-posed problem [27]. To improve the estimation of the abundance code, a
consistent constraint is exploited to ensure the spatial consistency between the abundance code of
low-resolution HSI and the abundance code of high-resolution HSI. This means that spatial fractional
abundances in the corresponding spatial position should coincide.

Generally, the conventional dictionary-based HSI super-resolution method consists of four steps
(see in Figure 1). Given the observed HSI, (1) the first step is to learn the endmember dictionary of HSI
from the observed HSI. (2) Then, the endmember dictionary is projected onto the multispectral domain
to estimate the endmember dictionary of MSI by a spectral response. (3) The projected endmember
dictionary is used to estimate the abundance code from the observed MSI. (4) Finally, the endmember
dictionary of HSI and the abundance code of MSI are combined to reconstruct the high-resolution HSI.
In these conventional methods, the spectral responses of the sensors are assumed known. For example,
Wei et al. [32] proposed HSI super-resolution by jointly estimating the endmember signatures and
abundances from the observed HSIs. The spectral response of the multispectral sensor is assumed to be
known and available. Ghasrodashti et al. [33] proposed an HSI super-resolution by combining spectral
unmixing and Bayesian sparse. The spectral response is estimated from the observed images using the
method presented in [26]. Guerra et al. [34] proposed a computationally efficient algorithm for fusing
multispectral and hyperspectral images by incorporating the spatial details of the MSI into the HSI.
It is also assumed that the spectral response of the multispectral sensor is known. The common point
of these methods is to estimate the endmember dictionary of HSI and the endmember dictionary of
MSI alternatively. In this paper, the endmember dictionaries are estimated by performing a common
sparse basis selection on the concatenation of observed HSI and MSI. Both the endmember dictionary
of HSI and the endmember dictionary of MSI are estimated jointly. In other words, the endmember
dictionary of MSI can be estimated without requiring a spectral response.

1 F
=

Endmembers U

Obéeved HSI

Estimated HSI

Observed MSI Fndmembers TU Abundance V

Figure 1. The conventional dictionary-based method for HSI super-resolution. (1) The first step is to
learn the dictionary from the observed hyperspectral image. (2) Then, the dictionary is projected onto
the multispectral domain by a spectral response. (3) The projected dictionary is used to estimate the
code from the observed MSI. (4) Finally, the dictionary and the code are combined to reconstruct the
hyperspectral super-resolution image.

Consequently, the proposed method includes two main contributions:

(1) A self-dictionary regression is proposed to identify the endmember dictionary on the
concatenation of observed HSI and MSI. The learned endmember dictionary can preserve the spectral
consistency between the observed HSI and MSI, since HSI and MSI share the same sparse basis.

(2) A consistent constraint is proposed to preserve the spatial consistency between low-resolution
HSI and high-resolution HSI. The abundance code is estimated by constrained least squares and
consistent constraint.
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This paper is organized as follows: the HSI super-resolution problem is formulated in Section 2.
Section 3 overviews the conventional HSI super-resolution methods. Then, Section 4 presents the
proposed method. Section 5 details the experimental results. Section 6 concludes this paper.

2. Related Work

In recent years, many HSI super-resolution methods have been proposed to enhance the
spatial-resolution of HSI. A general solution is to fuse the low-resolution HSI with a high-resolution
coincident image of the same scene. According to the coincident images, most methods can be
categorized into two groups: the pan-sharpening methods and the HSI-MSI fusion methods.

The pan-sharpening methods enhance the spatial-resolution of HSI by fusing the low-resolution
HSI with a corresponding high-spatial resolution panchromatic image (PAN). Due to the
high-spatial-resolution, PANs have been widely used to enhance the resolution of MSI, known as MSI
pan-sharpening. With the increasing availability of hyperspectral sensors, PANs are now extending to
enhance the resolution of HSI, known as HSI pan-sharpening [23]. Naturally, HSI pan-sharpening can
be handled by the popular MSI pan-sharpening methods, such as component substitution (CS) [35] and
multiresolution analysis (MRA) [36]. To obtain the high-resolution HSI, the CS methods substitute the
spatial component of HSI with PAN. The MRA methods inject the spatial details of PAN into HSI. In the
CS methods, the HSI is first separated into spatial and spectral component. Subsequently, the fused
image is obtained by substituting the spatial component with the PAN. The MRA methods first
generate the spatial details by a multiresolution decomposition of the PAN. Then, the generated details
can be injected into the HSI. The CS methods may provide high spatial quality, but compromise spectral
distortion. The MRA methods can preserve spectral consistency but deteriorate the spatial quality.

The HSI-MSI fusion methods obtain the high-resolution HSI by combining an HSI with a
high-spatial-resolution MSI because the MSI provides both the spatial and the spectral information.
The HSI-MSI fusion methods are significantly more difficult and advantageous than the pan-sharpening
methods. To fuse the HSI and MSI, many methods have been proposed in the recent decades:
frequency-based methods and dictionary-based methods (unmixing or spectral mixture analysis).
The frequency-based methods transform the original images (HSI and MSI) into the frequency
components, and combine the wavelet coefficients in the transform domain. More recently,
the dictionary-based methods uses spectral mixture analysis to enhance the spatial resolution of
HSI. Based on the spectral mixture analysis, the original high-resolution HSI can be unmixed into
endmember dictionary (or endmember spectra) and abundance code (or abundance matrix). In these
methods, the high-resolution HSI can be fused by combining the estimated endmember dictionary
and abundance code. Much research has been conducted to develop the efficient estimation of the
endmember dictionary and the abundance code. Furthermore, various constraints [19,27,29,30,37] are
considered to efficiently estimate the endmember dictionary and the abundance code, such as spatial
smoothness [26], the nonnegativity and sparsity constraints [37]. Simoes et al. [26] proposed a convex
subspace-based method by considering a total variation abundance regularization. Akhtar et al. [37]
presented a constrained sparse representation by imposing non-negativity and the spatial structure
for HSI super-resolution. Zou et al. [29] proposed a double regularization HSI super-resolution
by introducing spatial structure information and the nonnegative factorization. Lanaras et al. [38]
proposed a hyperspectral super-resolution method by jointly unmixing the two input images into pure
reflectance spectra of the observed materials. Veganzones et al. [27] proposed a local dictionary learning
method to exploit the low rank property for HSI super-resolution. Zhao et al. [19] proposed a joint
spatial-spectral regulation to utilize the nonlocal similarities for HSI super-resolution. Dong et al. [30]
proposed a non-negative structured sparse representation to exploit the spatial correlation among the
learned sparse codes. Mei et al. [21] proposed a novel three-dimensional full convolutional neural
network for hyperspectral super-resolution. The main advantage of the dictionary-based methods is
physically reasonable and effective for HSI-MSI fusion.
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3. Problem Formulation

Let X € RN denote an HSI with L spectral bands (rows of X ) and N pixels (columns of
X'). In this paper, the goal of HSI super-resolution is to recover the original high-resolution HSI
X € REXN from two degraded observations of X: a low-resolution HSI 'Y, € RL*" and a high-resolution
MSIL Y,, € RI*N. For these observations, n < N, and | < L, which make the estimation of a
super-resolution HSI X severely ill-posed. In particular, both observations Yj and Y, can be considered
to be mapping of the original HSI:

Yy = ¢n (X), Y = ¢um (X), )
where @, : REXN — R and ¢y, : REXN — RIXN_ Generally, MSI Y, can be approximated as:
Yo ~ TX, 2

where T € R/*L is a transformation matrix or spectral response. This means the spectral
quantization from the high-spectral-resolution image (HSI) to the low-spectral-resolution image (MSI).
In experiments, the spectral response is often assumed to be known [26,31].

The HSI can be described by a mixture of some pure spectral signatures [8,9]. If the spectrum at
each pixel is assumed to be a linear combination of several endmember spectra, the high-resolution
HSI is formulated as:

X="UV, (©)]

where U € RLX7 is the spectral dictionary and denotes the spectral signatures of the endmembers.
V € RPN is the abundance code and denotes the proportions of endmember spectra at each pixel. In
addition, p represents the number of endmember spectra.

If U and V are known or estimated, an estimation of X can thereby be obtained by Equation (3).
This reasoning led to the conventional dictionary-based method for HSI super-resolution [27,31]
(see in Figure 1). Given the observed HSI Y}, (1) the first step is to learn the dictionary U from the
observed HSI. (2) Then, the dictionary is projected onto the multispectral domain by a spectral response
T. (3) The projected dictionary TU is used to estimate the code V from the observed MSI Y. (4) Finally,

the dictionary U and the code V are combined to reconstruct the high-resolution HSI X.

As shown in Figure 1, the success of the dictionary-based methods depends fundamentally on
the first three procedures. Many recent efforts have been made in the past few years to develop the
efficient estimation of U, T and V, related to the first three procedures—for example, Refs. [39,40] for
U, Refs. [26,27] for T, and Refs. [27,30] for V.

4. Proposed Method

The available dictionary-based HSI super-resolution methods usually obtain dictionary U from the
observed low-resolution HSI and estimate the code V from the observed MSI. However, these methods
usually ignore the cross-correlation between the observed HSI and MSI, which is helpful in obtaining
high quality reconstructed images. In this section, a novel HSI super-resolution method is presented
from the perspective of self-dictionary sparse regression [41]. A sparsity regularization is introduced
to recover the spectral dictionary (or endmember signatures) from both observed low resolution HSI
and MSI. In order to preserve the spectral consistency between the observed HSI and MSI, the spectral
dictionary is estimated by performing a common sparse basis selection on the concatenation of
observed HSI and MSI. Meanwhile, the dictionary of MSI can be also estimated without requiring
a spectral response. Once the dictionary is acquired, the corresponding code can be recovered by
standard non-blind unmixing methods (e.g., [42]). Here, the code of high-resolution HSI is estimated by
ensuring the spatial consistency between the code of low-resolution HSI and the code of high-resolution
HSI. Therefore, the proposed method contains two parts: (1) learning the dictionary with a common
sparsity on the concatenation of observed HSI and MSI, (2) estimating the corresponding code by
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exploiting a consistent constraint to preserve the spatial consistency between low-resolution HSI and
high-resolution HSI. The flowchart of the proposed method is shown in Figure 2.

Pre-HSI
Observed HSI

Estimated HSI

Figure 2. The proposed method first (1) learns the dictionary with a common sparsity on
the concatenation of observed HSI and MSI, (2) then estimates the corresponding code by
exploiting a consistent constraint to preserve the spatial consistency between low-resolution HSI
and high-resolution HSI.

4.1. Self-Dictionary Sparse Regression

The performance of the super-resolution HSI is strongly influenced by the estimation of the
spectral dictionary [27]. Since the low-resolution HSI and the corresponding high-resolution HSI
capture the same scene, their endmembers should be the same [27,28]. In the general dictionary-based
methods, the dictionary U;, € RE*? is learned from the observed low-resolution HSI itself and ignores
the spectral consistency between the observed HSI and MSI. In particular, the elements of the dictionary
Uy, should be consistent with the dictionary U, of MSI Y. For this reason, a novel method is proposed
to obtain the spectral dictionary entries from both observed HSI and MSI. The spectral dictionary
(or underlying materials or endmembers) of high-resolution HSI U € RE*7 is assumed to be same
with the dictionary of low-resolution HSI U;, € R*P, U = U,,.

First, a spatially upscale version of the low-resolution HSI can be obtained by:

Yeay = f(Yn), 4)

where f () is an upscaling function—for example, a bicubic interpolation. Then, the spectral dictionary
is learned from the concatenation of pre-HSI and observed MSI by endmembers’ induction algorithms:

/S ©)

where U,, € R*? is the dictionary of MSI and S € RP*N ig the coefficient matrix. In this papet,
self-dictionary sparse regression [43,44] is used to extract the spectral dictionary (the spectra of the
underlying endmembers). In this way, the dictionary is learned by finding a smallest subset of



Remote Sens. 2018, 10, 1574 7 of 23

measurement vectors to represent the whole set of measurement vectors. Therefore, the dictionary is
learned by perform a common sparse basis selection:

Cé’rﬂg\lan ||CHrowa’
6
s.t. [ Yo | = | 0 | ¢, e > 0,17C =17, ©
m m

where C € RN*N js the abundance matrix and two constraints are imposed: the abundance
non-negativity constraint (ANC) C > 0 and the abundance sum-to-one constraint (ASC) 17C = 17.
|Cllpe—0o denotes the number of nonzero rows of C.

Under the pure pixel assumption, Equation (6) may be formulated by identifying a complete pure
pixel index set A [45]. A lists all indices of nonzero rows of C and contains a pure pixel index of every
endmember:

A = rowsupp (C), (7)

IA|=p,AcC{l... N} ®)

In this paper, Equation (6) is tackled by greedy pursuit [41,46] under unknown number
of endmembers. In this case, both pure pixels and the number of endmembers are identified
simultaneously.

Once A is identified, we have

U,
Uy

Y¢n)

v ©)

A
The intuition of the above observation is that, by solving Equation (6), we may recover a complete
pure pixel index set A, and, consequently, identify the true endmember signature matrix Uy, and Uy,.

4.2. Sparse Codes Estimation via Constrained Least Squares and Consistent Constraints

Once the spectral dictionaries Uj, and Uy, are estimated, the corresponding codes Vj, and V,;, are
estimated by solving the following constrained least squares (CLS) optimization problem:

V), = arg‘rlr;i;}) 1Y), — UV, |7, (10)

Vi = arg min [[ Yo — UnViu 7, (11)

where codes V;, € RP*" and V,, € RP*N represent abundances of materials, and |-||; denotes
the Frobenius norm. The constraint V;, > 0,V,, > 0 means that the codes are element-wise
non-negative [47]. It is possible to add the abundances sum-to-one constraint [47]: V;lpxl = 1nx1,
and V%lpxl = 1,x1. However, this constraint is usually dropped due to possible scale model
mismatches [48]. Multiplicative update rules have been developed to minimize the residual errors in
Equations (10) and (11). The multiplicative update rules for Equations (10) and (11) are given by:

V), < V. * (UhTYh) : / (UhTUth), (12)

Vi Vi (UmTYm) . / (UmTUme), (13)

where .x and ./ denote element-wise multiplication and division, respectively. (A)" denotes the
transposition of the matrix A.

In the conventional dictionary-based methods, the code of desired high-resolution HSI V is
approximated by estimating the code from the observed MSI V;;: V = V,,,. However, a main limitation
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of these methods is their inability to estimate the code V,, from MSI [27]. Since the number of
multispectral bands is usually lower than the number of entries in the spectral dictionary, estimating
the abundance code of MSl is an ill-posed problem [27]. To address this issue, the spatial consistency
between Vj and V,, is considered to improve the estimation of V:

V = argmin |V — Vi |[F + A | Vi — VEy]}, (14)

where A is a weighting factor to balance the importance of the two terms in Equation (14). When A
is too small (A = 0), the second term A ||V, Fy — VFHH}Z: will have less effect. In this case, V is only
related to V,,,. When A is too big (A = 0), the first term ||V — V,, H% will have less effect. In this case,
V is only related to V. Therefore, the appropriate parameter A will balance the contributions between
the codes V,, and V;. F; € R"™7 and Fyy € RN*1 represent the corresponding spatial locations in
low-resolution HSI Y;, and high-resolution HSI X, respectively. Fy = [fpy, ..., fn,] indicates the q
samples on high-resolution HSI X, and F; = [f1;,..., 1] indicates a set of corresponding samples
on low-resolution HSI Y;,. Each column of F; and Fy is indicator functions that contain one at the
selected samples and zeros elsewhere. In other words, 1 means that the pixel is selected, and 0 means
that the pixel is not selected. In addition, there is a positional correspondence between these selected
pixels on the low-resolution HSI Y;, and the high-resolution HSI X. HSI super-resolution assumes
that a pixel in the low-resolution HSI can be obtained by averaging the pixels of high-resolution HSI
belonging to the same area. This assumption refers to pixel aggregation [32]. Given a set of 4 samples
Fy = [fy1, ..., fyy] on high-resolution HSI X, and a set of corresponding samples F; = [f;, ..., fL,]
on low-resolution HSI Y}, their codes in the respective samples must coincide, V,F;, = VFp.

Taking derivative with regard to V and setting the resultant equation to zero yield, the solution of
Equation (14) is given by:

V= (Vm + AthLF{I) (1 + AFHFL) y (15)

where Iisa N x N identity matrix. The desired high-resolution HSI can be recovered by Equation (3),
after estimating the spectral dictionary U and the abundance code V. The overall description for
estimating the high-resolution HSI is given as Algorithm 1.

Algorithm 1 The proposed method

Input:
Y), € RLX" - the observed hyperspectral image;
Y,, € RI*N _ the observed multispectral image;
Parameter A =1, and g = n.

. Identify a complete pure pixel index set A by Equation (6);

. Estimate the spectral dictionaries U and Uy, by Equation (9), calculate the spectral dictionary U
by U = Uh,'

. C};lculate the code of low-resolution HSI Vj, by Equation (10);

. Calculate the code of MSI V;,;, by Equation (11);

. Estimate the code of high-resolution HSI V by Equation (15);

. Xis outputby X = UV.

N =

N U1 = W

Output:
X - the high-resolution hyperspectral image.

5. Experiments

To verify the performance of the proposed method, four subsections are presented in this section:
(1) Section 5.1 details three public datasets; (2) Section 5.2 introduces the competing methods and
evaluation indexes; (3) Section 5.3 describes the implementation details of the proposed method; and,
(4) finally, Section 5.4 displays the experiments and comparisons.
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5.1. Datasets

To evaluate the performance of the proposed method, extensive datasets are considered, including
ground based and remote sensing imagery. These datasets are commonly used in HSI super-resolution.
Through experiments on these databases, we can fairly evaluate the performance of the proposed
method. We consider the HSIs in the datasets as the original high-resolution HSIs [37]. As common
practice [23,37,49], the low-resolution HSI is simulated by first blurring the high-resolution HSI and
then down-sampling the result by a factor of 3 in each direction. In order to facilitate the experiments,
we use the Norm(-) defined in Equation (16) to normalize the HSIs in the datasets to the range [0, 1] in
advance, where X donates the HSIs in datasets. For evaluating the proposed method, we converted
the resulting image into an 8-bit image:

X — min(X)
max(X) — min(X)"

Norm(X) = (16)

Ground based dataset. The ground based dataset is CAVE (http:/ /www.cs.columbia.edu/CAVE/
databases/multispectral /). CAVE [37,38,49] comprises 32 HSI with 512 x 512 x 31. Among them,
512 x 512 is the image size, and 31 is the number of bands. Each HSI is acquired at a wavelength
interval of 10 nm in the range 400-700 nm. The high-spatial-resolution MSI is created by integrating
a high-resolution HSI over the spectral dimension, using the Nikon D700 (Sendai, Japan) spectral
response (https:/ /www.maxmax.com/spectral_response.htm). Here, the HSI of “Balloons” is selected
to give visual illustration, as shown in Figure 3. Three bands (3, 25 and 30) are selected as a pseudo
color view.

(b) (c)

Figure 3. Balloons data from CAVE dataset (color image composed of bands 3, 25 and 30 for the red,

green and blue channels, respectively). (a) low-resolution hyperspectral image; (b) multispectral image;
(c) high-resolution hyperspectral image.

Remote sensing dataset. The first remote sensing dataset is Pavia University scene (http://www.
ehu.eus/ccwintco/uploads/e/e3/Pavia.mat), which is widely used in hyperspectral classification
with nine kinds of samples [26,28]. This image is acquired from the reflective optics system imaging
spectrometer (ROSIS), a sensor of DLR that has 115 spectral bands. ROSIS hyperspectral remote sensing
satellite captured the image at Pavia University in northern Italy in 2002. This HSI contains 610 x 340
pixels and 103 spectral bands, after removing water absorption bands. A part of size 200 x 200 x 93
including abundant detailed information is selected from the original image, as shown in Figure 4. This
image is used as the high-resolution HSI. In the HSI super-resolution problem, the spectral responses
of the sensors is assumed known. The spectral response of the IKONOS satellite is used to create the
observed MSI.


http://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.cs.columbia.edu/CAVE/databases/multispectral/
https://www.maxmax.com/spectral_response.htm
http://www.ehu.eus/ccwintco/uploads/e/e3/Pavia.mat
http://www.ehu.eus/ccwintco/uploads/e/e3/Pavia.mat
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(a) (b) (©)

Figure 4. Pavia dataset and its auxiliary images (color image composed of bands 20, 16 and 5 for the
red, green and blue channels, respectively). (a) low-resolution hyperspectral image; (b) multispectral
image with four bands (blue, green, red, and near-infrared); (c) high-resolution hyperspectral image.

The second remote sensing dataset is Paris scene [26]. This dataset is taken above Paris and
obtained by two instruments on board the Earth Observing-1 Mission (EO-1) satellite: the Hyperion
instrument, and the Advanced Land Imager (ALI) instrument. The Hyperion instrument provides an
HSI with a spatial resolution of 30 m, while the ALI instrument provides an MSI at a resolution of
30 m, as shown in Figure 5. In the experiments of HSI-MSI fusion, the observed HSI should have
lower resolution than the observed MSI. Therefore, the low-resolution HSI is simulated by blurring
and down-sampling the original high-resolution HSI. Furthermore, to further verify the effectiveness
of the proposed method, Pavia dataset is used for hyperspectral classification.

(a) (b)

Figure 5. Paris dataset and its auxiliary images (color image composed of bands 28, 13 and 3 for the

red, green and blue channels, respectively). (a) low-resolution hyperspectral image; (b) multispectral
image with four bands (blue, green, red, and near-infrared); (c) high-resolution hyperspectral image.

5.2. Competitors and Evaluation Indexes

Competing method. To demonstrate the superiority of the proposed method, six state-of-the-art
methods are selected as competing methods. All of these competing methods can be obtained from
the corresponding authors”’ MATLAB+MEX (R2014a, MathWorks, Natick, MA, USA) implementation.
All the parameters involved in the competing methods are automatically chosen as described in
the references. For a fair comparison, we use the same number of endmembers in all experiments.
Furthermore, the spectral responses of the sensors can be estimated by HySure [26]. The estimated
spectral responses are used as basis for all the competing methods:

o Greedy simultaneous orthogonal matching pursuit (GSOMP) (http://www.csse.uwa.edu.au/~ajmal/
code/HSISuperRes.zip) [37] is a constrained sparse representation by imposing non-negativity
and the spatial structure.
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o Coupled nonnegative matrix factorization (CNMF) [31] achieves the high-resolution HSI by alternately
unmixing the observed HSI and MSIL. The endmember dictionary and abundance code are
estimated from HSI and MSI, respectively.

e  Bayesian sparse representation (BSR) (http:/ /staffhome.ecm.uwa.edu.au/~00053650/code.html)
[50] performs comparably to GSOMP because BSR exploits the non-parametric Bayesian
framework without requiring explicit parameter tuning.

e Hyperspectral SuperResolution (HySure) (https:/ /github.com/alfaiate/HySure) [26] formulates HSI
super-resolution as a convex subspace-based optimization problem. A total variation abundance
regularization is considered to promote piecewise-smooth. In addition, the spectral responses of
the sensors are estimated by assuming relative smooth.

o Convolutional neural network collaborative nonnegative matrix factorization (CNNCNMEF) [28] employs
the convolutional neural network to learn the spatial mapping between the observed HSI and
MSI. In addition, the collaborative nonnegative matrix factorization is introduced to explore the
spectral characteristic between the observed HSI and MSL

o Proximal alternating linearized minimisation (PALM) (https:/ /github.com/lanha/SupResPALM)
[49] obtains the high-resolution HSI by jointly unmixing the observed HSI and MSI.

Evaluation indexes. To assess the performance of all competing methods, six quantitative
indices [26,50] are employed, including root mean square error (RMSE), mean peak signal-to-noise ratio
(MPSNR), mean structure similarity index (MSSIM), erreur relative globale adimensionnelle de synthese
(ERGAS), universal image quality index (UIQI), and spectral angle mapper (SAM). The similarity between
the target image and the reference image is evaluated by RMSE and MPSNR based on mean square
error. The structural consistency between the target image and the reference image is evaluated
by MSSIM. The fidelity is evaluated by ERGAS based on the weighted sum of MSE for each band.
UIQI is a universal image quality index to evaluate image reconstruction quality. The fidelity of the
spectral reflectance is described by SAM. Furthermore, the larger MPSNR, MSSIM, and UIQI are,
the better image reconstruction quality is. The smaller RMSE, ERGAS, and SAM are, the better the
image reconstruction quality is.

5.3. Parameter Determination

The parameters of the proposed method can be clearly delineated in Algorithm 1:
the regularization parameter A, and the number of consistency samples q. The impact of parameters is
evaluated on Balloons data, Pavia dataset and Paris dataset. Experimental results for various A and g
are shown in Figure 6. In the CAVE dataset, the parameters are set tobe A = 1, 4 = n. In the Pavia
dataset, the parameters are set to be A = 0.7, 4 = n. In the Paris dataset, the parameters are set to be
A=10,9 =n.

The parameter A is the regularization parameter which balances the contributions between
the consistency constraint term and the fidelity term. With respect to A, Figure 6a,d,g show the
experimental results from A = 0 to A = 10. For both RMSE and MPSNR, the performance increases
with a large A. However, in the “Balloons” data, when the value of A is larger than 1, the performance
decreases. In the Pavia dataset, when the value of A is larger than 0.7, the performance decreases.

Experimental results for various q/# (from 0 to 1) are shown in Figure 6b,e,h. It is observed that
with the increase of the spatial bandwidth q/n, the performance increases slightly. When the number
of consistency samples is equal to the number of pixels in the low-resolution HSI 1, we achieve the best
performance on RMSE and MPSNR. In this case, all the pixels in the low-resolution HSI are considered.
F1 becomes a n x n identity matrix, Fg accounts for a uniform sub-sampling of the image, in order to
yield the lower-spatial-resolution of the HSI.

Furthermore, we analyze the effect of the number of endmembers p on the performance of
proposed method, as shown in Figure 6¢,fi. It is observed that a proper number of endmembers is
important to different datasets. In the CAVE dataset, Pavia dataset and Paris dataset, the number of
endmembers is set to 5, 10 and 20, respectively.
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Figure 6. (a) evaluation of the parameters A on Balloons data; (b) evaluation of the parameters g on

Balloons data; (c) evaluation of the parameters p on Balloons data; (d) evaluation of the parameters A

on Pavia dataset; (e) evaluation of the parameters q on Pavia dataset; (f) evaluation of the parameters p

on Pavia dataset; (g) evaluation of the parameters A on Paris dataset; (h) evaluation of the parameters q

on Paris dataset; (i) evaluation of the parameters p on Paris dataset.

5.4. Experimental Results

5.4.1. Comparison to the State-of-the-Art Methods

The experimental results on three datasets are discussed in this subsection. The proposed method
is compared with six state-of-the-art methods in the experiments. These methods are CNMF, GSOMP,
BSR, HySure, CNNCNMF and PALM. For the sake of comparison, we present three types of evaluation:
(a) quantitative assessments, (b) visual results, and (c) spectral differences between the original and
estimated HSIs. Tables 1-3 show HSI super-resolution performances of different methods on the CAVE,
Pavia, and Paris dataset, respectively.
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Table 1. Comparison with the competing methods on the CAVE dataset. The reported evaluation
values are calculated in the 8-bit resulting images.

Bicubic CNMF GSOMP BSR HySure CNNCNMF PALM SDSR
RMSE 8.692 5.261 4.858 4.518 4.997 7.809 7.582 2.845
MPSNR 28.66 30.17 31.62 33.09 33.13 33.77 32.7 32.75
MSSIM  0.7123 0.8570 0.9142 0.9233  0.8509 0.9149 0.9062 0.9183
ERGAS 23752  420.68 209.79 15193  149.24 151.48 162.1  148.75
UIQI 0.5540 0.7001 0.7921 0.7607  0.6939 0.7962 0.7520  0.7637
SAM 0.2451 0.3809 0.3485 0.3184  0.2068 0.3013 0.2103  0.3723
Time 0.05 14.8 254.6 1650.0 142.0 139.4 62.7 20.8

Table 2. Comparison with the competing methods on the Pavia dataset. The reported evaluation values

are calculated in the 8-bit resulting images.

Bicubic CNMF GSOMP BSR HySure CNNCNMF PALM SDSR
RMSE 13.019 4.799 4.342 5.090 7.569 4.622 3.898 2.349
MPSNR 25.96 34.76 35.77 34.58 33.99 35.32 36.54 42.04
MSSIM  0.7106 0.9683 0.9771 0.9656  0.9463 0.9679 0.9813  0.9908
ERGAS  195.20 74.01 68.73 80.42 97.27 72.00 60.89 33.36
UIQI 0.7905 0.9754 0.9791 09733  0.9563 0.9777 0.9825  0.9941
SAM 0.0960 0.0733 0.0537 0.0788  0.0877 0.0768 0.0492  0.0411
Time 0.02 35 27.2 249.9 35.8 34.8 19.6 58.4

Table 3. Comparison with the competing methods on the Paris dataset. The reported evaluation values

are calculated in the 8-bit resulting images.

Bicubic CNMF GSOMP BSR HySure CNNCNMF PALM SDSR
RMSE 13.332 12.205 8.532 12.979 8.071 8.183 8.125 7.942
MPSNR 28.21 29.48 31.90 29.36 32.41 32.29 32.35 32.50
MSSIM  0.6671 0.7521 0.8438 0.7428  0.8381 0.8500 0.8472  0.8466
ERGAS 14431 126.24 94.34 131.53 88.56 91.11 91.00 88.19
UIQI 0.6282 0.6565 0.7959 0.6448  0.8132 0.8185 0.8120  0.8209
SAM 0.0598 0.0929 0.0547 0.1009  0.0491 0.0513 0.0492  0.0482
Time 0.01 0.39 2.99 21.82 1.89 1.76 4.07 1.12

For qualitative analysis, Figures 7-9 show the pseudo color images in three datasets. It is clearly
observed that the proposed method receives a better visual quality than other competing methods.
As can be observed from Figures 7-9, the proposed method produces much sharper edges than other
methods without any obvious artifacts across the image. It is very interesting to see that the proposed
method can achieve the comparable visual performance. Without requiring the spectral response,
the proposed method is suitable for complex real-word super resolution tasks.
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(8)

(h)

Figure 7. Super resolution image reconstruction on ‘Balloons’ data. (a) low-resolution HSI; (b) bicubic
(RMSE: 6.784); (c) CNMF (RMSE: 6.448); (d) GSOMP (RMSE:4.267); (e) BSR (RMSE: 3.981); (f) HySure
(RMSE: 3.428); (g) CNNCNMEF (RMSE: 3.750); (h) PALM (RMSE: 3.691); (i) SDSR (RMSE: 3.055).
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(a) (b) ()
(d) (e) (f)
(8) (h) (®)

Figure 8. Super resolution image reconstruction on Pavia dataset. (a) low-resolution HSI; (b) bicubic
(RMSE: 13.019); (c) CNMF (RMSE: 4.799); (d) GSOMP (RMSE: 4.342); (e) BSR (RMSE: 5.090); (f) HySure
(RMSE: 7.569); (g) CNNCNMF (RMSE: 4.622); (h) PALM (RMSE: 3.898); (i) SDSR (RMSE: 2.349).
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() (h) (®)

Figure 9. Super resolution image reconstruction on Paris data. (a) low-resolution HSI; (b) bicubic
(RMSE: 13.332); (c) CNMF (RMSE: 12.205); (d) GSOMP (RMSE: 8.532); (e) BSR (RMSE: 12.979);
(f) HySure (RMSE: 8.071); (g) CNNCNMF (RMSE: 8.183); (h) PALM (RMSE: 8.125); (i) SDSR
(RMSE: 7.942).

To gain further intuition, the average squared error between the original spectra and obtained
spectra are given. Figure 10 shows spectral residuals of several pixels after super resolution.
In Figure 10, six typical objects are selected in the datasets such as Pixel (50,50) in Balloons data,
Pixel (300,300) in Balloons data, Pixel (50,50) in Pavia dataset, Pixel (100,100) in Pavia dataset,
Pixel (50,50) in Paris dataset and Pixel (70,70) in Paris dataset. Compared with other competing
methods, Figure 10 illustrates that the proposed method can still preserve the useful spectral
information of the original HSI. Furthermore, the average squared errors between the obtained
and ground truth spectra are given in Table 4.
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Figure 10. Spectral squared residuals of several pixels in the datasets. (a) Pixel (50,50) in Balloons data;
(b) Pixel (300,300) in Balloons data; (c) Pixel (50,50) in Pavia dataset; (d) Pixel (100,100) in Pavia dataset;
(e) Pixel (50,50) in Paris dataset; (f) Pixel (70,70) in Paris dataset.
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Table 4. Average squared error between obtained and ground truth spectra of some pixels.

Pixels Bicubic CNMF GSOMP BSR HySure CNNCNMF PALM SDSR
Balloons (50,50) 0.0484 0.0869 0.0856 0.0985  0.0847 0.0863 0.0735  0.0403
Balloons (300,300)  0.0355 0.1352 0.0342 0.0741  0.0492 0.1247 0.0352  0.0239
Pavia (50,50) 0.4804 0.1578 0.0888 02233  0.1041 0.1592 0.0815 0.0685
Pavia (100,100) 0.2849 0.1768 0.1336 0.1490  0.5853 0.1673 0.1245 0.1145
Paris (50,50) 0.3685 0.5281 0.2884 0.6893  0.2318 0.2719 0.2241 0.2162
Paris (70,70) 0.1564 0.4119 0.1677 03918  0.1626 0.1774 0.1622  0.1361

5.4.2. Effectiveness of Concatenation in the Proposed SDSR Method

In the proposed method, the cross-correlation between the observed HSI and MSI is utilized.
The endmember dictionaries are learned by performing a common sparse basis selection on the
concatenation of observed HSI and MSI. Both the endmember dictionary Uy, and Uy, can be estimated
simultaneously. We call the proposed method with concatenation operation the concatenation proposed
method. In contrast, there are still two ways to estimate the endmember dictionary without the
concatenation of observed HSI and MSI: coupling proposed and uncoupling proposed method.

e  The concatenation proposed method simultaneously estimate the endmember dictionary Uj, and
U, from the concatenation of observed HSI and MSI.

e  The coupling proposed method refers to first estimating the endmember dictionary Uy, from the
observed HSI, and then utilizing the estimated Uj, and spectral response to calculate the Uy,.

e  The uncoupling proposed method refers to estimating the endmember dictionary Uy and U,
from the observed HSI and MSI, respectively.

A comparison of the proposed SDSR methods is shown in Table 5. Among the proposed
methods, the concatenation proposed method achieves impressive performance. This is because
the concatenation operation can exploit the cross-correlation between the observed HSI and MSI.
Furthermore, the coupling proposed method can obtain similar performance with the concatenation
proposed method, but require a spectral response. In the coupling proposed method, a spectral
response is assumed known and provides spectral information between HSI and MSI. In the uncoupling
proposed method, the endmember dictionary Uy, is estimated from MSI, which is an ill-posed problem.
The number of spectral bands in MSI is usually lower than the number of induced endmembers,
which leads to the worst performance.

Table 5. The effectiveness of concatenation in the proposed method. The reported RMSE is calculated
in the 8-bit resulting images.

Coupling SDSR  Uncoupling SDSR  Concatenation SDSR

CAVE 4.1175 10.1147 2.2835
Pavia 2.6015 31.604 2.3488
Paris 8.3705 19.7726 8.0685

5.4.3. Computational Complexity

Based on the multiplicative updates, the overall cost for NMF is O (tNLp). The computational
complexity for the proposed method is O (tN(L+1)p), where t is the number of iterations in
Algorithm 1. It can be seen that the computational complexity depends linearly on the HSI resolution.
This means that the proposed method enhances resolution in an acceptable computational time.

Additionally, the running time is shown in Tables 1-3. In the proposed method, the experiments
are implemented using Matlab R2014a, running on 3.4 GHz Intel CPU (Santa Clara, CA, USA) with
64 GB memory. In the experiments, the running time of the proposed method is comparable to the
competing methods except for Bicubic. Bicubic interpolation is frequently used for super-resolution
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with low computational complexity Both the proposed method and CNMF have the same running
time, the running time is almost linear in the image size. Although the proposed method cannot
outperform all the competing methods, the proposed method can obtain the high-resolution HSI in
acceptable computational time.

5.4.4. Hyperspectral Classification

Hyperspectral classification is further presented on Pavia dataset to verify the effectiveness of
the proposed method. The estimated super-resolution HSI is classified with support vector machine
(SVM). The ground truth used in classification is shown in Figure 11. To obtain a reliable evaluation,
we estimate the classification overall accuracy (OA) with the SVM using ten-fold cross-validation.
The dataset is randomly divided into ten equal parts.

In this experiment, two types of evaluation are presented. (1) The average cross-validation
classification accuracies are presented in Table 6; (2) The classification maps are presented in Figure 12.
Specifically, overall accuracy (OA) is selected as the classification assessment index. It is clearly seen from
Table 6 and Figure 12 that the classification results have been improved by several HSI super-resolution
methods: Bicubic, HySure, and Proposed SDSR method. Bicubic and HySure obtain the better
index than the proposed method. This is because that Bicubic and HySure can obtain a smooth HSI.
Bicubic interpolates the data points on a two-dimensional regular grid. Images obtained by Bicubic
interpolation are smoother and have fewer interpolation artifacts. In HySure, total variation is used
as a regularization. Total variation imposes sparsity in the distribution of the absolute gradient of
an image. In this case, the transitions between the pixels should be smooth in the spatial dimension.
Compared with Bicbic and HySure, the proposed method gives the compared classification result
without smoothing the HSI. The reasons are mainly as follows: (1) The endmember in HSI are learned
by performing a common sparse basis selection on the concatenation of observed HSI and MSI,
which can preserve the spectral consistency between the observed HSI and MSI; and (2) the spatial
consistency between low-resolution HSI and high-resolution HSI is considered.

N Wb U1 N 0 VO

(a) (b)

Figure 11. Pavia dataset and its Ground truth in classification. (a) high-resolution hyperspectral image;

(b) ground truth in classification.

Table 6. Classification assessment index on the Pavia dataset.

Original Bicubic CNMF GSOMP BSR  HySure CNNCNMF PALM SDSR
OA  95.51% 99.87%  87.80%  90.20%  87.58%  99.52% 87.98% 97.40%  99.11%
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Figure 12. Classification maps of the Pavia dataset (the colors in this figure are consistent with those in
Figure 11). (a) original (OA = 95.82%); (b) bicubic (OA = 100%); (c¢) CNMF (OA = 86.38%); (d) GSOMP
(OA = 89.88%); (e) BSR (OA = 87.74%); (f) HySure (OA = 99.42%); (g) CNNCNMEF (OA = 88.04%);
(h) PALM (OA = 98.44%); (i) SDSR (OA = 99.03%).

6. Conclusions

In this paper, we propose a self-dictionary sparse regression to enhance the spatial-resolution of
HSI. In the proposed method, the spatial-spectral consistency is considered to fuse the HSI and MSI.
A notable difference between the existing HSI super-resolution and the proposed method is that both
observed HSI and MSI are simultaneously considered to estimate the endmember dictionary and the
abundance code. Specifically, the endmember dictionary is extracted by performing self-dictionary
sparse regression on the concatenation of observed HSI and MSI. Then, a consistent constraint between
the low-resolution HSI and the high-resolution HSI is exploited to improve the estimation of the
abundance code. Experimental results on three datasets validate that the proposed method outperforms
the conventional HSI super-resolution methods.
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