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Abstract: A deep neural network is suitable for remote sensing image pixel-wise classification
because it effectively extracts features from the raw data. However, remote sensing images with
higher spatial resolution exhibit smaller inter-class differences and greater intra-class differences;
thus, feature extraction becomes more difficult. The attention mechanism, as a method that simulates
the manner in which humans comprehend and perceive images, is useful for the quick and accurate
acquisition of key features. In this study, we propose a novel neural network that incorporates two
kinds of attention mechanisms in its mask and trunk branches; i.e., control gate (soft) and feedback
attention mechanisms, respectively, based on the branches’ primary roles. Thus, a deep neural
network can be equipped with an attention mechanism to perform pixel-wise classification for very
high-resolution remote sensing (VHRRS) images. The control gate attention mechanism in the mask
branch is utilized to build pixel-wise masks for feature maps, to assign different priorities to different
locations on different channels for feature extraction recalibration, to apply stress to the effective
features, and to weaken the influence of other profitless features. The feedback attention mechanism
in the trunk branch allows for the retrieval of high-level semantic features. Hence, additional aids are
provided for lower layers to re-weight the focus and to re-update higher-level feature extraction in a
target-oriented manner. These two attention mechanisms are fused to form a neural network module.
By stacking various modules with different-scale mask branches, the network utilizes different
attention-aware features under different local spatial structures. The proposed method is tested
on the VHRRS images from the BJ-02, GF-02, Geoeye, and Quickbird satellites, and the influence
of the network structure and the rationality of the network design are discussed. Compared with
other state-of-the-art methods, our proposed method achieves competitive accuracy, thereby proving
its effectiveness.

Keywords: very high resolution; remote sensing; pixel-wise classification; attention; control gate;
feedback attention mechanism; internal classifier; multi-scale

1. Introduction

Image classification for very high-resolution remote sensing images (VHRRSI) is an important
aspect of efficient and effective earth observation information extraction. Assigning labels to each
pixel of a VHRRSI, which is called per-pixel or pixel-wise classification, is of great importance and
considered to be the basis for land mapping, image understanding, contour detection, object extraction,
and so on [1–4].

For image classification, feature extraction is the key to achieving high-quality classification results.
In 2006, Hinton [5] noted that a deep neural network could learn more meaningful and profound
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features than the existing techniques, thereby enhancing the network performance. Since then,
the application of deep learning to various fields has been tested widely, with largely positive
results [6–8]. In particular, deep networks have been successfully employed for feature extraction of
remote sensing images in many studies [9–15], outperforming other conventional methods. At present,
finer-resolution acquired remote sensing images yield improved ground-object perception [16].
However, the inter-class and intra-class variation make it difficult for land object classification [17].

The attention mechanism is a technique that simulates the process employed by humans to
understand and perceive images. The objective of this approach is to direct all focus, processing power,
and resources to the most valuable and informative feature areas [18,19]. Hence, sensitivity to features
containing important information is heightened, useful information is highlighted, and unnecessary
information and noise are suppressed to better facilitate data mining. The attention mechanism
has been applied in many different fields, such as image recognition [20,21], object detection [22],
positioning [23], and multimodal reasoning and matching [24].

In remote sensing, the most common attention mechanism uses saliency-guided sampling for
graphical feature extraction. For example, Zhang et al. [25] previously employed a context-aware
saliency strategy to extract salient and unsalient areas from images, and then used an unsupervised
sparse auto-encoder for feature extraction to acquire useful graphical information. Similarly,
Hu et al. [26] tested two kinds of saliency-guided sampling methods, a salient region-based method
and a keypoint-based method on a University of California (UC)-Merced dataset and an RS19 dataset.
The aim was to achieve optical, high-spatial-resolution, remote-sensing image scene classification.
Chen et al. [27] used JUDD, a visual saliency model, to acquire saliency maps from unlabeled remote
sensing data. Those researchers then trained a neural network using a sparse filtering model and
used it for remote sensing classification. It is notable that the methods mentioned above all follow the
same classification workflow: area selection and extraction, feature extraction training, and classifier
training. Therefore, the attention mechanism and the feature extraction and classification by the neural
network are relatively independent. Thus, the network classification results do not influence the image
focus points or the information to be highlighted or suppressed.

To unify the application processes of the attention mechanism and the feature extraction
and classification by the neural network, some state-of-the-art methods to adaptively develop
attention-aware features through network training have been proposed. For example, Hu et al. [28]
previously proposed a mechanism for constant feature extraction calibration through network training;
this approach enables the network to amplify the meaningful feature channels and to suppress useless
feature channels from global information. In addition, Yang et al. [29] used an attention mechanism
to extract additional valuable information on the transition layer; this information was then passed
to the next feature extraction block for subsequent feature exploitation. Kim et al. [30] employed
a joint residual attention model that utilized the attention mechanism to select the most helpful
visual information so as to achieve enhanced language feature selection and information extraction
to solve visual question-answering problems. In the above methods, an attention mask branch and a
feature extraction trunk branch are used to enhance the informative feature sensitivity and to suppress
unnecessary information through element-wise multiplication. However, as noted in previous studies,
many networks use global information (i.e., global average pooling) when adopting the attention
mechanism to model the relations and dependency among different channels. The attention weight
acquired by that process is then used for feature recalibrations. However, for VHRRSI pixel-wise
classification, the assignment of different priorities to different locations in the same channel (rather
than different channels) is more preferable, provided that the location is of interest to the network
training and constitutes an informative area. This approach is discussed in more detail in this paper.

When the attention mechanism is used, every pixel location has an independent weight of focus to
highlight discriminative and effective features, and to weaken information detrimental to classification,
such as background information and noise. Previously, Chen et al. [31] and Wang et al. [20] applied
the soft attention mechanism. In that technique, soft mask branches are used to generate weight
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maps with the same input data size for feature recalibration, and then assigned different priorities
to different positions. This approach simulates the biological process that causes human visual
systems to be instantly attracted to a small amount of important information in a complex image.
Kong and Fowlkes [32] subsequently constructed a plug-in attentional gating unit that applies a
pixel-wise mask to the feature maps. This perforated convolution yields perfect results, but the mask
is binary. In addition, Fu et al. [33] proposed a dual attention network using a pixel-wise self-attention
matrix to capture the spatial and channel dependencies. Their mask attention mechanism exhibits
good performance. However, the attention masks are determined using the Gumbel-Max trick or
through self-transpose multiplication, and not directly from network feature learning, which would be
more complex.

Contrary to its application in previous studies, the attention mechanism is not limited to the
use of masks to calibrate features in trunk branches. Theoretically, the neurons on a certain area of
the visual cortex are influenced by the activities of the neurons on other areas, as transferred via
feedback [34]. This is because humans acquire an improved understanding of the target information
when they reconsider or review images. Therefore, we can return high-level semantic features to
low-level feature learning through feedback, so as to relearn feature-based weights and to obtain more
noteworthy and relevant information. This process differs from those of networks such as the residual
neural network (ResNet) [14] and DenseNet [35], in which feedforward only is used for hierarchically
high-level feature extractions. The attention mechanism has been proven useful in various fields,
such as computer vision, but has seldom been used in VHRRSI pixel-wise classification.

When observing a remote sensing image, humans automatically observe the spatial structures
of the different areas, from the local areas to the global image (or conversely), so as to focus
on the most effective areas and ignore unimportant information. This mechanism verifies the
importance of the receptive field on different scales. Generally, multi-scale strategies can be
classified into two kinds: feature concatenation on different scales by skipping layers for the
final classification [36–38], and the simultaneous convolution with multi-scale kernels on the input
data [13,39,40]. For instance, Bansal et al. [41] previously created a hypercolumn descriptor using
convolutional features (pixels) from different layers; this descriptor was then fed into a multi-layer
perceptron (MLP) for pixel-wise classification. However, features on different scales are concatenated
and independent in feature extraction.

In this study, for improved feature extraction and higher-accuracy VHRRSI pixel-wise classification,
we propose a novel attention mechanism involving a neural network for multi-scale spatial and spectral
information. The multi-scale strategy and attention mask technique are combined and the features are
recalibrated by constructing attention masks on different scales. Motivated by previous research [29],
we attempt to merge two kinds of attention mechanism (soft and feedback) using mask and trunk
branches, with high-level feature feedback being assigned to the trunk branch. For hierarchical feature
extraction in the shallow layers, the attention mask is constructed using a kernel with a small receptive
field to fit the characteristics of the low-level features, such as details and boundaries. For the deep
layers, the attention mask is constructed on a large scale; this concentrates focus on the more abstract,
robust, and discriminative high-level features. The feature extraction that results on the large and small
scales are closely related, fitting the characteristics of hierarchical feature extraction.

The network itself is a stack of multiple attention modules, and two kinds of convolutional
neural network (CNN)-based attention mechanisms are unified in every module. First, the network
employs an element-wise soft attention mechanism combined with multi-scale convolution to construct
attention masks of different receptive fields. The network designs the attention mask of every module
by increasing the receptive field order using a convolutional kernel of the same scale and hierarchically
promotes the informative feature sensitivity in local spatial structures of different scales by stacking
attention masks. When the trunk branch of every module performs feature extraction, high-level
features are used to update the low-level feature learning to better re-weight the focus and to facilitate
feature extraction and image classification.
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The major contributions of this article are as follows: the attention mechanism is applied to the
VHRRSI pixel-wise classification, with the mask branch and trunk brunch mechanisms being combined
for feature learning. Hence, the efficiency of the VHRRS image classification is improved. The network
realizes the soft attention mechanism and achieves end-to-end and pixel-to-pixel feature recalibration,
thereby assigning diverse priorities to different locations on the feature maps. This supports the
network in highlighting the most discriminative and useful features and by suppressing useless feature
learning and extraction in accordance with the classification requirements.

Based on the concept of feedback attention, the network returns the high-level features to the
shallow layers. In addition to enhancing the information flow through feature reuse, this concept also
allows high-level visual information to re-weight and re-update the lower-layer feature extraction.
Hence, key points are captured and the network training becomes more target-oriented. The network
sensitivity to informative features is increased by this top-down strategy.

The network combines the multi-scale strategy with the attention mechanism. Spatial and spectral
information are used jointly and the network concentrates on different valuable and effective features
under different local spatial structures in accordance with the attention mask scales utilized in the
stacked attention modules. Additionally, the added internal companion supervision measures the
effectiveness of different-scale attention modules, enhancing the effectiveness and richness of the
features extracted by the network.

The remainder of this paper is organized as follows: Section 2 presents the proposed method
and introduces the network design and structure; Section 3 describes the experimental setup,
data preparation, and strategy, and presents the experimental results; Section 4 discusses the influence
of the training data volume and training time; and Section 5 summarizes the entire article.

2. Proposed Method

This section first introduces the mechanisms utilized in the framework and then presents the
network construction. A flowchart of the attention-mechanism-based method is presented in Figure 1.
The entire network is composed of several attention blocks. In each block, the soft attention mechanism
and feedback attention mechanism form the control gate mask and trunk branches, respectively,
and the point-wise multiplication of these two branches enables the fusion of these two attention
mechanisms. Each block employs a control gate with a specified scale, and the stacking of the blocks
allows the network to fuse the multi-scale information. The internal classifiers and softmax loss
exist only for network training and are removed when the network is ready for image classification.
The method is explained in detail below.

2.1. Feedback Attention Mechanism

Deep learning networks, such as the VGG neural network [12], ResNet [14], and DenseNet [35],
all employ a feedforward approach to feature learning, in which high-level features are learned from
low-level features. This hierarchical learning approach simulates the hierarchical structure of the
images, in which points form lines, lines form graphs, graphs form parts, and parts form objects [25].
It has also been observed that humans can capture information on a target faster and with more
precision when they re-consider the target with additional attention. Inspired by CliqueNet [29],
we believe that the introduction of the feedback attention mechanism as a form of additional attention
on high-level features can simulate this biological phenomenon, by assisting low-level feature learning
for improved target-oriented feature extraction. In our design, the feedback attention mechanism
comprises two parts: the feedforward and feedback stages. The feedforward stage learns high-level
features from the low-level features acquired from the image details so as to acquire abstract and
discriminative features. The feedback stage follows, in which high-level features are returned to aid
lower-level feature learning. The convolutional network with the feedback attention mechanism is
illustrated in Figure 2.
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Figure 1. The flowchart of the proposed attention-mechanism-containing neural network.
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Figure 2. The flowchart of feedforward and feedback stages. The numbers in the flowchart represent
the calculation sequence in the feedback stages. The red lines indicate that the higher-level features are
returned to update the previous-level feature extraction so that it becomes more objective-oriented.

The feedforward process is a CNN without the classification layer. The CNN is an improved MLP,
which is generated by several blocks stacked together, each of which is used for feature extraction and
comprises convolution, pooling, and non-linear transformation.

The convolutional layer uses a sliding window as a kernel to move across the image and to
calculate the point-to-point inner product in the corresponding area, such that each pixel in the features
corresponds to a continuous area in the input data. This locally connected approach simulates the
biological mechanism, in which a certain area in the visual cortex corresponds to some local area when
information is transmitted to the human brain [42]. The kernel remains unchanged during sliding;
hence, it performs image processing in a share weight manner for different locations. Share weights
reduce the parameter amount between each pair of hidden layers and enable each kernel to locate
similar features in the images at the same time. A greater number of kernels indicates more abundant
feature representations, stronger feature mining ability, and more comprehensive extracted features.
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The operation in the convolutional layer is a linear transformation that can handle the linearly
separable problems. However, the features of a VHRRSI are complex, and cannot always be
linearly simulated. Therefore, the introduction of non-linear layers is necessary to increase the
network complexity and expression ability. In a CNN, such layers are called activation functions.
Common activation functions include the rectified linear unit (ReLU), sigmoid, and tanh. Each function
has its own advantages. In particular, the ReLU function, δ(x) = max(0, x), assigns a 0 value to
negative elements and maintains positive values. It reduces the training time [11], alleviates the
gradient vanishing problem to some degree [43], and is a very widely used non-linear function.

The operation in the pooling layer is a statistical aggregation. This operation selects values
to represent the corresponding and non-overlapping areas in the image, so as to reduce the
feature map dimensions. Pooling increases the receptive fields and scale invariance of the features,
reduces redundancy and computation, and retains the most representative features to help extract
the hierarchical features. However, the pooling layer causes a loss of location information while
increasing the receptive field. Moreover, the dimension reductions cause continuous changes in the
feature map sizes, making it difficult to realize direct end-to-end and pixel-to-pixel image pixel-wise
classification without up-sampling; this aspect increases the classification complexity. For this reason,
dilated convolution [44] is used to replace pooling in order to increase the receptive fields, while also
maintaining the spatial location information, keeping the feature maps of the same size as the input
data, and realizing pixel-wise classification.

The dilated convolution flowchart is shown in Figure 3. Note that the kernel does not calculate the
inner product in the continuous area on the feature map. The original kernel is expanded according to
a skipping interval depending on the dilation size. The interval is filled with 0 values, meaning that the
feature points at those locations on the kernel are not considered in the computation. The convolution
is conducted between the expanded kernel and the feature map areas of the corresponding size;
sample values are given in the flowchart to aid understanding. As the kernel expands, the area in the
previous layers mapped by the nodes in the next hidden layer also expands, and the receptive field
consequently expands. Through a padding operation, dilated convolution ensures that the generated
feature maps are always the same size as the input data. This approach allows for the easy production
of the final pixel-to-pixel, pixel-wise classification results.
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Figure 3. The dilated convolution operation.

The feedforward process is described in the following formula:

xl = δ(Wl−1 ∗ xl−1 + bl−1)

where ∗ indicates the convolution operation; x/ ∈ <s×s×n represents the n feature maps with size s× s
generated by layer l; and W/−1 is the set of various kernels used on the feature maps in layer l − 1.
Further, W/−1 =

(
W/−1

1, W/−1
2, W/−1

3, . . . , W/−1
n), where W/−1

n ∈ <w×w×k, indicating that the
kernel size is w× w and its depth k is equal to the third dimension of feature maps xl−1 from layer
l − 1; bl−1 is the bias corresponding to W/−1; and δ() is the activation function.
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The aforementioned process is a hierarchical feature extraction that proceeds gradually from a low
to high level. However, the features extracted at the high level do not provide additional assistance to
the feature learning from the lower level. Therefore, in the proposed method, we add a feedback stage
after the feedforward stage. This stage uses the features acquired in the high level to help re-weight the
focus of the lower layer such that it assigns attention to the correct focus more quickly and effectively.
The unrelated neuron activities that decrease the classification accuracy, including factors such as
background information and noise, are simultaneously suppressed.

The feedback stage is also a CNN network (Figure 2). However, in this stage, the layers related
to the feedforward stage are re-updated. All levels are re-updated by features acquired from one
layer higher in the feedforward stage and one previous lower layer re-updated in the feedback stage.
Apart from the first and last layers in the feedforward stages, all other stages are re-updated according
to the following rule:

xl = δ(Wl−1,l ∗ xl−1 + bl−1,l + Wl+1,l ∗ xl+1 + bl+1,l)

where Wl−1,l and bl−1,l are the local weight and bias from the hidden layer l− 1 to layer l, respectively;
Wl+1,l and bl+1,l are the parameters bringing the higher-layer features from layer l + 1 to layer l;
and δ() is the non-linear activation function.

Feature maps from layer l are acquired by performing a convolutional non-linear transformation
on the features from layers l − 1 and l + 1. In the feedback stage, the computation on the features
from the higher and lower layer is performed element-wise, such that the dimensions of the kernels
used for feature extraction and learning in all layers must remain the same in the feedforward process,
along with the sizes of the generated feature maps. The last layer of the feedforward stage serves as
the lower layer of the first layer in the feedback stage. Therefore, for the last layer of the feedback stage,
the first layer can be considered as its higher layer.

In the feedback mechanism, parameters Wl−1,l and bl−1,l are shared in the feedforward and
feedback stages. Through the feedback of the higher layer and the feature combination with the low
layer, feature reuse is realized to some degree. Under this condition, we can maximize the information
flow. Meanwhile, because of the feature reuse, we can minimize the number of feature maps extracted
from each layer to prevent information redundancy and the massive computational burden caused by
high-dimensional kernels.

2.2. Control Gate Attention Mechanism

In addition to the aforementioned attention mechanism that returns the features from the higher
layer to the lower layer to re-update the weight, we can also use the “control gate” to simulate the
human focus mechanism. The human visual system is instantly attracted to important visual targets.
This behavior indicates that the human visual system does not assign the same priority to different
positions, but instead gives distinct priority to certain task-specific areas and features. In some studies,
the priority assigned to certain pixels has been improved by increasing their weights. For instance,
Pinheiro [45] aggregated the predicted pixel-wise labels to the image level and placed greater weights
on pixels having corresponding image-level labels that matched the given image labels. However,
transference of the pixel-level labels to the image-level labels seems a little complex. Therefore, in this
study, we adopt an alternative method to adjust the priority, which is called the control gate approach.

A control gate allows for the focus and related resources to be assigned to the most intrinsic,
discriminative, and informative areas. We use the control gate as a mask mechanism and utilize it for
feature recalibration, selectively enlarging the valuable areas and suppressing useless features, such as
noise and background. Unlike Hu et al. [28] and Yang et al. [29], who used global pooling to enlarge
the valuable channels, our control gate performs pixel-to-pixel modeling on masks that are the same
sizes as the original feature maps. The positions in the masks represent the weights or propriety values
of the corresponding pixels on the original maps. The priorities of the pixels on the original feature
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maps can differ, indicating that each pixel may play a different role according to different classification
objectives. These kinds of masks are more suitable for pixel-wise classification than global pooling.

The control gate is also a feedforward fully convolutional neural network that maintains the size
of the acquired mask. The generated mask indicates the calibrated importance of every position
on the feature maps; therefore, the control gate of the proposed method is designed as a soft
attention mechanism, wherein the value of every pixel on the mask varies from 0 to 1 [27]. Therefore,
the convolutional network of the control gate is also stacked using elements such as convolution and
non-linear transformation. However, different from the feedback attention mechanism, we replaced
the previously used ReLU non-linear transformation with the sigmoid activation function in the last
layer of the control gate to ensure that the mask outputs are between 0 and 1. The sigmoid function is
expressed as

S(x) =
1

1 + e−x

In this mechanism, the masks help recalibrate and select the most intrinsic and discriminative
features toward the classification objective in the feedforward process, and also prevent the updating
of the parameters with incorrect gradients during backpropagation [20]. Therefore, the use of such a
control gate mechanism renders our network more expressive and robust.

2.3. Structure of the Proposed Method

As the attention mechanism can be beneficial for pixel-wise classification, in this study, we build
a multi-scale deep neural network that fuses two different attention mechanisms: soft and feedback.

2.3.1. Fusion of Two Attention Mechanisms

The two attention mechanisms have different objectives; hence, we take these two mechanisms as
different components to form the framework. The fusion of the two mechanisms is shown in Figure 4.

Control gate
Attention 
mechanism

Pixel-wise 
priority map

Feedforward feature extraction

Feedback 
attention mechanism

×

Figure 4. The fusion of the two attention mechanisms.

The feedback attention mechanism is designed to form the trunk branch, so as to handle
attention-aware feature learning. The trunk branch has two stages; in the first, the higher-layer
features are learned from the low level in a bottom-up manner to implement hierarchical feature
learning. In the feedback stage, all the layers are re-updated with one layer higher and one layer lower
information using the top-down strategy. Hence, both shallower and deeper information are fused to
help re-weight the focus and train the network in a more task-oriented manner. In short, the trunk
branch implements a feature re-use and focus re-weighting process.

The control gate is not utilized for feature extraction, but rather to learn the weights corresponding
to the features’ importance in the feature extraction process. Therefore, the control gate serves as a
mask branch to assist the feedback-attention-based trunk branch, rather than the main stream.

In many previous studies, such as that by Wang et al. [20], down- and up-sampling were used to
reduce and restore the mask dimensions when constructing mask branches. This approach enlarges
the receptive field while generating masks of the same size as the input data. However, this method
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inevitably yields information loss. Therefore, in the proposed method, we use dilated convolution
to replace the pooling for receptive field enlargement when constructing the convolution networks
for the trunk and mask branches. The sizes of the generated feature maps and the mask maps remain
unchanged from the original input data, which is convenient for the soft attention mechanism and the
pixel-to-pixel and end-to-end pixel-wise classification.

The feature maps and mask maps from the trunk and mask branches, respectively, are fused
by implementing element-wise multiplication on the corresponding positions. Hence, the extracted
features are recalibrated according to their weights, such that different priorities are assigned to
pixels at different locations and on different channels. As a result, more goal-oriented, effective,
and discriminative features of ground objects are acquired for pixel-wise classification.

2.3.2. Stacking of Multi-Scale Attention-Mechanism-Containing Modules

A deep network constantly receives feature maps from different layers, and these maps represent
different and hierarchical features; hence, different attention mask branches are required to acquire
different focuses and to combine them to handle complex ground conditions. Therefore, the trunk
and attention branches are fused into a module, and multiple module stacking is used to model the
requirements for different focuses. The recalibrated feature maps from the previous module are input
to the next module as input data for the next feature learning and recalibration. The constantly added
attention modules enable us to acquire different kinds of attention focuses and, therefore, increase the
expressive capacity of the network [20].

In accordance with the characteristics of the deep network, increasing the network layer depth
causes the feature maps extracted by the network to change hierarchically. Therefore, when the
network is stacked using several modules, the shallow modules extract features with a greater focus on
detailed information such as boundaries and locations, while the features from the higher modules are
more abstract, discriminative, and target-oriented. The control gates must be adjusted according to the
feature map type because the characteristics of the extracted features differ. Therefore, the control gate
spatiality can be adjusted so that it fits the characteristics of the hierarchical features. From shallow
to deep, different modules are equipped with masks using different convolution kernels of varying
sizes, which focus on different local spatial structures. Kernels with a size of 1 × 1 focus on the pixels
themselves and the relationships among the bands; therefore, they are better suited to processing
details-focused feature maps. In contrast, kernels of larger sizes generate larger receptive fields,
and the focus is on the surrounding spatial structures. More global information is considered;
therefore, these kernels are more suitable for handling the abstract features generated by higher
modules. Additionally, the receptive fields of feature maps generated by deeper layers are bigger,
which correspond to an improved matching. Another benefit of using kernels of different sizes is that
spatial and spectral joint features can be utilized because small kernels place greater focus on spectral
information, whereas larger kernels concentrate on spectral and spatial information. Ground-object
classification can be difficult if we rely solely on spectral information for classification because of the
uncontrolled field conditions for ground objects with similar spectra. However, if we rely solely on
spatial information, the intrinsic information provided by the spectral information may be ignored.

Module stacking continuously increases the network length. Although increased depth is a
research trend in the field of neural networks, problems such as gradient vanishing and training
difficulty render the network capability disproportionate to the network depth. Huang et al. [35]
believe that shorter connections between the input and output layers can lower the risks associated
with a deeper network. Motivated by past research [40,46,47], in this study, we construct supervised
learning by implementing additional supervisions for each module and then by combining their loss
with that of the top classifier. In this manner, gradients can be propagated to shallow layers more
efficiently during backpropagation, which is more convenient for network training and optimization.
Meanwhile, when classification results generated by different-scale modules are improved in the
direction of the ground truth, internal classifiers enhance the hidden-layer transparency and the
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features are extracted in the target-oriented direction. This approach reduces the feature redundancy
and improves the feature extraction efficiency.

The outputs of the internal classifiers and the final top classifier are all pixel-to-pixel classification
results of multiple categories. The difference between the output results and ground truth results is
called Loss. We define the Loss function for each classifier as

Loss(θ) = − 1
M× N

[
∑M

m=1 ∑N
n=1 ∑C

c=1 1
{

y(m,n) = c
}

log
exp(pc

m,n)

∑K
k=1 exp(pk

m,n)

]
+

λ

2
‖θ‖2

The classifier generates a pixel-wise classification result with size M× N. Here, ym,n is the class
of the pixel at location (m, n) in the classification result. Every pixel can be classified into one of C
types. Further, θ is the network parameter and pk

m,n is the probability of the pixel at location (m, n) on
the original image being classified as type k. Finally, 1{} is the indicative function: if the equation in
brackets is true, the function returns 1; otherwise, it returns 0. Therefore, the overall cost function of
the network is as follows:

Cost =
L

∑
l=1

Lossl

where Cost indicates that, in the pixel-wise classification, the total Loss generated by the network
comprises the Loss from different scale modules and the Loss from the top of the network. L is the
total number of modules. With supervision on all modules, the network performs training in a more
robust and effective manner and, consequently, achieves superior classification results. The acquired
Cost is used in the backpropagation to update the network parameters.

Therefore, the overall training workflow is as follows: the image data are input to the network,
after which they pass through the modules in sequence. Each module uses the control gate with
different scales to observe, acquire, and highlight the attention-aware features of the feature maps.
In each module, the input data are processed in the trunk and mask branches. When the feature
and mask maps are generated, the mask maps are utilized to recalibrate the feature maps through
element-wise multiplication. Hence, different priorities are assigned to the different areas of the input
data, and consequently, useful features are highlighted while unnecessary features such as noise and
background are suppressed. Then, internal classifiers are used to conduct pixel-wise classifications of
the feature maps generated by the previous modules, and the results and ground truth are compared
to calculate Loss. The features for internal classifiers are also inputted into the module of the next scale
for consequent feature extraction. The final classification result fused with the loss functions from
previous modules is utilized to update the network iteratively.

3. Experiments and Results

3.1. Experiment Setup

In this section, the experiment setup is described, including the data preparation and
experiment strategies.

3.1.1. Experimental Data

All experimental data utilized to test our proposed method were obtained from datasets shared
by other researchers and their work [40,48]. We used 20 images in total and the data were collected
from four satellites. All images are displayed in Figure 5.

Fourteen images were obtained from the GaoFen-2 (GF02) satellite, having sizes varying from
600 × 600 to 950 × 950. The GF02 images are panchromatic with a 1-m spatial resolution; with red,
green, blue, and near-infrared bands; and with 4-m spatial resolution. The images used in this study
were acquired on the 25 June 2016, over Dongying City, Shandong Province, China. Five categories
were labeled on the images: residential areas, water bodies, vegetation, road, and bare land.
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 Figure 5. The twenty images used in the experiment: (a–d) From the BJ02 satellite; (e–r) from the GF02
satellite; and (s,t) from the Geoeye and Quickbird satellites, respectively.

Four images were obtained from the Beijing-2 (BJ02) satellite, having sizes varying from 400 × 400
to 950× 950. Images from the BJ02 satellite also possess five panchromatic bands with a 1-m resolution
and four multi-spectral bands with a 4-m resolution. The images used in this study were taken over
Dongying City, Shandong Province, China, on 21 June 2017. Five or six classes could be observed on
this dataset: residential areas, parking areas, water, vegetation, road, and bare land.

One image was acquired from the Quickbird satellite, which was taken over Fancun,
Hainan Province, China, in 2010. This satellite provides a 2.4-m spatial resolution for the red, blue,
green, and near-infrared bands. The image was 400 × 400 in size with five marked categories identical
to those on the GF02 satellite images.

One image was acquired from the Geoeye satellite, which was taken over the urban area of Hobart
in Tasmania, Australia, in September 2012. This satellite provides a 0.5-m spatial resolution for the
red, blue, green, and near-infrared bands. The image was 600 × 600 in size with six labeled categories:
residential areas, grass, water, trees, roads, and bare land.

For pixel-wise classification, which is a form of pixel-to-pixel classification, the proposed method
was tested by randomly selecting a small proportion of the pixels as training samples, with the others
being retained for testing. The training samples were acquired as follows. For each image, m bands
were stacked first. If the training ratio was p% and the number of pixels with ground truth labels was
n in total, n× p% pixels were randomly selected from the image. For each selected pixel, one patch x
of size w× w×m around that pixel was acquired from the image. The location for that pixel on the
patch was randomly selected and that location was recorded. Each patch’s corresponding ground
truth data y was of the same size as the patch x. Only the recorded location on y was viewed as labeled
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for Loss calculation and backpropagation, while the others were labeled as “0”, viewed as background,
and were not considered in the calculations. Accordingly, we can guarantee that, for every pixel on x,
there would be a one-to-one correspondence on y. All data were normalized by dividing by 255 and
subtracting the mean value to remove the effects of different conditions caused by illumination and so
on. No other pre-processing was required.

3.1.2. Experimental Strategy

We chose one image from each of the BJ02 and GF02 datasets for the main experiments. The images
included five and six kinds of ground objects, respectively, and the detailed results of the comparative
analyses are presented here. The detailed label information is presented in Table 1.

Table 1. The reference data information for the Bei-Jing02 and Gao-FenF02 images.

BJ Size 800 × 800

No. Category Mark Color Number of Pixels

1 Water Light Blue 35,522
2 Tree Blue 226,305
4 Bare Land Red 70,549
5 Building Green 115,512
6 Road Yellow 71,464

GF Size 600 × 600

No. Category Mark Color Number of Pixels

1 Water Light Blue 32,206
2 Tree Blue 97,121
4 Bare Land Red 51,160
5 Building Green 75,393
6 Road Yellow 28,038
7 Car Purple 13,115

We used a variety of network structures to conduct pixel-wise classification experiments.
The proposed neural network is stacked with modules; hence, the number of modules determines the
network length. To verify the influence of the network length on the pixel-wise classification results in
the experiments, we tested networks consisting of 1, 2, and 3 modules, each of which contained five
convolutional blocks. For the shallow module in the network, we used 1 × 1 convolutional kernels to
construct the control gate. Through the module stacking, the sizes of the convolutional kernels used to
construct the mask branch gradually increased, and the mask branch acquired different attention focus
points from the hierarchical feature maps. This behavior confirmed the influence of the combination of
different attention mechanisms on the network expressive ability.

The number of convolutional kernels in the network determines the number of feature maps
extracted by the network; thus, it determines the expressive ability of the network to some degree.
More convolutional kernels correspond to the extraction of more abundant features by the network.
However, increased numbers of convolutional kernels are disadvantageous with regards to the
computational burden, information redundancy, etc. Some studies [35,40] utilizing feature fusion and
concatenation have proven that a kernel depth as shallow as 12, 24, or some other low value could still
be effective because of the feature reuse. As the fusion of features from different layers occurs in our
trunk branch, a moderate number of convolutional kernels were used in this study. In detail, we used
the convolutional kernel settings of 14, 18, 22, 26, and 30 to examine the influence of the number of
convolution kernels on the network and to examine the influence of the network structure on the
network performance.

We analyzed the influence of the number of training samples on the network for different network
settings. For remote sensing images, the acquisition of a large volume of labeled training data is
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difficult. Therefore, good performance with a small volume of sample data is a good achievement.
For networks with different lengths and numbers of convolutional kernels, we tested the network
performance with the labeled training pixels from the 300 pixels/category to the 700 pixels/category
and examined the influence of the training data volume on the different network configurations.

To prove the rationality and effectiveness of the network components, we discussed the influence
of the network components on the network performance. We compared the proposed method with
networks without internal classifiers, without the control gate attention mechanism (the mask branch),
and without the feedback attention mechanism, so as to investigate the importance of those components
to the network.

Besides the detailed investigations conducted in the two main experiments described above, we
also compared our method with state-of-the-art methods. The proposed method was also applied to
another 10 images to verify its stability and effectiveness

In all the experiments, we set the training sample size to 35 × 35. This was a tradeoff between
the computational cost and experimental efficacy. To combine both spatial and structure information,
we employed kernels with three different sizes: 1 × 1, 3 × 3, and 5 × 5. When the 1 × 1 kernels
were applied to each band, the emphasis was on the spectral coherence between different channels.
With reference to a previous study [12] and considering the input data size and number of parameters
to be trained, the 3 × 3 and 5 × 5 kernels were also selected. With regards to the convolution step,
a stride s = 1 was proven effective in previous works [25,49] and was therefore employed in this study.
The padding for each side was set to 0, 1, and 2 for the 1 × 1, 3 × 3, and 5 × 5 kernel sizes, respectively,
to ensure that the feature map sizes remained unchanged during the convolution process. As the
input patches adopted for the experiments were relatively small and the receptive field generated by a
dilated value of 2 could already satisfy the requirements of our input patches, the dilated value was set
to 2. Following previous research methods [12,43], we set the batch size in the deep network training
to 150, the learning rate to 0.004, the weight decay to 0.0005, and the momentum to 0.9. The network
configuration for a kernel depth of 30 is presented in Table 2, as an example.

Table 2. The network configuration for kernel depth of 30.

Operation Kernel Dimension Output
(with Padding)

Input \ 35 × 35 × 3

Convolution 3 × 3 × 3 × 30 35 × 35 × 30

Module 1 Module 2 Module 1

Trunk branch

feedforward
Block 1–5

convolution 3 × 3 × 30 × 30 3 × 3 × 30 × 30 3 × 3 × 30 × 30 35 × 35 × 30

Non-linearity \ \ \ 35 × 35 × 30

Feedback
Update 1–5

convolution 3 × 3 × 30 × 30 3 × 3 × 30 × 30 3 × 3 × 30 × 30 35 × 35 × 30

convolution 3 × 3 × 30 × 30 3 × 3 × 30 × 30 3 × 3 × 30 × 30 35 × 35 × 30

fusion \ \ \ 35 × 35 × 30

Non-linearity \ \ \ 35 × 35 × 30

Mask branch Feedforward

convolution 1 × 1 × 30 × 30 3 × 3 × 30 × 30 5 × 5 × 30 × 30 35 × 35 × 30

Non-linearity \ \ \ 35 × 35 × 30

convolution 1 × 1 × 30 × 30 3 × 3 × 30 × 3 5 × 5 × 30 × 30 35 × 35 × 30

Non-linearity \ \ \ 35 × 35 × 30

convolution 1 × 1 × 30 × 30 3 × 3 × 30 × 3 5 × 5 × 30 × 30 35 × 35 × 30

Non-linearity \ \ \ 35 × 35 × 30

Fusion Element-wise multiplication \ \ \ 35 × 35 × 30

Classification
convolution 3 × 3 × 30 × C 3 × 3 × 30 × C 3 × 3 × 30 × C 35 × 35 × C

Softmax \ \ \ 35 × 35 × 1
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For each group of experiments, we used the average results of five experiments to guarantee
fairness. Within each round, the training samples were randomly reselected according to our data
preparation strategy. All experiments were conducted on a computer with a 16.0 GB RAM Intel®

Xeon® CPU E3-1220v5@3.00 GHz processor. The computer featured an NVIDIA Quadro K620 graphic
card with CUDA version 8.0.4 for acceleration.

3.2. Experiment Results

3.2.1. Analysis of Experiment Results

In the two main experiments involving BJ02 and GF02, we used multiple network settings to test
the proposed method. As evaluation standards, we used the overall accuracy (OA) and Kappa, the most
widely adopted criteria in remote sensing image classification accuracy assessment. The accuracies
of the pixel-wise classification for BJ02 and GF02, which were acquired using various numbers of
modules and convolution kernel depths under a training data ratio of 700 pixels/category, are shown
in Figures 6 and 7, respectively. The detailed OA and Kappa results are presented in Tables 3–6.
Furthermore, the producer and user accuracies, which are forms of commission and omission errors,
are given for each category in Tables 7 and 8.Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 31 
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Table 3. The OA values for the BJ02 images.

1 Subnet 2 Subnets 3 Subnets

14 0.9667 0.9685 0.9729
18 0.9678 0.9707 0.9746
22 0.9700 0.9715 0.9762
26 0.9705 0.9732 0.9771
30 0.9700 0.9760 0.9791

Table 4. The Kappa values for the BJ02 images.

1 Subnet 2 Subnets 3 Subnets

14 0.9446 0.9476 0.9550
18 0.9463 0.9513 0.9577
22 0.9501 0.9526 0.9603
26 0.9508 0.9554 0.9619
30 0.9502 0.9600 0.9652

Table 5. The OA values for the GF02 images.

1 Subnet 2 Subnets 3 Subnets

14 0.97558 0.9808 0.9808225
18 0.97619 0.981852 0.982748
22 0.977705 0.983234 0.98445
26 0.97801 0.98442 0.9856
30 0.97859 0.985548 0.987125

Table 6. The Kappa values for the GF02 images.

1 Subnet 2 Subnets 3 Subnets

14 0.96696 0.9740 0.9740
18 0.9677 0.9754 0.9766
22 0.9697575 0.9772 0.9789
26 0.97019 0.9789 0.9805
30 0.97094 0.9804 0.9825

The evaluation results for the BJ02 images are shown in Figure 6. For these images, the proposed
method achieved classification results with an accuracy exceeding 97.9%. From the experimental
results, we found several trends in the accuracy variation. In most cases, although the networks
featured different depths, an increase in the number of convolutional kernels strengthened the network
classification ability. This was because each convolutional kernel represented a certain kind of feature
on the image. With an increase in the number of convolutional kernels, the number of feature maps
generated by the relevant feature detectors also increased. Hence, the features extracted by the
networks were more comprehensive. This enabled the networks to analyze the different ground objects
in the images from different angles and to find the intrinsic differences among the different ground
objects to perform the classification. Although we used low kernel depths in the experiments (compared
with the 128 kernels more commonly employed in other networks), and the kernel depths only varied
from 14 to 30 with intervals of 4, the accuracy increase was discernible. This result was obtained
because we use feedback attention in our network, which returned the high-level features to the lower
level and fused the features from different layers to re-weight the focus. Therefore, although we used
convolutional kernels with low depths, through feature fusion, the number of features involved in
the feature learning for each layer was twice the kernel depth used at the corresponding layer. Thus,
the network achieved good accuracy.
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Besides the kernel depth, networks with different depths also yielded different results. For the
700 pixels/category training data ratio, the 3-module network, which was the deepest network,
exhibited the best performance. The network performance was in direct proportion to the network
depth. A deeper network is always considered to have better expression ability. It is expected to extract
more and richer hierarchical features, from detailed to abstract and from general to class specific,
whereas the features obtained from a shallow network may have a poorer sense of hierarchy. In this
study, the deeper networks were equipped with attention masks at different scales, not only considering
the spectral information, but also the different local spatial structures. As a result, more attention
points were combined to handle the complex classification conditions. Furthermore, for the shallow
networks and, in particular, the 1-module network, the accuracy changes with increased kernel depth
tended to be stable, while the accuracies for the 2- or 3-module network still displayed a growth
tendency. Although the use of more kernels could yield more inherent and discriminative features
from different angles, which would help improve the network expression ability, the accompanying
benefits could be limited by the network depth. Only by using the combined effects of the network
and kernel depths can we fully develop their individual advantages. The above results indicate that
the network structure is significant for modulating its performance.

The experimental results for the GF02 images are shown in Figure 7. Although these images
had one more category compared with the BJ02 images, the obtained trends are very similar to
those observed in the experiments on the BJ02 images. Within the ambit of the experimental setup
of this study, the OA and Kappa of the network showed an increasing trend when the number
of convolutional kernels increased. This indicated that an increase in the number of convolution
kernels enhanced the network feature extraction angles and allowed the networks to describe ground
objects more comprehensively. Without greatly increasing the number of parameters to be trained,
the network performance can be improved to a certain extent. In addition, although the accuracies
acquired for the 2-module network were very close to those for the 3-module network, the deepest
network exhibited the best performance and yielded an OA as high as 98.7%. Finally, for the shallower
network, the changes induced by changes in the kernel depth seemed smaller than those generated
by the deeper network. This finding proved the significance of the network depth once more and
revealed the trend that more features can induce more effects with the cooperation of the network’s
hierarchical characteristics.

3.2.2. Network Component Influences on Network Performance

In Section 2, we illustrated the network design in detail and analyzed the rationality of the network
in theory. In this section, we demonstrate the influence of every network component by analyzing and
comparing the result accuracies for networks with different components. Hence, the rationality of the
network design is verified.

In this part of the study, we used a network with a fixed length (three modules), a fixed number
of convolution kernels (30 kernels), and a fixed training data volume (700 pixels/category), to compare
the proposed method with networks without internal classifiers, without mask attention, and without
feedback attention. Other than the aforementioned parameters, all other parameters, such as the
learning rate and batch size, were the same.

Influence of Internal Classifiers

Internal classifiers are classifiers added to the end of each module. They aid the application of the
extracted features for the classification and comparison of the classification results with the ground
truth. They also serve as the companion loss to aid the top classifier in training the network in a
supervised manner. The results for the network with internal classifiers removed are displayed in
Figure 8 and Table 7.
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Table 7. The BJ02 classification results for all comparative experiments. The producer (x) and user (y)
accuracy results are presented in the x/y form.

Method OA KAPPA Water Tree Bare Land Building Road

Proposed method 0.979 0.965 0.997/0.936 0.982/0.999 0.959/0.927 0.973/0.971 0.984/0.953
Non-internal classifier 0.966 0.945 0.996/0.924 0.970/0.998 0.950/0.865 0.951/0.957 0.973/0.934

Without feedback stage 0.958 0.930 0.996/0.889 0.965/0.997 0.925/0.860 0.933/0.948 0.971/0.889
Without mask attention 0.972 0.953 0.998/0.916 0.980/0.998 0.945/0.892 0.947/0.962 0.974/0.942

CNN 0.945 0.910 0.996/0.898 0.956/0.998 0.895/0.843 0.915/0.906 0.954/0.848
Contextual CNN 0.967 0.944 0.994/0.957 0.985/0.998 0.937/0.858 0.911/0.959 0.961/0.919

DenseNet 0.970 0.950 0.996/0.932 0.985/0.999 0.920/0.896 0.930/0.956 0.981/0.919
URDNN 0.964 0.940 0.994/0.901 0.971/0.998 0.926/0.909 0.950/0.930 0.965/0.909

DNN 0.962 0.937 0.990/0.918 0.976/0.998 0.927/0.850 0.929/0.938 0.959/0.940
SCAE + SVM 0.888 0.817 0.868/0.756 0.960/0.995 0.804/0.752 0.746/0.744 0.788/0.738

SENet 0.969 0.948 0.993/0.965 0.982/0.997 0.952/0.879 0.926/0.952 0.965/0.930
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Figure 8. The BJ02 classification results given by (a) manually labeled reference data; (b) the proposed
method; (c) the internal-classifier-removed network; (d) the feedback-attention-removed network;
(e) the mask-attention-removed network; (f) CNN; (g) contextual deep CNN; (h) DenseNet; (i) the
unsupervised-restricted DNN(URDNN); (j) the deconvolutional neural network (DNN); (k) SCAE +
SVM; and (l) Squeeze-and-Excitation Networks (SENet).

For the BJ02 image, the accuracy decreased by 1.3% after the internal classifiers were removed,
the OA decreased from 97.9% to 96.6%, and Kappa declined from 96.5% to 94.5%. These results may be
related to the fact that the internal classifiers enhanced the hidden layers’ transparency. The direct use of
feature maps obtained by hidden layers for classification can promote the effectiveness of the extracted
features and reduce the feature redundancy to some degree. Furthermore, the internal classifiers
allowed the loss to be propagated to the shallow layers directly, which improves the convenience and
efficiency of the backpropagation training. Without internal classifiers, the network can depend on the
top (final) classifier only to conduct supervised learning. Thus, the hidden layer feature extraction
capability will not be enhanced, yielding a decrease in the network classification performance.
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When viewing the pixel-wise classification result map, it should be noted that most ground
objects were successfully kept intact and the house edges were clear. However, there were a few
sporadic and miscellaneous classification errors inside the vegetation area, which degraded the object
integrity. Furthermore, some confusion between roads, bare land, and buildings occurred; for instance,
some pixels inside or on the edges of the roads were apparently misclassified as bare land, and a similar
situation occurred inside the buildings. This may have happened because these three kinds of ground
objects contain artificial components, and some of the building materials exhibit very similar spectral
characteristics or texture features, which would have caused confusion. Although misclassification
between bare land and buildings also occurred when the proposed method was used, in general,
there was no confusion for large areas, and the ground object edges (especially the house, road,
and vegetation edges) were better preserved; consequently, the object integrity was improved.

For the GF02 image, the OA and Kappa both declined by 1% compared with the results obtained
using a complete network, yielding OA = 97.7% and Kappa = 97.0%. Compared with the proposed
method, some small objects were easily confused with some other objects. However, most of the
ground objects (especially the building edges) were well preserved, the integrity of the object interior
was relatively high, and the mapping accuracy and user accuracy were relatively balanced. Therefore,
no obvious or large-area confusion occurred.

Influence of Attention Mechanism

Two types of attention mechanisms are involved in the framework of the proposed method: the
control gate attention mechanism serving as the mask branch and the feedback attention mechanism
playing a role in the trunk branch. The former assigns different weights to pixels from different
positions according to their importance and distinct priority. Thus, it directs attention towards the
most informative areas that help improve the network classification capability. The feedback attention
mechanism returns higher-level features to the lower layers to re-weight the focus and re-update the
feature learning, causing the network to re-learn the weights in an objected-oriented manner.

In this part of the study, we compared the proposed method with frameworks employing the
same network structure, but with the mask branch and feedback stage removed.

One BJ02 image was considered here, and the OA and Kappa results are presented in Figure 8
and Table 7. When the control gate attention mechanism was removed, relatively good results were
achieved, with OA reaching 97.1% and Kappa reaching 95.2%. This was despite the fact that the
accuracies were lower than those from the proposed method. In contrast, when the feedback attention
mechanism was removed, the accuracy decrease was more obvious. The OA was only 95.7% and Kappa
declined by 3.5%. When both attention mechanisms were removed, the network became an ordinary
CNN network; the OA decreased to 94.5% and Kappa declined to 91% when the other conditions
remained the same. The results verified that the combination of the two attention mechanisms can
greatly improve the network classification ability.

Considering the visual effects for pixel-wise classification result maps, we found that the resulting
maps appeared to be more mottled when both attention mechanisms were removed. In addition,
obvious errors were detected in the dense residential area to the right side of the image. The building
edges were confused with bare land, and massive bare land areas were found on the edges or inside
the roads. Furthermore, several speckled buildings and bare land areas were also found inside the
vegetation. In comparison, the resulting map generated by the proposed method seemed to be clearer
and had better visual effects. Some confusion remained on the edges or inside objects, but the ground
object integrity was much higher.

The results of the GF02 experiment are presented in Figure 9 and Table 8. Hence, it is apparent
that removing the two attention mechanisms affected the classification results, particularly when
the feedback attention mechanism was omitted. This was reflected in the apparent decrease in the
network classification performance, with the OA decreasing to 97.5% and Kappa decreasing to 96.6%.
The pixel-wise classification result maps revealed obvious misclassifications inside the objects on the
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upper right, along with misclassifications between the bare land, trees, and buildings inside the bare
land region on the left side. When the proposed method was compared with the conventional CNN
(with both attention mechanisms removed), the results generated by the conventional CNN were
more mottled. The bare land inside the parking lot was totally misclassified as cars, and the confusion
between the cars and roads was more significant for the conventional CNN than the proposed method.

Table 8. The GF02 classification results for all comparative experiments. The producer (x) and user (y)
accuracy results are presented in the x/y form.

Method OA KAPPA Water Tree Bare Land Building Road Car

Proposed method 0.987 0.983 1.000/0.993 0.990/0.996 0.975/0.967 0.984/0.993 0.995/0.984 1.000/0.940
No-internal classifier 0.977 0.970 0.998/0.996 0.976/0.997 0.973/0.936 0.970/0.980 0.995/0.965 0.999/0.919

Without feedback 0.975 0.966 0.998/0.994 0.976/0.996 0.978/0.919 0.959/0.987 0.993/0.969 1.000/0.887
Without mask 0.982 0.976 0.999/0.994 0.982/0.996 0.976/0.948 0.976/0.985 0.994/0.983 0.999/0.927

CNN 0.974 0.964 0.995/0.993 0.979/0.994 0.969/0.920 0.955/0.985 0.992/0.963 0.999/0.877
Contextual CNN 0.974 0.964 0.998/1.000 0.987/0.997 0.983/0.895 0.932/0.989 0.990/0.954 0.997/0.954

DenseNet 0.976 0.968 1.000/0.999 0.982/0.999 0.977/0.907 0.956/0.991 0.984/0.952 0.997/0.959
URDNN 0.972 0.962 0.999/0.999 0.966/0.990 0.972/0.911 0.968/0.991 0.978/0.923 0.991/0.959

DNN 0.968 0.956 0.999/0.993 0.958/0.989 0.953/0.907 0.973/0.982 0.988/0.930 0.998/0.936
SCAE + SVM 0.919 0.892 0.991/0.861 0.963/0.994 0.881/0.876 0.892/0.957 0.988/0.679 0.442/0.909

SENet 0.977 0.969 0.998/0.993 0.976/0.995 0.972/0.949 0.970/0.986 0.991/0.906 0.997/0.968
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Figure 9. The GF02 classification results given by (a) manually labeled reference data; (b) the proposed
method; (c) the internal-classifier-removed network; (d) the feedback-attention-removed network,
(e) the mask-attention-removed network; (f) CNN; (g) contextual deep CNN; (h) DenseNet; (i) URDNN;
(j) DNN; (k) SCAE + SVM; and (l) SENet.

Both the precision results and the visual effects proved that fusion of the two attention mechanisms
can improve the network capability of the conventional CNN, and help achieve superior classification.
Compared with the conventional CNN, mask branches with different scales can help the network
acquire different focuses of attention. Hence, the network may acquire distinct spatial structure
information on different scales. Utilizing such operations can help highlight the most important or
informative features on the current scale, facilitating the suppression of information that decreases
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the classification accuracy, such as background noise. Furthermore, a multi-scale mask branch does
not only limit classification to the object spectral information, but also considers the environment
surrounding the objects. Accordingly, although similar spectral information may exist among some
artificial objects, the misclassification generated by the proposed method is less pronounced than that
of the other methods considered herein. In addition, the feedback attention mechanism incorporated in
the proposed method increases the feature re-use efficacy of the network compared to the conventional
CNN. Furthermore, attaching additional attention to high-level features can help the lower level
to re-update the feature learning direction and train the network toward the goal. The network
re-weights the focuses based on the acquired features and captures the most discriminative and
inherent features associated with the classification targets more quickly and effectively. Hence, with the
help of the two incorporated attention mechanisms, the proposed method achieved an improved
accuracy, reduced noise in the classification result maps, and an improved object and edge integrity in
these experiments.

3.2.3. Comparison with other Methods

To verify the proposed method, we compared it with various state-of-the-art methods.
The methods used for comparison in this part of the study were the deconvolutional neural network
(DNN) [43], the unsupervised-restricted DNN (URDNN) [42], SENet [28], the contextual deep
CNN [39], DenseNet [40], and SCAE + SVM [50]. Note that the first three methods are all neural
networks with an attention mechanism.

DNN [43] and URDNN [42] both utilize the bottom-up and top-down feedforward attention
mechanisms. They employ convolution and deconvolution to realize end-to-end and pixel-to-pixel
pixel-wise classification. In this experiment, after multiple-round tests, the DNN and URDNN methods
yielded superior results when three convolution-deconvolution stages and 3 × 3 × 64 convolution
kernels were used. The adopted pooling and unpooling size were 2 × 2. The learning rate was set to
0.005, the batch size to 100, the momentum to 0.9, and the weight decay to 0.0005.

SENet [28] uses an attention mechanism that recalibrates features by utilizing the global
information as the mask branch in order to enlarge the valuable channels. SENet was originally
designed for scene classification; therefore, we adjusted it slightly in this experiment, so that it was
suitable for pixel-wise classification. To facilitate comparison with the other techniques, the adopted
SENet involved three residual blocks, with three convolution layers being utilized for each block.
Here, the 1 × 1 and 3 × 3 kernels were used inside each residual block. Three masks were adopted,
corresponding to the number of residual blocks. Each mask contained one global pooling layer using
a 1 × 1 × C kernel (C was set to 30 here), two fully connected (FC) layers using a 1 × 1 × C kernel,
and one sigmoid layer using a 1 × 1 × C kernel. The learning rate was set to 0.003, the weight decay
to 0.0005, and the momentum to 0.9.

Contextual deep CNN [39] is a multi-scale network based on ResNet. Note that ResNet has achieved
excellent results for the gradient vanishing problem. For multi-scale feature extraction, three kinds
of convolution kernel were utilized for the first convolution layer: 1 × 1, 3 × 3, and 5 × 5. For the
remainder, only 1 × 1 kernels were used and eight convolution layers were equipped, followed by one
softmax layer. The kernel depth was set to 32 after several rounds of experiments. The momentum was
0.9, the weight decay was 0.0005, and gamma was 0.1. The learning rate started at 0.001.

DenseNet [40] is a neural network based on feature union and reuse, which concatenates features
from different layers to extract the features of higher layers. This method involves feature fusion of
different layers, similar to the proposed method, but utilizes the feedforward union only, whereas the
proposed method uses the feedback form. After several rounds of testing, the best results for DenseNet
were obtained using the settings provided in the literature [40].

SCAE + SVM [50] is the only unsupervised network for feature extraction in the six compared
methods. It uses image reconstruction for feature extraction, and then uses the SVM classifier for
classification. After several rounds of testing, it was decided to adopt three encoder-decoder blocks
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for SCAE. For internal convolution and convolution transform, the kernel size was set to 3 × 3 × 64.
The adopted pooling and up-sampling size were 2 × 2. The learning rate was set to 0.005, the batch size
to 100, the momentum to 0.9, and the weight decay to 0.0005. For SVM training, the radial basis function
(RBF) kernel was used and training was performed in A Library for Support Vector Machines (LIBSVM).

All accuracies and images of the classification results are presented in Figure 8 and Table 7.
Besides OA and Kappa, the accuracies of each ground-object category are also indicated by the
producer (x) and user (y) accuracies, which are presented in the x/y form.

For the BJ02 images, of the three methods utilizing the attention mechanism, SENet achieved
the best classification accuracy at 96.9%. However, compared with the proposed method, the OA
was more than 1% lower, and the Kappa coefficient was approximately 2% lower. With regards to
the visual effect, the integrity and boundary preservation exhibited by the considered methods was
inferior to that of the proposed method. We believe that this is related to the attention mechanism
used in those techniques. SENet implements the control gate attention mechanism, which is also used
in our proposed network. However, the attention masks employed in SENet are a group of weights
representing the priorities of feature maps from different channels, and this group is used to model
the relationship between channels. However, the different locations on each channel are not assigned
different priorities. This approach may work well on hyperspectral images; however, for pixel-wise
classification of high-resolution satellite images, which have only a few bands, this approach may
be less effective than the proposed method, which utilizes the dense mask attention mechanism.
The URDNN and DNN classification results were slightly poorer than the SENet results. However,
those methods still achieved superior results to the conventional CNN for a small volume of training
data. URDNN exhibited superior performance to DNN in maintaining the ground-object boundaries
and integrity. However, there were obvious dotted or lump-shaped misclassifications inside the
vegetation areas, and there was some confusion between bare land and buildings in the bare land
area. The contextual deep CNN and DenseNet achieved decent feature extraction and classification
results under the effects of skip connection and feature re-use, with OA values of 96.6% and 96.9%,
respectively. However, the contextual deep CNN yielded classification result images that were
more mottled than those given by DenseNet, particularly inside the buildings, which induced the
decrease in classification accuracy. The buildings extracted by DenseNet were not very mottled,
but misclassification also tended to occur inside the buildings, and the road boundaries were sometimes
misclassified as buildings. Nevertheless, DenseNet and the mask-attention-removed network achieved
higher accuracies than the other methods. This indicates that fusing the features from different layers
could promote the network ability, although the DenseNet network uses the feedforward mechanism,
and the mask-attention-removed network uses the feedback attention mechanism. The classification
results achieved by the SCAE + SVM method were obviously poorer than those of the other methods,
in terms of both quantitative data and visual effects. Not only were the ground objects mottled,
but there was also significant confusion between roads and bare land, and between vegetation and
buildings. The results were far from satisfactory, and this poor performance was caused by the fact that
the feature extraction and classification in this method were separated processes. The feature extraction
is dependent on the unsupervised image reconstruction, which is not target-oriented. Although this
method can accommodate a large volume of unlabeled data, the extracted features obtained in this
experiment were not sufficiently discriminative for classification.

The proposed method achieved an OA of 97.9% and a Kappa of 96.5%. With regards to
the classification result images, the ground-object boundaries and integrity were well preserved.
Although there was some confusion regarding some small roads and between buildings and bare land,
in general, the misclassifications inside the ground objects were greatly reduced, and the network
achieved more competitive and accurate results.

In the GF02 comparative experiments, the proposed method achieved an OA of 98.7%.
The accuracy was obviously higher than those of the other methods. Moreover, the ground objects in
the resultant image were more complete (Figure 9) compared to those yielded by the other methods.
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Some small objects surrounded by bare land (for example, trees) were not extracted completely by
the proposed method, but the other methods misclassified those as bare land. Overall, the results
of the proposed method were satisfactory. The SENet accuracy was relatively high, with an OA of
97.7%. However, the producer and user accuracies for the buildings and bare land were distinctly
lower. The results given by DenseNet and the contextual deep CNN appeared good in terms
of the OA; however, there was significant confusion inside the buildings on the lower left of the
image. The buildings were misclassified as bare land and generated producer and user accuracies
that were significantly lower than those of the other methods. The overall accuracies of URDNN
and DNN were not as high as the methods using the attention mechanism. However, generally,
the ground-object completeness and boundaries were well preserved, although some small roads and
trees were misclassified. The SCAE + SVM method could not separate the parking lots and water;
hence, both the accuracy and visual effects were unsatisfactory.

3.2.4. More Experiments

Other than the two main experiments, we also applied the proposed method to the remaining
eighteen scenes of images to verify their practicability and applicability. The results are presented
in Figure 10 and Table 9. The OA and Kappa accuracies were satisfactory, being higher than
97% and 96%, respectively, in most cases. The producer and user accuracies were balanced in all
ground-object categories, which indicated that the mix among the different ground objects was not
severe. The boundaries and completeness of the ground objects were well preserved, and the overall
classification results were clear.
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Table 9. The proposed method accuracies for the remaining eight experiments.

Method OA KAPPA Water Tree Bare Land Building Road Other

Test3 0.981 0.972 1.000/0.994 0.975/0.990 0.960/0.950 0.994/0.982 1.000/0.873 /
Test4 0.98627 0.97781 0.999/0.993 0.985/0.996 0.981/0.937 0.988/0.993 0.999/0.984
Test5 0.976 0.962 1.000/1.000 0.963/0.998 0.996/0.950 0.993/0.901 0.996/0.993 /
Test6 0.987 0.980 0.998/0.997 0.976/0.998 0.994/0.979 0.998/0.965 0.997/0.971
Test7 0.990 0.982 0.999/0.999 0.986/0.999 0.998/0.907 0.996/0.994 0.996/0.985 /
Test8 0.987 0.983 0.993/0.996 0.981/0.993 0.981/0.979 0.995/0.994 0.992/0.976 1.000/0.952
Test9 0.988 0.983 0.995/0.976 0.988/0.998 0.991/0.962 0.996/0.960 0.991/0.994 0.948/0.984

Test10 0.982 0.976 0.998/0.998 0.930/0.928 0.977/0.977 0.985/0.988 0.983/0.984 0.992/0.983
Test11 0.981 0.971 0.990/0.988 0.979/0.996 0.986/0.975 0.975/0.964 0.989/0.943
Test12 0.973 0.959 0.991/0.958 0.978/0.996 0.948/0.992 0.990/0.869 0.996/0.904
Test13 0.976 0.969 0.998/1.000 0.971/0.984 0.943/0.930 0.975/0.954 0.981/0.971
Test14 0.983 0.978 0.989/0.986 0.980/0.992 0.971/0.980 0.986/0.993 0.993/0.900
Test15 0.978 0.971 0.999/0.983 0.974/0.998 0.979/0.993 0.976/0.944 0.981/0.957
Test16 0.992 0.988 0.999/0.999 0.983/0.999 0.988/0.996 0.994/0.933 0.987/0.950
Test17 0.991 0.986 0.996/1.000 0.977/0.988 0.988/0.910 0.997/1.000 0.976/0.962
Test18 0.985 0.978 0.999/0.995 0.988/0.995 0.979/0.928 0.989/0.997 0.971/0.970
Test19 0.957 0.942 0.993/0.986 0.937/0.986 0.941/0.948 0.977/0.812 0.963/0.960 0.921/0.826
Test20 0.993 0.990 1.000/0.985 0.996/0.996 0.988/0.980 0.998/0.993 0.981/0.996 0.993/0.994
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4. Discussion

4.1. Influence of Training Data Volume

For each ground object category, we randomly chose 300, 400, 500, 600, and 700 labeled pixels
as the training + validation data (ratio 7:3) to verify the influence of the training data volume on
the network performance. The results are showing in Figures 11 and 12, for the BJ02 and GF02
images, respectively.
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Considering the BJ02 and GF02 results, we found that the influence of the network depth on the
network performance was affected by the training data volume. In our experiment, a longer network
did not guarantee a superior classification result. For instance, when the 300 or 400 pixels/category
training data were used for the BJ02 images, the network depth was inversely proportional to the
classification accuracy. When the training data volume was small, the shallow networks achieved
superior accuracy, with the shortest one achieving 96.1% OA and the longest one achieving only 95.6%
OA. For GF02, when the training data volume was less than 500 pixels/category, the longest network
exhibited the weakest performance. However, when the training data volume was small, the network
length was not inversely proportional to the classification accuracy, unlike that for the BJ02 images.
The 1-module networks exhibited only slightly poorer performance than the 2-module networks.

When the training data volume was 700 pixels/category, a deeper network corresponded to
superior performance. This was because the number of parameters to be trained in the deep networks
was greater than that in the shallow networks. When the labeled pixels were few, they became a
burden for network training. Although we used a feedback attention or internal classifier mechanism
to assist gradient propagation and to suppress the influence of overfitting, when the training data
volume was small, the complexity of the deep networks induced more problems than encountered
for the shallow networks. Nonetheless, when the training data volume was small, an increase in the
number of convolutional kernels brought the deep network accuracy increasingly closer to that of the
shallow networks. This indicates that the combined effect of the network depth and the number of
convolutional kernels can assist the network in better extracting features for classification.

As the training data volume increased, the benefits of the deep networks emerged. The networks
with larger numbers of modules could extract a greater number of hierarchical features using the added
convolutional layers. The shallow layers extracted features with a greater focus on the ground-object
details, such as their locations and boundaries, whereas the deeper layers extracted features that were
more abstract, discriminative, and target-oriented. Therefore, the hierarchical features strengthened
the expressive ability of the networks. Additionally, in our network design, one module comprised a
mask branch and a trunk branch and different modules utilized different masks to focus on the features
of the local spatial structures on different scales. Each module corresponded to a kind of attention.
The mix of multiple attention types helped the networks handle more complex situations regarding
ground objects. Therefore, for the BJ02 experiments, when the number of convolutional kernels was 30,
the 3-module network could achieve an OA of approximately 98%, while the classification accuracy of
the 1-module network was less than 97%. For the GF02 images, the networks stacked with 3 modules
could achieve an OA exceeding 98.7% and a Kappa higher than 98.3%.

In addition, we found that the influences of the number of the convolutional kernels on the
network performance differed with the training data. Taking the BJ02 results as an example, when the
training data volume was small, the network classification accuracy increased rapidly and became
more noticeable. However, as the training data volume increased, the classification accuracy increase
became slower. When the network had just one module, the accuracy tended to remain stable even
when the number of convolutional kernels increased. This may have been because the network
required a larger number of feature detectors to identify the most discriminative features for ground
object classification when there were fewer training samples. However, with an increase in the training
data volume, the features most common and inherent to each category could be acquired even with
fewer convolutional kernels by using a greater training data volume to train the network. Therefore,
the benefits of the convolutional kernels were occluded and became less significant. Nonetheless,
for the largest training data volume, the classification accuracy increased from 97.2% to 97.9% in the
3-module network when 14 and 30 kernels were used.

Furthermore, regarding the experimental results, when the training data volume decreased
drastically, the network accuracy dropped gradually. This outcome demonstrated the network
robustness and indicated that the networks could handle conditions involving a small volume of
training data, which is very helpful for the remote sensing field.
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4.2. Influence of Training Time

Comparison of the training times of the proposed method and the state-of-the-art methods
mentioned in Section 3.2.3 revealed some limitations to our proposed method. Considerable feature
reuse and feature fusion are involved in the network training; hence, a large amount of floating
point arithmetic appears in the feed forward and backpropagation, and the kernels with different
scales (especially 5 × 5 kernels) consume an extremely large amount of time for operations such
as convolution. Therefore, with the Quadro K620 graphics card and a training data volume of
700 pixels/category, training a network with 3 modules and 30 kernels/convolution consumes 3.5 h.
This training time is closer to that for the contextual deep CNN and DenseNet tested in Section 3.2.3.
However, URDNN, DNN, and SCAE + SVM have considerably shorter training times, at less than 1
h. Training using SENet consumes approximately 2.5 h. Although the training time differs for each
method, the classification times after training are all less than 1 s, which is acceptable. Therefore,
decreasing the network complexity and improving its training efficiency will be our next research aim.

5. Conclusions

This paper has proposed a novel deep neural network fused with an attention mechanism
to perform VHRRS image pixel-wise classification. The proposed network simulates the manner
in which human beings comprehend images, emphasizing helpful information while suppressing
unnecessary information, and thereby promoting sensibility toward informative features and providing
convenience for superior information mining and image pixel-wise classification. The network is
designed to have a “trunk branch” + “mask branch” structure. The feedback attention mechanism
is implemented in the trunk branch, which applies feature reuse to return higher-level features to a
lower level to re-assess the objective and re-weight the focus. In the mask branch, the neural network
assigns a different priority to each pixel location by assigning different weights. Hence, attention is
emphasized or suppressed and the neural network is aided in achieving end-to-end, pixel-to-pixel,
pixel-wise classification. Furthermore, the proposed method adopts various masks with different
scales to discern ground-object features on different scales. Through a 1 × 1 convolution mask,
spectral information and the relationship among bands is found, while masks with larger scales help
incorporate the surroundings and extract features from different local spatial structures. The internal
classifiers enhance the effectiveness of the features extracted by hidden layers, thereby decreasing the
feature redundancy.

We conducted detailed experiments on our proposed method using BJ02 and GF02 images.
The proposed method achieved satisfactory accuracy for these images, with OA = 97.9%,
Kappa = 96.5% and OA = 98.7%, Kappa = 98.3%, respectively. The experiments verified that the
network structures have apparent influences on the network behavior. First, to a certain extent, an
increase in the number of convolutional kernels can increase the network’s classification capability,
because more feature maps help the network to cover additional kinds of features. However, in this
work, we could still achieve satisfactory results by utilizing feature re-use, even though we adopted
fewer kernels compared with other methods. Second, a deeper network is not always superior. In this
work, when a small volume of labeled training data was utilized, the deeper network possessed more
parameters to be trained. In such a case, training problems had a tendency to arise, which rendered
the classification capability inversely proportional to the length of the network. However, when a
greater volume of training data was used, networks with more modules usually yielded better results,
exhibiting a relationship with the network length.

In the experiments, we also investigated the influence of the network components on the proposed
method, and performed comparisons with some state-of-the-art methods, including methods with
attention mechanisms and other popular methods. Furthermore, we applied the proposed method to
additional images from the Quickbird, Geoeye, GF02, BJ02, etc., satellites, to verify the effectiveness
and practicality of our method. In terms of accuracy and visual effects, the proposed method achieved
competitive results. It not only yielded a higher accuracy, but also exhibited reduced confusion among
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some ground objects (such as buildings, bare land, and roads) compared with the other methods,
and exhibited superior performance with regards to the edge preservation and interior integrity of
ground objects.

To some degree, this work proved the effectiveness of this novel neural network for VHRRSI
pixel-wise classification. In the near future, we plan to perform further research to adapt this method
to fit more specific and complex applications such as object identification, so as to increase its feasibility
for practical, real-world use.

Author Contributions: Conceptualization, R.X. and Y.T.; Methodology, R.X. and Y.T.; Writing—Original Draft
Preparation, R.X.; Writing—Review & Editing, Y.Z. and Y.T.; Investigation, Y.T. and Z.L.

Funding: This research was funded by the National Natural Science Foundation of China, grant numbers
[41622107], [41771385], and [41371344].

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their valuable
comments, which helped us improve this work. The GaoFen-2 data were provided by CRESDA and the Beijing-2
data were provided by Twenty First Century Aerospace Technology.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hwang, J.J.; Liu, T.L. Pixel-wise deep learning for contour detection. arXiv 2015, arXiv:1504.01989.
2. Everingham, M.; Eslami, S.A.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object

classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [CrossRef]
3. Huang, Z.; Cheng, G.; Wang, H.; Li, H.; Shi, L.; Pan, C. Building extraction from multi-source remote sensing

images via deep deconvolution neural networks. In Proceedings of the 2016 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1835–1838.

4. Wei, Y.; Wang, Z.; Xu, M. Road structure refined cnn for road extraction in aerial image. IEEE Geosci. Remote
Sens. Lett. 2017, 14, 709–713. [CrossRef]

5. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

6. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual
recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

7. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. A new deep convolutional neural network for fast hyperspectral
image classification. ISPRS J. Photogramm. Remote Sens. 2017, 145, 120–147. [CrossRef]

8. Pacifici, F.; Del Frate, F.; Solimini, C.; Emery, W.J. An innovative neural-net method to detect temporal
changes in high-resolution optical satellite imagery. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2940–2952.
[CrossRef]

9. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral
images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251.
[CrossRef]

10. Romero, A.; Gatta, C.; Camps-Valls, G. Unsupervised deep feature extraction for remote sensing image
classification. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1349–1362. [CrossRef]

11. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Harrahs and Harveys,
NV, USA, 3–8 December 2012; pp. 1097–1105.

12. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

13. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 8–10 June 2015; pp. 1–9.

14. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1109/LGRS.2017.2672734
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://dx.doi.org/10.1016/j.isprsjprs.2017.11.021
http://dx.doi.org/10.1109/TGRS.2007.902824
http://dx.doi.org/10.1109/TGRS.2016.2584107
http://dx.doi.org/10.1109/TGRS.2015.2478379


Remote Sens. 2018, 10, 1602 28 of 29

15. Huang, G.; Sun, Y.; Liu, Z.; Sedra, D.; Weinberger, K.Q. Deep networks with stochastic depth. In Proceedings
of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October
2016; Springer: Berlin, Germany, 2016; pp. 646–661.

16. Zhao, W.; Du, S. Spectral–spatial feature extraction for hyperspectral image classification: A dimension
reduction and deep learning approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [CrossRef]

17. Jabari, S.; Zhang, Y. Very high resolution satellite image classification using fuzzy rule-based systems.
Algorithms 2013, 6, 762–781. [CrossRef]

18. Larochelle, H.; Hinton, G.E. Learning to combine foveal glimpses with a third-order boltzmann machine.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada,
6–11 December 2010; pp. 1243–1251.

19. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. In Proceedings of the Advances in
Neural Information Processing Systems (NIPS), Montreal, QC, Canada, 8–13 December 2014; pp. 2204–2212.

20. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for
image classification. arXiv 2017, arXiv:1704.06904.

21. Peng, Y.; He, X.; Zhao, J. Object-part attention model for fine-grained image classification. IEEE Trans.
Image Process. 2018, 27, 1487–1500. [CrossRef] [PubMed]

22. Zhu, Y.; Zhao, C.; Guo, H.; Wang, J.; Zhao, X.; Lu, H. Attention couplenet: Fully convolutional attention
coupling network for object detection. IEEE Trans. Image Process. 2018, 28, 113–126. [CrossRef] [PubMed]

23. Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.; Huang, Y.; Wang, L.; Huang, C.; Xu, W. Look and think
twice: Capturing top-down visual attention with feedback convolutional neural networks. In Proceedings
of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 13–16 December 2015;
pp. 2956–2964.

24. Nam, H.; Ha, J.-W.; Kim, J. Dual attention networks for multimodal reasoning and matching. arXiv 2016,
arXiv:1611.00471.

25. Zhang, F.; Du, B.; Zhang, L. Saliency-guided unsupervised feature learning for scene classification. IEEE Trans.
Geosci. Remote Sens. 2015, 53, 2175–2184. [CrossRef]

26. Hu, J.; Xia, G.-S.; Hu, F.; Sun, H.; Zhang, L. A comparative study of sampling analysis in scene classification
of high-resolution remote sensing imagery. In Proceedings of the 2015 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 2389–2392.

27. Chen, J.; Wang, C.; Ma, Z.; Chen, J.; He, D.; Ackland, S. Remote sensing scene classification based on
convolutional neural networks pre-trained using attention-guided sparse filters. Remote Sens. 2018, 10, 290.
[CrossRef]

28. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. arXiv 2017, arXiv:1709.01507.
29. Yang, Y.; Zhong, Z.; Shen, T.; Lin, Z. Convolutional neural networks with alternately updated clique.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City,
UT, USA, 19–21 June 2018; pp. 2413–2422.

30. Kim, J.-H.; Lee, S.-W.; Kwak, D.; Heo, M.-O.; Kim, J.; Ha, J.-W.; Zhang, B.-T. Multimodal residual learning
for visual qa. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Barcelona,
Spain, 5–10 December 2016; pp. 361–369.

31. Chen, L.-C.; Yang, Y.; Wang, J.; Xu, W.; Yuille, A.L. Attention to scale: Scale-aware semantic image
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 3640–3649.

32. Kong, S.; Fowlkes, C. Pixel-wise attentional gating for parsimonious pixel labeling. arXiv 2018,
arXiv:1805.01556.

33. Fu, J.; Liu, J.; Tian, H.; Fang, Z.; Lu, H. Dual attention network for scene segmentation. arXiv 2018,
arXiv:1809.02983.

34. Hopfinger, J.B.; Buonocore, M.H.; Mangun, G.R. The neural mechanisms of top-down attentional control.
Nat. Neurosci. 2000, 3, 284. [CrossRef] [PubMed]

35. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; p. 3.

36. Li, E.; Xia, J.; Du, P.; Lin, C.; Samat, A. Integrating multilayer features of convolutional neural networks for
remote sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5653–5665. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2016.2543748
http://dx.doi.org/10.3390/a6040762
http://dx.doi.org/10.1109/TIP.2017.2774041
http://www.ncbi.nlm.nih.gov/pubmed/29990123
http://dx.doi.org/10.1109/TIP.2018.2865280
http://www.ncbi.nlm.nih.gov/pubmed/30106731
http://dx.doi.org/10.1109/TGRS.2014.2357078
http://dx.doi.org/10.3390/rs10020290
http://dx.doi.org/10.1038/72999
http://www.ncbi.nlm.nih.gov/pubmed/10700262
http://dx.doi.org/10.1109/TGRS.2017.2711275


Remote Sens. 2018, 10, 1602 29 of 29

37. Yu, Y.; Gong, Z.; Wang, C.; Zhong, P. An unsupervised convolutional feature fusion network for deep
representation of remote sensing images. IEEE Geosci. Remote Sens. Lett. 2018, 15, 23–27. [CrossRef]

38. Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral image classification with deep feature fusion network.
IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [CrossRef]

39. Lee, H.; Kwon, H. Going deeper with contextual cnn for hyperspectral image classification. IEEE Trans.
Image Process. 2017, 26, 4843–4855. [CrossRef] [PubMed]

40. Tao, Y.; Xu, M.; Lu, Z.; Zhong, Y. Densenet-based depth-width double reinforced deep learning neural
network for high-resolution remote sensing image pixel-wise classification. Remote Sens. 2018, 10, 779.
[CrossRef]

41. Bansal, A.; Chen, X.; Russell, B.; Gupta, A.; Ramanan, D. Pixelnet: Representation of the pixels, by the pixels,
and for the pixels. arXiv 2017, arXiv:1702.06506.

42. Tao, Y.; Xu, M.; Zhang, F.; Du, B.; Zhang, L. Unsupervised-restricted deconvolutional neural network for very
high resolution remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6805–6823.
[CrossRef]

43. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

44. Yu, F.; Koltun, V. Multi-scale context aggregation by dilated convolutions. arXiv 2015, arXiv:1511.07122.
45. Pinheiro, P.O.; Collobert, R. From image-level to pixel-level labeling with convolutional networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 8–10 June 2015; pp. 1713–1721.

46. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks.
In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Vancouver, BC, Canada,
3–6 December 2007; pp. 153–160.

47. Lee, C.Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-supervised nets. In Proceedings of the Artificial
Intelligence and Statistics, San Diego, CA, USA, 9–12 May 2015; pp. 562–570.

48. Shi, Q.; Du, B.; Zhang, L. Domain adaptation for remote sensing image classification: A low-rank
reconstruction and instance weighting label propagation inspired algorithm. IEEE Trans. Geosci. Remote Sens.
2015, 53, 5677–5689.

49. Coates, A.; Ng, A.; Lee, H. In An analysis of single-layer networks in unsupervised feature learning.
In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Lauderdale,
FL, USA, 11–13 April 2011; pp. 215–223.

50. Volpi, M.; Tuia, D. Dense semantic labeling of subdecimeter resolution images with convolutional neural
networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 881–893. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/LGRS.2017.2767626
http://dx.doi.org/10.1109/TGRS.2018.2794326
http://dx.doi.org/10.1109/TIP.2017.2725580
http://www.ncbi.nlm.nih.gov/pubmed/28708555
http://dx.doi.org/10.3390/rs10050779
http://dx.doi.org/10.1109/TGRS.2017.2734697
http://dx.doi.org/10.1109/TGRS.2016.2616585
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Method 
	Feedback Attention Mechanism 
	Control Gate Attention Mechanism 
	Structure of the Proposed Method 
	Fusion of Two Attention Mechanisms 
	Stacking of Multi-Scale Attention-Mechanism-Containing Modules 


	Experiments and Results 
	Experiment Setup 
	Experimental Data 
	Experimental Strategy 

	Experiment Results 
	Analysis of Experiment Results 
	Network Component Influences on Network Performance 
	Comparison with other Methods 
	More Experiments 


	Discussion 
	Influence of Training Data Volume 
	Influence of Training Time 

	Conclusions 
	References

