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Abstract: Generalized bilinear model (GBM) has received extensive attention in the field of
hyperspectral nonlinear unmixing. Traditional GBM unmixing methods are usually assumed to
be degraded only by additive white Gaussian noise (AWGN), and the intensity of AWGN in each
band of hyperspectral image (HSI) is assumed to be the same. However, the real HSIs are usually
degraded by mixture of various kinds of noise, which include Gaussian noise, impulse noise, dead
pixels or lines, stripes, and so on. Besides, the intensity of AWGN is usually different for each
band of HSI. To address the above mentioned issues, we propose a novel nonlinear unmixing
method based on the bandwise generalized bilinear model (NU-BGBM), which can be adapted
to the presence of complex mixed noise in real HSI. Besides, the alternative direction method of
multipliers (ADMM) is adopted to solve the proposed NU-BGBM. Finally, extensive experiments are
conducted to demonstrate the effectiveness of the proposed NU-BGBM compared with some other
state-of-the-art unmixing methods.

Keywords: additive white Gaussian noise (AWGN); hyperspectral images (HSIs); mixed noise;
bandwise generalized bilinear model (BGBM); alternative direction method of multipliers (ADMM)

1. Introduction

Hyperspectral images (HSIs) are usually acquired in hundreds of narrow contiguous spectral
bands by a specific kind of imaging sensor, e.g., the Airborne Visible/Infrared Imaging Spectrometer,
Hyperspectral Digital Imagery Collection Experiment and Compact Airborne Spectrographic
Imager [1-3]. Due to the high spectral resolution, it is inevitable to bring about the problem of
“mixed pixels”, and different materials usually occupy a single hyperspectral pixel [4-6]. The existence
of mixed pixels have a large impact on many applications, such as object detection [7], subpixel
mapping [8], classification [9-12], and matching [13-15]. Thus, hyperspectral unmixing has been
exploited to decompose mixed pixels into a group of pure materials (called endmembers) and their
corresponding proportions (called abundances) [16,17].

The linear mixing model (LMM) is a simple and widely used unmixing model. Each pixel can
be formulated as a linear combination of endmembers with additional noise. The idea is that each
incoming light ray interacts with only one material before reaching the sensor [18,19]. However,
the LMM is invalid when there are intimate mixtures, terrain relief, or volumetric scattering [20].
Nonlinear mixing models (NLMMs) provide an alternative to take the above mentioned problem
into account, which can be generally divided into two categories [20,21]. The first category includes
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some flexible models based on signal processing, such as post-nonlinear model [22], neural network
model [23] and kernel model [24]. The second category includes some physical based models,
such as intimate mixture model [25], bilinear mixture model (BMM) [26-33] and multilinear mixing
model [34-36]. Among them, the BMM only takes the second-order scattering into consideration,
while the higher-order interactions of light are ignored [18]. The reason is that the interactions of orders
larger than two, not only have minor contribution for improving the unmixing accuracy than that of
second-order scattering, but also bring in tremendous computational costs [21]. Several representative
models known as the family of BMM have been proposed. The Nascimento model (NM) [26] is
an extended LMM with additional virtual endmembers, the Fan’s model (FM) is the truncated Taylor
expansion of nonlinear mixing function [27], and the GBM [28] can be seen as the generalization of
LMM and FM, which can efficiently deal with the assumptions in BMM. Different methods have been
proposed for GBM unmixing of HSI, Halimi et al. developed a Bayesian algorithm to estimate the
abundance and noise variance of the GBM [28]. Besides, they also proposed a pixel-wise unmixing
method based on the gradient descent algorithm (GDA) [29]. Moreover, Yokoya et al. proposed the
semi-nonnegative matrix factorization (semi-NMF) as a new optimization method for GBM based
HSI unmixing [30]. Furthermore, Li et al. developed the bound projected optimal gradient method
(BPOGM) for GBM unmixng, and it can achieve the optimal convergence rate of O(kl—z), where k
denotes the number of iteration in BPOGM [31].

Most unmixing methods based on the GBM are implicitly developed for Gaussian noise, and the
underlying assumption is that the intensities of Gaussian noise remain the same for different bands of
HSI. However, there remain two challenges for many real applications of GBM based hyperspectral
unmixing. One is that each band of HSI is degraded by different intensities of AWGN, and the other
is the widely existed mixed noise in real HSI, including Gaussian noise, impulse noise, dead pixels
or lines, stripes and so on [37-40]. Aggarwal et al. proposed a hyperspectral unmixing method in
the presence of mixed noise using joint-sparsity and total variation, which can take several kinds of
noise into consideration [41]. However, it still ignored the nonlinear mixing effect and the different
intensities of AWGN in different bands of HSIL In this paper, to overcome the above mentioned
problems, we propose a novel nonlinear unmixing method based on the bandwise generalized bilinear
model (NU-BGBM). First, a bandwise generalized bilinear model (BGBM) is proposed to take the
complex mixed noise in real HSI into consideration, i.e., each band of HSI is contaminated by different
types of noise, and the AWGN intensities of across different bands are assumed to be different.
Second, a novel method based on the BGBM is proposed under the maximum a posteriori framework.
The diagonal of weight matrix is the reciprocal of the variance of AWGN in each band, which can
take the different intensities of AWGN in different bands into consideration. The impulse noise, dead
pixels or lines, and stripes usually contaminate a small part of the whole HSI, which usually have the
underlying sparse property.

The main contributions of this work lie in that we propose a BGBM to be adapted for complex
mixed noise in real HSI. Besides, we propose a novel NU-BGBM under the maximum a posteriori
framework, which can take different types of noise into consideration. Moreover, we use the alternative
direction method of multipliers (ADMM) [42] for solving the proposed NU-BGBM. Finally, we conduct
extensive experiments using both simulated and real HSIs to demonstrate the effectiveness and
advantages of the proposed NU-BGBM.

The remainder of this paper is organized as follows. In Section 2, we introduce the related GBM
and the formulation of the proposed NU-BGBM, and develop the ADMM for solving the proposed
NU-BGBM. In Section 3, we demonstrate the efficiency and advantages of the proposed NU-BGBM on
both simulated datasets and real HSIs. Finally, we conclude this paper in Section 4.
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2. Bandwise Generalized Bilinear Model and Algorithm

In this section, we will introduce the related GBM at first. Then, we will introduce the proposed
nonlinear unmixing model BGBM, and formulate the proposed unmixing method NU-BGBM in detail.
Finally, we will solve the proposed NU-BGBM under the ADMM scheme.

2.1. The Related GBM

The LMM assumes that each pixel y € RP*! containing D bands in HSI is a linear combination of
M endmembers E = [ey, ..., ep] € RP*M as follows:

y =Ea+n, (€))

where the linear representation vector a = [ay,...,4 M]T e RM*1 denotes the abundance, and n

represents the additive noise in HSI. The abundances usually have to meet two constraints,
i.e., abundance non-negativity constraint (ANC) and abundance sum to one constraint (ASC) as follows:

a;>0,Vi=1,..,M,
M ()

Zﬂl‘ =1

i=1

However, the real HSI usually has strong signature variability [43], and the abundances may not
meet the ASC constraint in practice, so we do not explicitly impose the ASC constraint for unmixing of
HSI in this paper.

As noted in the introduction, the LMM may not always hold true in many situations. To take
the multi-scattering radiation among different endmembers into consideration, BMM takes the
second-order scattering into consideration, which is equivalent to add an additional second-order
interaction term to LMM as follows:

M-1 M
y = Ea+ Z Z bjje;©ej+n, 3)

-1
i=1 j=i+1

where b; ; denotes the amount of nonlinearities between the ith and jth endmembers, and © is the
Hadamard product operation. By imposing various constraints on the nonlinear coefficient b; j in BMM,
many different kinds of BMMs have been proposed, which include NM [26], FM [27], GBM [28-31],
MGBM [44] and so on. Among them, the GBM can be seen as the generalization of LMM and FM,
it sets the nonlinear coefficient b; j = +y; ja;a;, and the constraints imposed on the GBM can be written
as follows:

a; >0,Yi=1,.,M,
Yij = OVij = 1,.., M,i >}, )
0< Vi, < 1,Vi,j =1,..M,i < ]

Mathematically, the GBM for HSI having P pixels can be expressed as follows:
Y=EA+FB+N, 5)

where Y € RP*P denotes the reshaped HSI matrix, A = [ay, ..., ap] € RM*P i5 the abundance matrix,

F=le;Oey, .. en1 0 ey € RPFMM-1)/2 denotes the bilinear endmember matrix, B = [71221 ©

a, .., YmM—1,MapM—1 ©ayp| € RM(M~-1)/2xP g the bilinear abundance matrix, and N € RP*? denotes
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the noise matrix. Therefore, the constraints imposed on the GBM having P pixels can be written
as follows:

(6)

where C; iy« = AjrAjx (k € {1,..., P}).

2.2. Formulation of the Proposed BGBM and the Corresponding Unmixing Method NU-BGBM

The traditional GBM unmixing methods are implicitly developed in the presence of additive
white Gaussian noise (AWGN), and the intensity of AWGN is assumed to be the same for each band
of HSI. However, the HSIs in real world are usually degraded by mixed noise, i.e., the HSI is usually
polluted by not only the Gaussian noise, but also other types of noise, such as impulse noise, dead
pixels or lines, and stripes [37-40]. Besides, the intensity of AWGN is usually different for different
band of HSI. The noise in real HSI can be generally classified into two classes, i.e., dense noise and
sparse noise. The dense noise means that most of the HSI is contaminated, which mainly includes
Gaussian noise. While the sparse noise means that only a small part of the HSI is contaminated, which
mainly includes impulse noise, dead pixels or lines, and stripes. Therefore, the proposed bandwise
unmixing model BGBM can be written as follows:

Y; = (EA); + (FB); +S; +N;, i=1,..,D, @)

where Y;, (EA);, (FB);, S; and N; represent the ith band of Y, EA, FB, S and N, respectively. S and N
denote the sparse noise and dense Gaussian noise of HSI, respectively. We assume that the AWGN of
each band is independent with different intensities of Gaussian noise, N; ~ N (0,02Ip)(i = 1,..., D),
and 07 represent the variance of Gaussian noise in ith band, so we can obtain p(Y;|[(EA); + (FB); +
Si]) ~ N((EA); + (FB); +S;,0%1p) (i = 1,..., M). Since the AWGN of each band is independent, so we
can get

p(Y|(EA+FB +8)) p(Yi[[(EA); + (FB); + S;])

I
':ju

[
—

1

- v Ly, (EA), — (FB), _Si|2 ®)
_cexp( 220_2 ” 1 ( )z ( )z 1”2)

i=1 i

1
:cexp(—EHW(Y—EA—FB—S)H%),

where ¢ denotes a constant, ||.||r represents the Frobenius norm. W € RP*P is the diagonal matrix,
and W;; = %(z =1,---,D), the diagonal matrix W can be seen as a weighting matrix, the larger the
variance of Gaussian noise is, the smaller the weight of the band is, so the weighting matrix can take
different intensities of AWGN in different bands of HSI into consideration. Then, the abundances,
bilinear abundance and the sparse noise of BGBM can be estimated under the maximum a posteriori
framework as follows:

A

(A, B, §]

x P((EA+ FB+S)|Y)

X, p(Y|(EA+FB+S))p(EA+FB+S) )

arg

=
)

>
=

2

3
©

arg

>
=

2

= arg min_ %HW(Y —EA —FB —S)||2 —In(p(EA + FB +S)),
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where p(EA + FB + S) represents the prior distribution of EA + FB + S, which can be regarded as
prior knowledge or constraints enforced on the abundances, bilinear abundance and the sparse noise
of BGBM.

For the abundances and bilinear abundance of BGBM, they should also satisfy the constraints in
Equation (6). For the sparse noise of BGBM, it has the underlying property of sparsity. The sparsity of
sparse noise in BGBM can be ideally represented by the £y norm. However, £y norm based optimization
is usually NP-hard to solve, so we replace the £y norm with ¢; norm. Thus, the proposed nonlinear
unmixing method based on the BGBM can be formulated as follows:

1 >
—|IW(Y-—EA-FB-S AlS]4,
min 5 [W( )1+ Alls w0

sttA>0,0<B<C,

where A is the regularization parameter to strike a balance between the reconstruction error and the
sparse regularization term, and ||S||; = Y2, 211‘3:1 |Sijl-

2.3. Solving the Proposed NU-BGBM with ADMM

The ADMM has been widely used for solving the constrained optimization problems, and it
has obtained desirable performance in many different kinds of applications as well as hyperspectral
unmixing [20,44,45]. To get more details of ADMM, please refer to [42]. Here, we provide details of
adopting ADMM to solve the proposed NU-BGBM.

The model in Equation (10) can be reformulated as follows:

1
i ~|I[W(Y —EA —FB — V{)||2 + . (V i Vs3) + Al|S]|4,
A,B,sr,]{}f‘vz,vszH ( DIE + 1R, (V2) + IRy (V3) +AlIS]

stV =S, (11)
Vi =A,
V3 =B,

where I (X) = ¥ ;I (X;;) denotes the indicator function for the nonnegative orthant R, X; ; is
the i, j-th element of X, and I, (Xi,j) is zero when X; ; belongs to the nonnegative orthant, and +oo
otherwise. I, . (X) = ¥ i IR, ..q(Xi;) is the indicator function for the interval [0, C], and I, ., (X;;)
is zero when X; ; belongs to the interval [0,C;;], and +oco otherwise. Vi, V3 and V3 denote three
auxiliary variables.

Equation (11) can be reformulated using the compact form as follows:

r\r% g(V,Q)st.GQ+HV =7Z, (12)
I 00
where g(V,Q) = 3|[W(Y —EA—FB — Vy) |2 + g, (V2) + g, (V3) +A[S[,G=| 0 I 0 |,
0 0 I
S -1 0 0 v, 0
Q=|A|,H=| 0 —-I 0 |,V=|V, |,Z=1|0
B 0 0 -I Vs 0

The augmented Lagrangian function can be written as follows:

L(V,QA) =g(V,Q) + 5|GQ+HV -Z - Al (13)
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where > 0 denotes the penalty parameter, A/u is the Lagrange multipliers. Therefore, we can
sequentially optimize £ with respect to V, Q and A.
To update A, we solve

1
AF1 = arg min [ W(Y — EA — FB* — Vi) [} + £ ||VE — A — Afl}

(14)
=[(WE)"(WE) + 1] "' [(WE) "W (Y — FB* — V{) + u(V} — A})].
To update B, we solve
.1 U
B! =arg min - |W(Y — EA™"' — FB — Vi) ||} + ||V — B — A5} 5)
=[(WE)T (WF) + I [(WF)TW(Y — EA*! — Vi) + (V5 — A)].
To update S, we solve
§1 = arg min A[|S]; + £ VA — 5 — %3 »

:S/\/y(vll( - All()f

where S¢[x] = sgn(x) max(|x| — 7, 0) represents the element-wise soft shrinkage operator [46], and T
denotes the threshold.
To update V1, we solve

L1
Vi =arg min 5 [W(Y — EA®! — BB - i) [ 4 5[V - 8 - Af

17)
—[WTW + ul] ' [WTW(Y — EAFHT — FBF1) 4 (8K AF)].
To update V,, we solve
VEH! —arg min Ig, (V2) + 5[|V2 =AM — Af2
Va (18)
=max (Ak+1 + Ak,O).
To update V3, we solve
VE —arg min g, (V3) + §||V3 —BET — AKJ2
Vs (19)
=min (max (Bk+1 + Ak,O), Q).
The primal and dual residuals "1 and d**1 can be written as follows:
r = GQH! 4 HVFH, (20)
A1 = uGTH(QM! — QF). (21)
According to [42], the stopping criterion can be written as follows:
|#+1r/+/(3M + D)P < e and
(22)

| g//(BM + D)P < e.

According to [42], u has a large impact on the convergence speed, we update y to keep the ratio
between the primal norms and dual residual norms within a given positive interval, and they both
converge to zero. When adopting the ADMM to solve the proposed NU-BGBM, we need to know the
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weighting matrix W before hand, i.e., estimating the stand deviation of AWGN for different bands
of HSI. In this paper, the hyperspectral signal identification by minimum error (HySime) [47] is used
to estimate the noise of HSI. The HySime assumes that there are usually high correlation among
the neighboring bands of HSI, which can be solved by the multiple regression theory. Therefore,
the detailed procedure for solving the proposed NU-BGBM is summarized in Algorithm 1.

Algorithm 1: Solving the proposed NU-BGBM with ADMM.
Input: Y, E, F;
Output: A, B, S;
1 while k < N & (22) is not satisfied do
2 | A= [(WE)"(WE) + ul] ' [(WE)"W(Y — FB* — V) + u(V} — A})];
3 | B = [(WE)T(WF) + puI] ' [(WE)TW(Y — EAM! — Vi) 4 (V5 — A5)];
i | SML=8y,,(vi - A));
5| VI = [WTW 4 uI]  [WTW(Y — AR — FBEH) 4 (8K 4 AK)];
6 | VAT =max (AF1 + AL 0);
7 | VA = min (max (B**! + A%,0), C);
s | AT = Ak — (v - gk
o | ASTT= Ak — (V1 — AT,
10 Ag“ = A’g. — (V;.v,k+1 — Bk+1);
11 k=k+1;
12 end
13 return A = AKt1 B = B+l § = gk+1,

3. Experiments

In this section, we conduct experiments on both synthetic datasets and real HSIs to demonstrate
efficiency and advantages of the proposed NU-BGBM. We compare the unmixing performance of
the proposed NU-BGBM with the other four methods, i.e., the fully constrained least squares (FCLS)
algorithm [48], GDA [29], semi-NMEF [30] and BPOGM [31]. The FCLS is based on the LMM, the other
three compared methods are all based on the GBM.

For the four compared methods, we adopt the recommended default parameters in the original
references. For the proposed NU-BGBM, there are mainly four parameters, i.e., the regularization
parameter A, the Lagrange multiplier regularization parameter y, the error tolerance ¢ and the
maximum number of iteration N. We have found that the regularization parameter A has much
larger impact on the unmixing performance than the other three parameters. Thus, throughout the
experiments, we fix 4 = 0.01, ¢ = 107® and N = 1000, and tune A € {10-5,107%,1073,1072,10}, 1,
101, 102, 103, 10%, 10°}. Besides, since the GDA would diverge using random initialization [31], so all
the GBM based unmixing methods are initialized by FCLS [48] for fair of comparison.

3.1. Experimental Results with Synthetic Data

In this subsection, we will conduct experiments on synthetic data to demonstrate efficiency and
advantages of the proposed NU-BGBM in the presence of mixed noise. The bilinear mixing effect
often appears between soil and vegetation [30,31], and we select six spectra from the U. S. Geological
Survey (USGS) spectral library available at: http://speclab.cr.usgs.gov/spectral-lib.html, i.e., one
type of water (Water+Montmor), two types of soil (Stonewall and Rangeland), and three types of
vegetation (spurge, oak and pine). We downsample the original selected six spectra to P = 200 bands,
and the spectra of them are shown in Figure 1, which are chosen as the six endmembers in the
simulated experiment. After obtaining the endmember matrix E, the bilinear endmember matrix F can
be naturally obtained according to BGBM. Then, we generate the abundance matrix A of six selected
endmembers according to [49], and the code is available at: https:/ /bitbucket.org/aicip/mvcnmf.


http://speclab.cr.usgs.gov/spectral-lib.html
https://bitbucket.org/aicip/mvcnmf

Remote Sens. 2018, 10, 1600 8 of 19

The synthetic HSI has 64 x 64 pixels having no pure pixels, the HSI is divided into 8 x 8 blocks and
all pixels in each block are filled up by one of endmembers randomly selected from the selected six
endmembers. The spatial low-pass filter of size 9 x 9 has been applied to the HSI to create linear
mixture, and all pixels with abundances greater than 80% have been replaced by a mixture of all
endmembers with equally distributed abundances, which aims at removing the probable pure pixels
in the resulted HSI, and the generated abundances of the six endmembers are shown in the first row
in Figure 2. The nonlinearity coefficients are uniformly drawn in the interval [0, 1], and the bilinear
abundance matrix B can be also obtained according to BGBM. Then, three kinds of noise will be
added to the HSI to simulate the mixed noise and different intensities of AWGN in each band of HSI
in practice:

1.  Gaussian noise: all bands of the HSI are contaminated by zero mean i.i.d. Gaussian noise, and the
signal-to-noise ratio (SNR) of each band is a random number ranging from 10 dB to 50 dB.

2. Impulse noise: only 11 bands (60-70) are contaminated by 30% impulse noise.

3. Dead lines: only 11 bands (120-130) are contaminated by dead lines.

1
water
——stonewall
0.8r rangeland]
@ oak
o 5 ——spurge
c 3 ¥ ——Di H
o~ 0.6 T pine
+ 4
(&} [
Qo4 Y
'-5 .
o
0.2

50 100 150 200
Band number

Figure 1. Six selected spectra in the USGS.

To simulate the mixed noise in real HSI as much as possible, we conduct experiments in the
presence of one type of noise, two types of noise and three types of noise, which can be seen in Table 1.
After adding noise to the synthetic HSI, we adopt the compared methods and the proposed NU-BGBM
to unmix the synthetic HSIs using the given true endmembers. To evaluate the unmixing performances
of different methods, we adopt the root mean square error (RMSE) [30,31] as the quantitative evaluation
criterion. Generally speaking, smaller RMSE indicates better HSI unmixing performance.

Table 1 gives the RMSEs of the compared methods and the proposed NU-BGBM in the presence
of different types of noise. From Table 1, we can clearly see that when the synthetic HSI is only
contaminated by Gaussian noise with different intensities for each band of HSI, the proposed
NU-BGBM can obtain better unmixing performance than the other compared methods. This is
due to that only our NU-BGBM can take the different intensities of AWGN in different bands into
account under the maximum a posteriori framework. When the HSI is only degraded by impulse noise
or dead lines, the proposed NU-BGBM can obtain much better unmixing performance than the other
four compared methods, the underlying reason is that only our NU-BGBM can take the underlying
sparsity of sparse noise into account, and the four compared methods all adopt the vector ¢, norm or
the matrix Frobenius norm, but the vector ¢, norm or the matrix Frobenius norm is usually sensitive
to non-Gaussian noise, and it would seriously degrade the unmixing performance in the presence
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of non-Gaussian noise. In the presence of two types of noise and three types of noise, the proposed
NU-BGBM can also obtain better unmixing performances than the other compared methods, which
demonstrate that our proposed method based on BGBM can handle the mixed noise and different
intensities of AWGN in different bands efficiently, and hence our method is more robust and applicable
than the other compared methods in the presence of complex mixed noise. Besides, the FCLS generally
has worse unmixing performance than the other methods, this is due to that the FCLS is based on
LMM, and the other methods are based on GBM or BGBM, which demonstrates the importance of
taking nonlinear mixing effect into account to improve the accuracy of HSI unmixing. Furthermore,
Figure 2 shows the abundance maps estimated by the compared methods and the proposed method in
the presence of three types of noise, i.e., the synthetic HSI is contaminated by Gaussian noise, impulse
noise and dead lines simultaneously. It can be clearly observed from Figure 2 that the abundances
of six endmembers estimated by the proposed NU-BGBM can approximate obviously better to the
ground truth than the other compared methods, which also demonstrate that our proposed NU-BGBM
is more robust for the mixed noise and different intensities of AWGN in different bands than the other
compared methods.

Ab. of water

>

Ab. of stonewall Ab. of rangeland Ab. of oak Ab. of spurge Ab. of pine
e | =

&
:
&
O

10 20 30 40 50 lD 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Figure 2. Abundance maps estimated by the compared methods and the proposed method in the
presence of three types of noise. From top to bottom: ground truth, FCLS, GDA, semi-NMF, BPOGM
and NU-BGBM.
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Table 1. Comparison of RMSEs (x 10~2) for different methods in the presence of different types of noise.

Type of Noise FCLS GDA Semi-NMF BPOGM NU-BGBM

Gaussian noise 7.103  6.053 5.520 5.157 0.990
Impulse noise 7123  6.395 6.161 5.403 0.167
Dead lines 6.812 5.773 5.796 5.436 0.171
Gaussian noise & g 117 7 70 7.651 7.065 1.004
Impulse noise
Gaussian noise &
. 8.084 7.185 7.197 6.996 1.003
Dead lines
Impulse noise & 7 5,1 7 5, 7.469 6.962 0.296
Dead lines
Gaussian noise &
Impulse noise &  9.010  8.395 8.609 8.216 1.021

Dead lines

3.2. Experimental Results with Real Data

The first real HSI was acquired by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
over the Cuprite mining site, in the state of Nevada, in 1997. This HSI has 224 spectral bands ranging
from 0.4 um to 2.5 um, and the spectral resolution is about 10 nm. The region of interest, containing
50 x 50 pixels, is used to assess the unmixing performance of the proposed NU-BGBM and the other
four compared methods. These bands seriously contaminated by water absorption and noise are
removed, remaining D = 189 spectral bands. The false color image of the selected Cuprite HSI can
be seen in Figure 3a. HySime [47] can be adopted to estimate the number of endmembers in the
selected Cuprite HSI. Besides, according to [28], the selected Cuprite HSI mainly has three materials,
i.e., alunite, kolinite and muscovite.

(a) (b) (c)

Figure 3. False-color image of (a) Cuprite, (b) gulf of Lion and (c) Urban.

For the unmixing of real HSI, GBM and BGBM based HSI unmixing usually uses the two-stage
methods. First, endmembers are extracted from the real HSI by endmember extraction methods,
and the bilinear endmembers can be naturally obtained from the extracted endmembers. Then,
the abundances and bilinear abundances can be estimated by different abundance estimation methods.
In this experiment, we adopt the vertex component analysis (VCA) [50] to extract endmembers from the
selected Cuprite HSI first, then we estimate the abundances by the proposed NU-BGBM and the other
compared methods. The extracted endmembers of the selected Cuprite HSI can be seen in Figure 4.
Since the truth abundances are unknown for the real HSI, and we cannot compute the RMSE, so we
use the abundance maps to analyze the unmixing performance of different methods qualitatively,
and also adopt the reconstruction error (RE) and spectral mean angle distance (SMAD) [30,31] to
evaluate the unmixing performance of different methods quantitatively. Figure 5 shows the abundance
maps estimated by the proposed NU-BGBM and the other four compared methods for the selected real
Cuprite HSI. It can be observed from Figure 5 that the abundance maps, estimated by the proposed
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NU-BGBM and the other four compared methods for the selected real Cuprite HSI, are fairly in
accordance with each other. Table 2 gives the REs and SMADs of the proposed NU-BGBM and the
other four compared methods for the first real HSI. It can be clearly seen from Table 2 that the proposed
NU-BGBM can obtain better RE and SMAD than the other four compared methods, which demonstrate
that the proposed NU-BGBM is efficient for the unmixing of the selected real Cuprite HSI by taking
the mixed noise into account. Besides, the unmixing method based on the BGBM can obtain better RE
and SMAD than these unmixing methods based on the LMM and GBM, which indicate that the BGBM
is more suited for the selected real Cuprite HSI than the LMM and GBM. Moreover, to demonstrate the
necessity of taking the nonlinear mixing effect into consideration, the root-sum-square (RSS) [30,31]
method is adopted to calculate the residual errors of HSI unmixing for each pixel. Figure 6 displays the
RSS maps of FCLS for the selected real Cuprite HSI, and the difference RSS maps between FCLS and
GDA, semi-NMF, BPOGM, and NU-BGBM respectively. From Figure 6, it can be observed that taking
the nonlinear mixing effect into consideration can better approximate to the selected real Cuprite HSI,
which demonstrate that the selected real Cuprite HSI can be better characterized by nonlinear mixtures
of endmembers.
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Figure 4. Extracted endmembers of Cuprite.
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Ab. of kaolinite Ab. of muscovite

Ab. of alunite

Figure 5. Abundance maps estimated by the proposed NU-BGBM and the compared methods for the
selected real Cuprite HSI. From top to bottom: FCLS, GDA, semi-NMF, BPOGM, and NU-BGBM.
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GDA FCLS ~ BPOGM RSS

FCLS ' NU-BGBM
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Figure 6. RSS maps of FCLS for the selected real Cuprite HSI, and the difference RSS maps between
FCLS and GDA, semi-NMF, BPOGM, and NU-BGBM respectively.

Table 2. Comparison of REs (x10~2) and SMADs (x1072) of different methods using extracted
endmembers for the selected Cuprite real HSL

FCLS GDA Semi-NMF BPOGM NU-BGBM
RE 2.106  1.980 1.481 1.117 1.046
SMAD 3.131 2920 2.738 2.077 1.891
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The second real HSI was acquired by the Meris spectrometer over the gulf of Lion, in the south east
of France. This HSI has 13 spectral bands ranging from 400 nm to 800 nm, and the spatial resolution is
300 m. The region of interest, containing 280 x 330 pixels, is used to assess the unmixing performance
of the proposed NU-BGBM and the other four compared methods. The false color image of the gulf
of Lion HSI can be seen in Figure 3b. HySime [47] can be also adopted to estimate the number of
endmembers for the gulf of Lion HSI. Besides, according to [24], the selected Cuprite HSI mainly has
three materials, i.e., water, agricultural areas, and forests and semi natural areas. Moreover, the Corine
Land Cover classification map of gulf of Lion HSI is shown in the first row of Figure 7, which can
be used as potential visual ground truth to to interpret and evaluate the unmixing performance of
different methods.

Ab. of water Ab. of forests and semi natural areas

Ab. of agricultural areas

100 200 300 00 200 300

Figure 7. Abundance maps estimated by the proposed NU-BGBM and the compared methods for the
gulf of Lion real HSI. From top to bottom: estimated visual ground truth, FCLS, GDA, semi-NMF,
BPOGM, and NU-BGBM.
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In this experiment, we also adopt the VCA [50] to extract endmembers from the gulf of Lion HSI
first. However, when the number of extracted endmembers is three, one extracted endmember is not
meaningful, which is due to that the corresponding abundance map is not spatially coherent. When the
number of extracted endmembers is four, the three abundance maps of the meaningful endmembers
are all spatially coherent, and the meaningless endmember is the outlier, which is shown in Figure 8.
Figure 7 shows the abundance maps obtained by the proposed NU-BGBM and the compared methods
for the gulf of Lion HSI. It can be seen from Figure 7 that the abundances of forests and semi natural
areas obtained by different methods are fairly consistent with each other, and the abundances of
water and agricultural areas of the proposed NU-BGBM approximate to the estimated visual ground
truth better than these of the other four compared methods, which demonstrate the efficiency of the
proposed method. Table 3 gives the REs and SMADs of the proposed NU-BGBM and the other four
compared methods for gulf of Lion HSI. It can be observed from Table 3 that the proposed NU-BGBM
can obtain better RE and SMAD than the other four compared methods, which demonstrate that the
efficiency and advantages of the proposed NU-BGBM by taking the mixed noise into account. Besides,
the unmixing method based on the BGBM all get smaller RE and SMAD than these unmixing methods
based on the LMM and GBM, which demonstrate that the BGBM can better characterize the gulf of
Lion HSI than the LMM and BGBM. Moreover, Figure 9 displays the RSS maps of FCLS for the gulf of
Lion HSI, and the difference RSS maps between FCLS and GDA, semi-NMF, BPOGM, and NU-BGBM
respectively. From Figure 9, it can be also clearly seen that unmixing the real HSI based on the GBM
and BGBM can better approximate to the gulf of Lion HSI, which indicates that the gulf of Lion HSI is
composed of nonlinear mixtures of endmembers.
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Figure 8. Extracted endmembers of gulf of Lion.
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Figure 9. RSS maps of FCLS for the gulf of Lion real HSI, and the difference RSS maps between FCLS
and GDA, semi-NMF, BPOGM, and NU-BGBM respectively.
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Table 3. Comparison of REs (x10~2) and SMADs (x1072) of different methods using extracted
endmembers for the gulf of lion real HSI.

FCLS GDA Semi-NMF BPOGM NU-BGBM
RE 1138  1.044 0.899 0.898 0.353
SMAD 3.932 3.660 3.585 3.581 2.643

The third real HSI is the Urban data (available at: http:/ /www.escience.cn/people/feiyunZHU/
Dataset_GT.html) acquired by the Hyperspectral Digital Imagery Collection Experiment (HYDICE)
over the Copperas Cove near Fort Hood. This HSI has 210 spectral bands ranging from 400 nm to
2500 nm, and the spectral resolution is 10 nm. There are 307 x 307 pixels, and the spatial resolution
is 2 m. We have removed bands 14, 76, 87, 101-111, 136-153 and 198-210 due to water vapor and
atmospheric effects, remaining D = 162 spectral bands. The false color image of the Urban data can
be seen in Figure 3c. This HSI mainly has six materials, i.e., asphalt, grass, tree, roof, metal and dirt,
which can be observed in Figure 10.

Figure 11 shows the abundance maps obtained by the proposed NU-BGBM and the compared
methods for the Urban HSIL. It can be observed from Figure 11 that the abundances of metal and
dirt obtained by different methods are fairly consistent with each other, the abundances of tree and
roof obtained by semi-NMF, BPOGM, and NU-BGBM are different from these of FCLS and GDA,
the abundances of asphalt and grass obtained by NU-BGBM are different from these of FCLS, GDA,
semi-NMF and BPOGM. Besides, Figure 12 displays the RSS maps of FCLS for the Urban HSI, and the
difference RSS maps between FCLS and GDA, semi-NMF, BPOGM, and NU-BGBM respectively. It can
be observed from Figure 12 that it helps to approximate to the Urban HSI by taking the nonlinear mixing
effect into consideration. Moreover, Table 4 shows the REs and SMADs of the proposed NU-BGBM
and the other four compared methods for the Urban HSI. It can be observed from Table 4 that the
proposed NU-BGBM can obtain the best RE and SMAD, which demonstrate that the advantages of
taking the mixed noise and different intensities of AWGN in different bands into account.

0.7 i
asphalt
06l Orass
’ tree A R s
roof ‘ %wv
Q© 0.5[] —+ metal \ @7%{%%
2 | di o
8
[&]
@
—
)
o
of

0 56 160 léO 200
Band number

Figure 10. Endmembers of Urban.
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Figure 11. Abundance maps estimated by the proposed NU-BGBM and the compared methods for the
Urban real HSI. From top to bottom: estimated visual ground truth, FCLS, GDA, semi-NMF, BPOGM,
and NU-BGBM.
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Figure 12. RSS maps of FCLS for the Urban real HSI, and the difference RSS maps between FCLS and
GDA, semi-NMF, BPOGM, and NU-BGBM respectively.

Table 4. Comparison of REs (x1072) and SMADs (x1072) of different methods using extracted
endmembers for the Urban real HSI.

FCLS GDA Semi-NMF BPOGM NU-BGBM
RE 4120  4.057 1.837 1.721 1.443
SMAD 12713 12.646 9.541 9.000 7.353

4. Conclusions

In this paper, we propose a novel nonlinear unmixing method based on the bandwise generalized
bilinear model under the maximum a posteriori framework, which can take the complex mixed noise
and different intensities of AWGN in different bands into consideration. Besides, we develop the
ADMM to solve the proposed NU-BGBM. In the synthetic data experiments, the proposed NU-BGBM
can handle the mixed noise and different intensities of AWGN much better than the other compared
methods, thus our method is more robust and applicable than the other compared methods in the
presence of complex mixed noise. In the real data experiments, the proposed unmixing method based
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on the BGBM all can get smaller RE and SMAD than these unmixing methods based on the LMM
and GBM, which demonstrate that the BGBM can better characterize the selected real Cuprite HSI,
gulf of Lion HSI and Urban HSI than the LMM and GBM. The proposed NU-BGBM can obtain better
unmixing performance than the other four compared methods on both synthetic datasets and real
HSIs, which demonstrate the effectiveness and advantages of the proposed model BGBM and the
corresponding unmixing method NU-BGBM.

Although the proposed NU-BGBM can obtain desirable performance for hyperspectral unmixing,
there is still room for improvement. Since the spectral signatures of neighboring pixels usually have
high correlation, so we can take it into consideration to further improve the unmixing performance in
out future work.
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