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Abstract: Regional scale maps of homogeneous forest stands are valued by forest managers and
are of interest for landscape and ecological modelling. Research focused on stand delineation has
substantially increased in the last decade thanks to the development of Geographic Object Based
Image Analysis (GEOBIA). Nevertheless, studies focused on even-age dominated forests are still
few and the proposed approaches are often heuristic, local, or lacking objective evaluation protocols.
In this study, we present a two-stage evaluation strategy combining both unsupervised and
supervised evaluation methods for semi-automatic delineation of forest stands at regional scales using
Light Detection and Ranging (LiDAR) raster summary metrics. The methodology is demonstrated
on two contiguous LiDAR datasets covering more than 54,000 ha in central Idaho, where clearcuts
were a common harvesting method during the twentieth century. Results show good delineation of
even-aged forests and demonstrate the ability of LiDAR to discriminate stands harvested more than
50 years ago, that are generally challenging to discriminate with optical data. The two-stage strategy
reduces the reference data required within the supervised evaluation and increases the scope of a
reliable semi-automatic delineation to larger areas. This is an objective and straightforward approach
that could potentially be replicated and adapted to address other study needs.

Keywords: GEOBIA; LiDAR; forest stand delineation; even-aged; supervised evaluation;
unsupervised evaluation

1. Introduction

Forest stands maps are valued for traditional forest inventory, to take silvicultural decisions,
and develop forest managements plans [1,2]. The “stand” has traditionally been and largely remains
the basic unit in forest management. It is often defined as a continuous community of trees uniform
enough in class distribution, composition and structure, growing on a site of sufficiently uniform
quality to be distinguishable from adjacent units [3]. In the United States Pacific Northwest region,
forests are dominated by coniferous species and structure (i.e., the horizontal and vertical distribution
of components within the forest), rather than composition, is the main characteristic distinguishing
stands with a history of silvicultural activities (e.g., clearcuts or thinnings) or natural disturbances
(e.g., wildfires or insect outbreaks). On average, more than 50,000 km2 are disturbed each year by
harvest and wildfires in Canada and the United States [4,5]. The legacy of these disturbances is
a patchwork of largely even-aged stands characterized by small age differences in their dominant
cohort that is obvious to a skilled photo interpreter. Explicit spatial information of the boundaries of
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these stands available at regional scales are needed by forest managers [1,2,6], and by ecologists and
landscape modelers, as a source of information to locate past stand-replacing disturbances [7].

Forest stand delineation is a task traditionally performed by visual photo interpretation of
aerial photographs [6,8] and, more recently, by applying semi-automated Geographic Object-based
Image analysis (GEOBIA) on remotely sensed data [1,2,9–13]. GEOBIA automatically generates
image objects and links them to geographic features (e.g., forest stands) through a processing chain
that incorporates, in a simple or iterative workflow, segmentation, evaluation, and classification
techniques [14,15]. The object-based strategy for semi-automatic delineation of geographic features
is not a straightforward process, mainly because the selection of a suitable segmentation is not a
standardized process. A user-defined evaluation is required to select among the vast number of
possible outputs, considering the different set of input data, segmentation algorithms or algorithm
parameters that can be selected within the GEOBIA process [16], and it should be carefully considered
as the classification accuracy is highly influenced by segmentation quality [17,18].

Object-based segmentation evaluation strategies are divided into supervised and unsupervised
methods [19]. Supervised methods compare segmentation outputs with a reference set of
digitized objects, by computing dissimilarity metrics that are mainly based on location, size, shape,
or color differences [16,20–23]. These methods can be used to compare segmentation outputs obtained
with different input datasets, but they rely on reference data that are not always available. In those cases,
evaluation becomes an extremely time-consuming task, especially for large datasets. Additionally,
the digitation of polygons as reference objects has some degree of subjectivity depending on how the
samples are selected and who does the delineation [24]. Unsupervised methods, on the other hand,
rank multiple image segmentations obtained from the same input dataset using a quality criterion that
is usually related to some human perception of what a good segmentation should be [25,26]. They rely
only on the input data statistics and are gaining attention to objectively and automatically calibrate the
segmentation algorithm parameters [24–30], but they are limited to compared segmentation outputs
obtained with the same input data. Therefore, a more complex user-defined evaluation workflow
is required to address other choices within the processing workflow having an influence in the
segmentation quality (e.g., the input data).

Forest stand delineation using GEOBIA has been approached with different strategies and data
sources depending often on the adopted definition of a forest stand that is generally based on species
composition and age. In the last decades, Light Detection and Ranging (LiDAR) has been introduced
for stand delineation as the main data source (e.g., [2,10,11,31,32]), or combined with optical remotely
sensed data (e.g., [9,33,34]), especially when a structural component was considered to define the
concept of the stand. Despite this effort, the number of publications focused on mapping forest
stands mainly defined by different structural (e.g., canopy height and density) or age-related types is
still relatively small, and the described strategies are often heuristic (e.g., [10]), local (covering areas
smaller than 1000 ha) (e.g., [2,10,11,31,34,35]) or lacking objective evaluation protocols (e.g., [2,11]).
While these previous studies set the baseline to semi-automatically delineate forest stands of uniform
age structure by coupling both GEOBIA and LiDAR-derived data, a generalized workflow to automate
the delineation at larger scales is still not fully developed. Neither has a quantitative assessment
on the performance of single LiDAR metrics (i.e., statistics summarizing the LiDAR point cloud)
to delineate forest regardless of the time since the last disturbance yet been addressed, and it is of
interest to understand if single-date remotely sensed data could eventually be used to locate historical
stand-replacing events.

In this paper, we present a semi-automated and straightforward strategy for forest stand
delineation using GEOBIA applied to single LiDAR-derived raster summary metrics in a study area
covering more than 54,000 ha. Accordingly, the aim of this paper is twofold: (1) To integrate within
the GEOBIA workflow a two-stage evaluation strategy to select objectively a suitable delineation of
forest stands, defined in terms of structural and age homogeneity, when different segmentation
algorithm parameters and input data layers are considered; and (2) to assess individually the
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performance of several LiDAR metrics to identify the boundaries of relatively old even-aged forest
stands using ancillary reference data of historical stand-replacing disturbances.

2. Materials

2.1. Study Area

The study area encompasses the Clear Creek, Selway River, and Elk Creek watersheds
(~54,000 ha; Figure 1), located within the Nez Perce-Clearwater National Forest (46◦48′N, 115◦41′W) in
north-central Idaho, USA. The study area covers mostly mountainous terrain, with slopes commonly
higher than 50%; elevation is highly variable ranging from 415 to 2077 m. Average annual precipitation
is around 740 mm; monthly mean temperature is −3.6 ◦C in winter and 14.2 ◦C in summer [36].
The area is covered by a temperate mixed-conifer forest. Dominant tree species are Douglas-fir
(Pseudotsuga menziesii (Mirb.) Franco.) and grand fir (Abies grandis (Douglas ex D. Don) Lindl.),
commonly accompanied by western redcedar (Thuja plicata Donn ex D. Don) and ponderosa pine
(Pinus ponderosa C. Lawson). Other species are only sporadically present.

Remote Sens. 2018, 10, x FOR PEER REVIEW  3 of 23 

 

2. Materials 

2.1. Study Area 

The study area encompasses the Clear Creek, Selway River, and Elk Creek watersheds (~54,000 

ha; Figure 1), located within the Nez Perce-Clearwater National Forest (46°48′N, 115°41′W) in north-

central Idaho, USA. The study area covers mostly mountainous terrain, with slopes commonly higher 

than 50%; elevation is highly variable ranging from 415 to 2077 m. Average annual precipitation is 

around 740 mm; monthly mean temperature is −3.6 °C in winter and 14.2 °C in summer [36]. The area 

is covered by a temperate mixed-conifer forest. Dominant tree species are Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco.) and grand fir (Abies grandis (Douglas ex D. Don) Lindl.), commonly 

accompanied by western redcedar (Thuja plicata Donn ex D. Don) and ponderosa pine (Pinus 

ponderosa C. Lawson). Other species are only sporadically present. 

Timber management in the study area initiated early in the twentieth century, but the total 

amount of timber harvested was relatively small until the 1940s [37]; the area subsequently was 

intensively logged during the 1960s and 1970s, followed by a phased reduction in logging activity 

until present. Clearcuts and shelterwoods were the preferred management actions, resulting in a 

patchy landscape of even-aged forest stands [38,39]. 

 

Figure 1. Location of the study area in the Nez-Perce & Clearwater National Forest (Idaho-USA); 

boundaries of the 2009 and 2012 Light Detection and Ranging (LiDAR) acquisitions; and reference 

polygons of historical stand clearcuts (>2 ha) from the Forest Service Activity Track System (FACTs) 

harvest dataset. The FACTs polygons are displayed with a rainbow color scale indicating the year of 

harvest, from 1956 to 1996. No data are available for clearcuts performed before 1956; no clearcuts (>2 

ha) were reported from 1996 to the LiDAR acquisition dates. On the bottom right, a 4 × 4 km subset 

of the Clear Creek watershed. 

2.2. Ancillary Reference Data and Pre-Processing 

The Forest Service ACtivity Tracking System (FACTs) harvest dataset was used as an 

independent source of information for the location and extent of timber harvest areas [39]. The dataset 

is maintained by the U.S. Forest Service and consists of vector data (polygons) of the area treated as 

a part of the timber harvest program work, with an indication of the year in which the harvest was 

performed. The activities are self-reported by the Forest Service Units and consequently, reporting 

varies by National Forest administrative districts, and different information on planned management 

activities, historical records and other available data sources such as available cartography, aerial 

orthophotos, or remotely sensed data are used for its compilation. We selected clearcut harvest units 

Figure 1. Location of the study area in the Nez-Perce & Clearwater National Forest (Idaho-USA);
boundaries of the 2009 and 2012 Light Detection and Ranging (LiDAR) acquisitions; and reference
polygons of historical stand clearcuts (>2 ha) from the Forest Service Activity Track System (FACTs)
harvest dataset. The FACTs polygons are displayed with a rainbow color scale indicating the year
of harvest, from 1956 to 1996. No data are available for clearcuts performed before 1956; no clearcuts
(>2 ha) were reported from 1996 to the LiDAR acquisition dates. On the bottom right, a 4× 4 km subset
of the Clear Creek watershed.

Timber management in the study area initiated early in the twentieth century, but the total amount
of timber harvested was relatively small until the 1940s [37]; the area subsequently was intensively
logged during the 1960s and 1970s, followed by a phased reduction in logging activity until present.
Clearcuts and shelterwoods were the preferred management actions, resulting in a patchy landscape
of even-aged forest stands [38,39].

2.2. Ancillary Reference Data and Pre-Processing

The Forest Service ACtivity Tracking System (FACTs) harvest dataset was used as an independent
source of information for the location and extent of timber harvest areas [39]. The dataset is maintained
by the U.S. Forest Service and consists of vector data (polygons) of the area treated as a part of the



Remote Sens. 2018, 10, 1622 4 of 24

timber harvest program work, with an indication of the year in which the harvest was performed.
The activities are self-reported by the Forest Service Units and consequently, reporting varies by
National Forest administrative districts, and different information on planned management activities,
historical records and other available data sources such as available cartography, aerial orthophotos,
or remotely sensed data are used for its compilation. We selected clearcut harvest units larger than
2 ha present within the boundaries of our study area, resulting in a total of 360 polygons with 17.75 ha
average size, logged between 1956 and 1996 (Figure 1).

Figure 1 shows that in many cases adjacent polygons were harvested in consecutive years.
Because of the relatively low growth rate of the vegetation in the study area, these stands would have a
substantially similar structure. Consequently, adjacent polygons harvested within a short time interval
(≤5 years) were merged as exemplified in Figure 2.
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Figure 2. Example of pre-processing of the FACTs harvest polygons. Adjacent polygons harvested
within a time interval ≤5 years (left) are merged into aggregated polygons (right) that are used as
reference objects in all the subsequent steps of the analysis.

2.3. LiDAR Datasets and Data Pre-Processing

Airborne LiDAR data were acquired in 2009 on the Clear Creek watershed (henceforth referred as
the Clear Creek area) and in 2012 on the Selway River and Elk Creek watersheds (henceforth referred
as the Selway area) (Figure 1). Both datasets were acquired using a Leica ALS60 sensor in multi-pulse
mode up to 4 returns per pulse, with a 69,400 Hz pulse rate in the Clear Creek area and at 88,000 Hz in
the Selway area. In both cases, the average point density was at least 4 points/m2. The LiDAR data
were delivered by the provider in a standard binary format (.las) with points labeled as ground or
non-ground returns.

Because of the 3-year time difference between the two LiDAR collections, the two datasets were
processed separately. The point cloud was normalized to obtain the height above ground of each
LiDAR return using a digital terrain model (DTM) interpolated from the ground returns at 1-m
spatial resolution. The FUSION toolkit [40] was used to compute gridded, summary LiDAR metrics at
30 m spatial resolution. The pixel size was selected at 30 m considering the extent of the study area
and the average size of the reference forest stands. A total of 36 metrics was computed: 25 measures of
vegetation canopy height and 11 measures of canopy density (Table 1). Density strata metrics were
computed based on all returns so as not to discard useful information related to canopy complexity
contained in the higher order returns (non-first returns). Cover metrics generated from both first
returns and all returns were tested, because of some evidence that the former can produce more stable
height metrics [41,42], which may be more appropriate when combining datasets.

The number of metrics considered for further analysis was reduced based on their field
significance and a user defined correlation threshold as many of them were spatially correlated.
The 95th percentile of height (thereafter ‘H95′) was selected as it is highly correlated to stand height
and biomass [43–46], and it is less sensitive to outliers compared to other distributional metrics as the
maximum height (MaxH) [47]. On the other hand, the dominant cohort of trees to regenerate after a
stand-replacing disturbance will grow tall only after a few decades [48]. A canopy density metric above
a relatively high height would be sensitive to both younger stand regeneration patterns (showing
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clusters of low density of points) and older stands (showing clusters of high density of points).
Accordingly, the percentage of points above 30 m (thereafter ‘Stratum above 30 m’) was also selected
for analysis. Pairwise Pearson correlation coefficients (R) between these two metrics and all other
34 metrics were computed; and only the metrics with average absolute value of R lower than 0.5
(i.e., |R| < 0.5) both with ‘H95′ and ‘Stratum above 30 m’ were retained for the following steps of the
analysis. All selected metrics were normalized between 0 and 100.

Table 1. Light Detection and Ranging (LiDAR) summary metrics gridded at 30 m resolution from
LiDAR point clouds. Twenty-five metrics are related to vegetation canopy height, and eleven are
related to canopy density.

LiDAR Metrics Description

Canopy height

‘H01′ 1th percentile of height above 1.37 m
‘H05′ 5th percentile of height above 1.37 m
‘H10′ 10th percentile of height above 1.37 m
‘H20′ 20th percentile of height above 1.37 m
‘H25′ 25th percentile of height above 1.37 m
‘H30′ 30th percentile of height above 1.37 m
‘H40′ 40th percentile of height above 1.37 m
‘H50′ 50th percentile of height above 1.37 m
‘H60′ 60th percentile of height above 1.37 m
‘H70′ 70th percentile of height above 1.37 m
‘H75′ 75th percentile of height above 1.37 m
‘H80′ 80th percentile of height above 1.37 m
‘H90′ 90th percentile of height above 1.37 m
‘H95′ 95th percentile of height above 1.37 m
‘H99′ 99th percentile of height above 1.37 m

‘MaxH’ Maximum height value
‘AveH’ Mean height value

‘ModeH’ Modal height value
‘VarH’ Variance of heights
‘QMH’ Quadratic mean of heights
‘SVH’ Standard deviation of heights
‘CVH’ Coefficient of variation of heights

‘Skew.H’ Height skewness
‘IQH’ Interquartile coefficient of heights
‘CRR’ Canopy relief ratio

Canopy density

‘First returns above mean’ Percentage of first returns above mean height over
the total number of first returns

‘First returns above 1.37 m’ Percentage of first returns above 1.37 m height
(breast height) over the total number of first returns

‘All returns above mean’ Percentage of all returns above the mean height
over the total number of returns

‘All returns above 1.37 m’ Percentage of all returns above 1.37 m (breast
height) over the total number of returns

‘Stratum below 0.15 m’ Percentage of returns below 0.15 m
‘Stratum 0.15–1.37 m’ Percentage of returns between 0.15 and 1.37 m

‘Stratum 1.37–5 m’ Percentage of returns between 1.37 and 5 m
‘Stratum 5–10 m’ Percentage of returns between 5 and 10 m

‘Stratum 10–20 m’ Percentage of returns between10 and 20 m
‘Stratum 20–30 m’ Percentage of returns between 20 and 30 m

‘Stratum above 30 m’ Percentage of returns above 30 m

Table 2 shows the selected metrics for segmentation (seven in total) and the obtained pairwise
Pearson’s correlation coefficients; Figure 3 displays an example of each of these metrics for a 4 × 4 km
subset within the Clear Creek watershed.
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Table 2. LiDAR metrics considered in the analysis. The ‘H95′ and ‘Stratum above 30 m’ metrics were
selected based on literature review. From the remaining 34 metrics, the five metrics with absolute
average value of the Pearson’s correlation coefficient of the two LiDAR datasets (i.e., Clear Creek and
Selway) lower than 0.5 (i.e., |R| < 0.5) with both ‘H95′ and ‘Stratum above 30 m’ were selected.

Pearson’s Correlation Coefficient (R)

Clear Creek Selway Average

LiDAR Metric R(‘HP95′) R(‘Stratum
above 30 m’) R(‘HP95′) R(‘Stratum

above 30 m’) R(‘HP95′) R(‘Stratum
above 30 m’)

‘HP95′ - 0.81 - 0.76 - 0.79
‘Stratum above 30 m’ 0.81 - 0.76 - 0.79 -

‘CVH’ 0.05 −0.37 −0.08 −0.54 −0.02 −0.45
‘Stratum below 0.15 m’ −0.26 −0.37 −0.36 −0.43 −0.31 −0.4
‘Stratum 0.15–1.37 m’ −0.28 −0.28 −0.27 −0.55 −0.28 −0.41

‘Stratum 1.37–5 m’ −0.20 −0.23 −0.28 −0.50 −0.24 −0.36
‘Stratum 20–30 m’ 0.02 −0.02 −0.05 −0.06 −0.01 −0.04
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Figure 3. The seven LiDAR metrics considered in the analysis (Table 2), displayed with a linear black
to white grayscale color table (1% linear stretch), on a 4 × 4 km subset of the Clear Creek watershed
(location on Figure 1). The FACTs harvest reference dataset is presented for comparison in the upper left,
to highlight the different response of each metric to even-aged forest stands.

3. Methods

The overall workflow of the proposed methodology is presented in Figure 4. The methodology
involves: (1) The single-layer segmentation of several LiDAR metrics (Section 3.1); (2) an object-based
unsupervised evaluation to calibrate the segmentation algorithm parameters of each LiDAR metric
(Section 3.2); and (3) a supervised evaluation to select the optimal input LiDAR metric for the
delineation of forest stands (Section 3.3). An independent validation (Section 3.4) is performed
to assess the accuracy of the optimal forest stand delineation.



Remote Sens. 2018, 10, 1622 7 of 24

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 23 

 

 

Figure 4. Flowchart of the proposed methodology for forest stand delineation based on a two-stage 

evaluation strategy. 

3.1. Segmentation 

Image segmentation of the seven LiDAR metrics was carried out using the multiresolution 

segmentation (MRS) algorithm [49] implemented in eCognition 9.1 software. 

The MRS is a bottom-up segmentation algorithm which starts with a single selected pixel, and 

merges neighboring pixels into bigger objects in a step-wise iterative process. A detailed description 

of the algorithm, which is one of the most commonly used algorithms in image segmentation of 

remotely sensed data within the GEOBIA domain, is provided by Baatz and Schape [49]; the 

eCognition implementation requires three user-defined parameters: Scale, shape, and compactness. 

The scale parameter (unitless, unbounded, and defined positive) controls the maximum 

heterogeneity within the objects; higher scale parameter values hence result in bigger objects. The 

shape and compactness parameters (unitless, with values defined between 0 and 1) control the border 

smoothness and compactness of the objects. For each selected LiDAR metric, we generated a set of 

segmentations by systematically varying the values of the three parameters. The range of variation 

of the three parameters established to ensure a full range of outputs ranging from undersegmentation 

to oversegmentation: 91 values of the scale parameter were used, ranging from 5 to 275 in increments 

of 3 units; three values (0.1, 0.5, and 0.9) were used for shape and compactness. 

All the possible combinations of the three sets of values were tested, thus for each LiDAR metric 

and LiDAR dataset, a total of 819 segmentations was obtained. 

3.2. Selection of the Optimal Segmentation of each LiDAR Metric 

An unsupervised evaluation method based on spatial autocorrelation statistics was used for 

selecting the optimal segmentation for each LiDAR metric, out of the 819 generated with the sets of 

parameters defined above. The method is an adaptation of the one introduced by Espindola et al. [25] 

and subsequently used for object-based image segmentation evaluation of land cover and stand 

mapping [26,31,50]. 

Given a set of segmentations of the same image, the optimal segmentation is defined as the one 

that maximizes intra-segment homogeneity (i.e., the pixels belonging to the same segment are similar 

to each other) and inter-segment heterogeneity (i.e., neighboring segments are different from each 

other). 

The intra-segment homogeneity is measured by the weighted variance (𝑤𝑉𝑎𝑟): 

𝑤𝑉𝑎𝑟 =
∑ 𝑎𝑖×𝑣𝑖

𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

, (1) 

where 𝑣𝑖 and 𝑎𝑖 are respectively the variance and the area of segment i, and n is the total number 

of segments. The upper bound of 𝑤𝑉𝑎𝑟 is equal to the variance of the image when only one image 

object is part of the segmentation; conversely, the lower bound of 𝑤𝑉𝑎𝑟 is be equal to 0 when each 

pixel in the image constitutes one image object. 

The inter-segment heterogeneity is measured by Moran’s I (MI) index: 

𝑀𝐼 =
𝑛 ∑ ∑ 𝑤𝑖𝑗(𝑦𝑖−ӯ)(𝑦𝑗−ӯ)𝑛

𝑗=1
𝑛
𝑖=1

(∑ (𝑦𝑖−ӯ)2)(∑ ∑ 𝑤𝑖𝑗𝑖≠𝑗
𝑛
𝑖=1 )

, (2) 

Figure 4. Flowchart of the proposed methodology for forest stand delineation based on a two-stage
evaluation strategy.

3.1. Segmentation

Image segmentation of the seven LiDAR metrics was carried out using the multiresolution
segmentation (MRS) algorithm [49] implemented in eCognition 9.1 software.

The MRS is a bottom-up segmentation algorithm which starts with a single selected pixel, and
merges neighboring pixels into bigger objects in a step-wise iterative process. A detailed description of
the algorithm, which is one of the most commonly used algorithms in image segmentation of remotely
sensed data within the GEOBIA domain, is provided by Baatz and Schape [49]; the eCognition
implementation requires three user-defined parameters: Scale, shape, and compactness. The scale
parameter (unitless, unbounded, and defined positive) controls the maximum heterogeneity within
the objects; higher scale parameter values hence result in bigger objects. The shape and compactness
parameters (unitless, with values defined between 0 and 1) control the border smoothness and
compactness of the objects. For each selected LiDAR metric, we generated a set of segmentations by
systematically varying the values of the three parameters. The range of variation of the three parameters
established to ensure a full range of outputs ranging from undersegmentation to oversegmentation:
91 values of the scale parameter were used, ranging from 5 to 275 in increments of 3 units; three values
(0.1, 0.5, and 0.9) were used for shape and compactness.

All the possible combinations of the three sets of values were tested, thus for each LiDAR metric
and LiDAR dataset, a total of 819 segmentations was obtained.

3.2. Selection of the Optimal Segmentation of each LiDAR Metric

An unsupervised evaluation method based on spatial autocorrelation statistics was used for
selecting the optimal segmentation for each LiDAR metric, out of the 819 generated with the sets of
parameters defined above. The method is an adaptation of the one introduced by Espindola et al. [25]
and subsequently used for object-based image segmentation evaluation of land cover and stand
mapping [26,31,50].

Given a set of segmentations of the same image, the optimal segmentation is defined as the
one that maximizes intra-segment homogeneity (i.e., the pixels belonging to the same segment are
similar to each other) and inter-segment heterogeneity (i.e., neighboring segments are different from
each other).

The intra-segment homogeneity is measured by the weighted variance (wVar):

wVar = ∑n
i=1 ai × vi

∑n
i=1 ai

, (1)

where vi and ai are respectively the variance and the area of segment i, and n is the total number
of segments. The upper bound of wVar is equal to the variance of the image when only one image
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object is part of the segmentation; conversely, the lower bound of wVar is be equal to 0 when each
pixel in the image constitutes one image object.

The inter-segment heterogeneity is measured by Moran’s I (MI) index:

MI =
n ∑n

i=1 ∑n
j=1 wij(yi − y)

(
yj − y

)(
∑n

i=1 (yi − y)2)(∑i 6=j ∑wij

) , (2)

where yi is the mean value of segment i, yj is the mean value of segment j, y is the mean of the pixel
values of the entire image, and wij is a neighbor-based matrix assuming value wij = 1 if objects i and j
are adjacent otherwise wij = 0. MI can assume values between −1 and 1: Values close to 1 represent
clumped patterns with high spatial autocorrelation; values close to 0 represent random patterns;
and values close to −1 represent dispersed patterns lacking spatial autocorrelation. MI was retrieved
using the moran function on the R spdep package [51].

Once wVar and MI are calculated for all the segmentations of the same LiDAR metric, the scores
are normalized as proposed by Böck et al. [52]. The weighted variance wVar was normalized respective
to the variance y′ of the entire LiDAR metric image used as segmentation input:

wVarnorm =
wVar

y′
, (3)

where wVar is the weighted variance for the segmentation, and y′ is the variance of the entire image
used as segmentation input. Because wVar may vary between 0 and y′, wVarnorm assumes values
between 0 and 1.

MI was rescaled to the same 0–1 interval as follows:

MInorm =
MI + 1

2
, (4)

The two normalized measures are then combined in a single measure, termed Global Score (GS) by
Johnson and Xie [26], and proposed as an objective function to rank the set of segmentation outputs and
select the one resulting in the lowest GS. The original formulation of GS is a simple linear combination
of wVArnorm and MInorm; in order to avoid cases where the lowest GS is attained by a segmentation
that is clearly undersegmenting (high wVArnorm but very low MInorm) or oversegmenting (high MInorm

but very low wVArnorm), we propose the use of a quadratic cost function, that privileges segmentations
with balanced intra-segment homogeneity and inter-segment heterogeneity:

GSmod =

√
wVarnorm2 + MInorm2

2
, (5)

GSmod assumes values in the 0 to 1 range: values close to 0 being indicative of high intra-segment
homogeneity and inter-segment heterogeneity; and values close to 1 being indicative of low
intra-segment homogeneity and inter-segment heterogeneity.

For each of the seven LiDAR metrics considered, the segmentation with the lowest GSmod was
selected as optimal.

3.3. Selection of the Optimal LiDAR Metric

The second stage of the proposed methodology is to identify, among the set of seven optimal
segmentations, the one that most closely matches even-aged stands as they are in reality, i.e., selecting
which LiDAR metric is mostly suitable for forest stand delineation. A supervised evaluation method
was used, based on measures of area dissimilarity between the segments (henceforth, image objects)
and the FACTs harvest dataset, used as a reference map of even-aged forest stands (henceforth,
reference objects).
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Several metrics have been proposed in the literature as measures of area correspondence between
image objects and reference objects [16,21,53–59]; these methods generally quantify oversegmentation
and undersegmentation of the image objects. Oversegmentation happens when an identified
reference object results in too many smaller image objects after the segmentation process. Conversely,
undersegmentation occurs when the image object spatially matches with more than one of the
reference objects, the image object being larger in size compared to the target feature of interest.
An ideal, error-free segmentation would have no oversegmentation and no undersegmentation.
In reality, each classification have some oversegmentation and some undersegmentation: The selection
of the optimal segmentation is therefore based on a ranking strategy that balances the two types of
error [21].

The adopted supervised evaluation method is based on measures of area dissimilarity proposed
by Clinton et al. [21]. We define as Y =

{
yj : j = 1 . . . m

}
the set of all the image objects, and as

X = {xi : i = 1 . . . n} the set of all the reference objects. For each reference object xi, Y∗i is the set of
corresponding image objects, defined as all image objects of Y whose area overlaps by more than 50%

with the reference object (i.e., yj :
area(xi∩yj)

area(yj)
> 0.5); or conversely if the reference object overlaps more

than half of the segmented object (i.e., yj :
area(xi∩yj)

area(xi)
> 0.5) [58]. This 50% overlapping area criterion

has been consistently used as an appropriate threshold for object-based quality assessment [21,27,54].
The measures of oversegmentation (OS) and undersegmentation (US) [21] are calculated by

starting with pair-wise comparisons between image objects and corresponding reference objects,
which are then summarized for the entire image.

For each image object yj,
(
yj ∈ Y∗i

)
and corresponding reference object xi the oversegmentation

(OSij) is calculated as the fraction of overlapping area relative to the area of the reference object:

OSij = 1−
area

(
xi ∩ yj

)
area(xi)

, (6)

Conversely, undersegmentation (USij) is calculated as the fraction of overlapping area, relative to
the area of the image object:

USij = 1−
area

(
xi ∩ yj

)
area

(
yj
) , (7)

OSij is then aggregated into the overall oversegmentation of object xi:

OSi =
∑yj∈Y∗i

OSij

#yj ∈ Y∗i
, (8)

and OSi is aggregated as the total oversegmentation of the n reference objects:

OS =
∑n

i OSi

n
, (9)

Likewise, USij is aggregated into the overall undersegmentation of object xi:

USi =
∑yj∈Y∗i

USij

#yj ∈ Y∗i
, (10)

and USi is aggregated as the total undersegmentation of the n reference objects:

US =
∑n

i USi

n
, (11)
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To select the optimal metrics, OS and US were combined into a summary score (D):

D =

√
OS2 + US2

2
, (12)

In the cases where no corresponding objects for a specific reference object were found according
to the defined 50% overlapping area criterion (i.e., #yj ∈ Y∗i = 0), OSi and USi were given a value of 1.

Once the optimal segmentations of each LiDAR metric were evaluated, the LiDAR metric whose
segmentation results in the lowest D score was selected as optimal.

In order to investigate whether the same metric results in the optimal segmentation regardless
of time since disturbance, the metrics of area agreement were computed using as reference objects
different subsets of the FACTS harvest polygons, resulting in four scenarios:

1. All clearcuts (years from 1956 to 1996);
2. clearcuts performed before the start of the Landsat MSS record (years from 1956 to 1972);
3. clearcuts performed before the start of the Landsat TM record (years from 1956 to 1984);
4. clearcuts performed after the start of the Landsat TM record (years from 1984 to 1996).

The four scenarios are driven by the Landsat data archive since it is the longest available Earth
Observation record, starting with the launch of Landsat-1 in 1972.

3.4. Validation

The segmentation selected through the two-stage semi-automatic procedure was validated by
comparing it to a randomly selected set of reference objects, derived from visual interpretation.
The accuracy of the segmentation was assessed using area-based dissimilarity measures.

3.4.1. Reference Dataset

The FACTS dataset is a valuable record of historical disturbances, but it is not intended to be
a wall-to-wall map of stand boundaries. While the presence of a polygon indicates a documented,
historical clearcut, the absence of a polygon might indicate the absence of historical data, rather than
an undisturbed stand. For this reason, an independent reference dataset encompassing both even-aged
(EAF) and undisturbed uneven-aged (UAF) forest stands was developed. Reference objects were
delineated through visual interpretation of the 1-m spatial resolution digital orthophotos acquired from
the National Agricultural Imagery Program (NAIP). Tri-dimensional renderings of the normalized
LiDAR point clouds, as well as the raster LiDAR metrics, were used as additional data sources in the
interpretation. NAIP imagery acquired in 2009 was used for the Clear Creek dataset, and 2011 imagery
(closer in time to the LiDAR flight) was used for the Selway dataset.

The reference objects were generated as follows:

1. Random selection of an image object of the optimal segmentation, to account for the large
disparity in stand area, followed by random selection of a point within the object [60];

2. visual interpretation of the NAIP imagery to trace the forest stand that includes the point.
Any physical barriers such as roads or watersheds were used to delineate the border of the stands
when no other natural discontinuity related to vegetation type or structure was found;

3. classification of the reference object as EAF or uneven-aged forest by the photo-interpreter.

A total of 100 reference objects were generated: 25 EAF and 25 UAF objects for each of the two
study areas.

3.4.2. Validation Metrics

The validation metrics used to characterize the agreement and disagreement between image
objects and reference objects are:
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• Oversegmentation (OS), undersegmentation (US) and summary score (D), obtained with the
procedure described in Section 4.3;

• modified oversegmentation (OS∗), undersegmentation (US∗), and summary score (D∗),
defined as follows.

The modified area-based dissimilarity metrics (OS∗, US∗, D∗) are defined as the benchmark
value of (OS, US, D), that could be achieved in the best case scenario when the image objects
identified by the segmentation are post-processed and merged through object-based classification.
The issue is illustrated in Figure 5, where two significantly different segmentations are compared to
the same reference object. The top row shows a case of oversegmentation, where an almost perfect
match could be achieved through classification, if all the corresponding image objects are merged.
Conversely, the bottom row shows a case of where significant discrepancies could not be resolved
through classification of the image objects. This is reflected by the modified metrics (Figure 5,
right column) where (OS∗, US∗, D∗) represent the areal disagreement between the reference object
and the best possible aggregation of the image objects. The modified metrics are significant for
the specific application of forest stand mapping, where the segmentation should not be seen as an
end-product per se, but as an input dataset for further classification of forest characteristics. We expect
the difference between (OS, US, D) and (OS*, US*, D*) to be particularly significant on UAF stands,
that due to their larger size and heterogeneity compared to EAF are expected to show a high degree of
oversegmentation, that might be however resolved through post-processing.
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Figure 5. Illustration of the area-based dissimilarity metrics (OSi, USi, Di), and of the modified
metrics (OS∗i , US∗i , D∗i ). A reference object (black vectors) is displayed together with its
corresponding set of image objects (gray vectors): The top row shows an example where the reference
object is oversegmented, but not undersegmented (i.e., it is closely matched by the union area
∪yj∈Y∗i yj); the bottom row shows an example where the reference object is both oversegmented,
and undersegmented. The center column illustrates the traditional oversegmentation (OSi),
undersegmentation (USi) and summary score (Di) for that single reference object, metrics that consider
each individual corresponding image object. The right column illustrates the modified OS∗i , US∗i ,
and D∗i metrics, that consider instead the union area of all corresponding image objects. The summary
score D does not report a significant difference between the two classifications (top: Di = 0.59, bottom:
Di = 0.61), whereas the modified summary score D* indicates that through post-processing the top row
segmentation could result in a near-perfect match with the reference object (D∗i = 0.04) but significant
errors will remain in the bottom row segmentation (D∗i = 0.29).
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The modified metrics are computed by considering, instead of the single image objects yj
corresponding to a reference object xi, their union y∗i defined as:

y∗i = ∪yj∈Y∗i
yi, (13)

being Y∗i the subset set of corresponding image objects defined considering the 50% overlapping area
criterion described in Section 4.3; by definition y∗i is the best possible result of a post-processing of the
segmentation.

For each reference object xi the modified oversegmentation OS∗i is calculated as the fraction of
overlapping area with y∗i relative to the area of the reference object:

OS∗i = 1−
area

(
xi ∩ y∗i

)
area(xi)

, (14)

OS∗i (14) is then aggregated into an overall oversegmentation metric for the entire set of n
reference objects:

OS∗ =
∑n

i OS∗i
n

, (15)

Similarly, the modified undersegmentation US∗i is calculated for each reference object as:

US∗i = 1−
area

(
xi ∩ y∗i

)
area(y∗i )

, (16)

and US∗i (16) is aggregated into an overall undsersegmentation metric:

US∗ =
∑n

i US∗i
n

, (17)

Finally, the modified summary D∗ score is calculated as the quadratic cost function of OS∗

and US∗:

D∗ =

√
OS∗2 + US∗2

2
, (18)

4. Results

4.1. Selection of the Optimal Segmentation of each LiDAR Metric

The procedure described in Section 4.2 was used for the evaluation of the 819 segmentations
obtained for each LiDAR metric using different sets of MRS algorithm parameters (scale, shape,
and compactness). Figure 6 illustrates, using the ‘H95′ metric as an example, that different scale and
shape parameters influence the number, shape, and size of the segments, as discussed in [49].

The measures of spatial autocorrelation (wVArnorm, MInorm) were computed for each
segmentation, and the summary score (GSmod) was used for ranking them. Figure 7 exemplifies
the procedure for the selection of the optimal segmentation, showing the scatter-plot of the wVArnorm

and MInorm value of each segmentation of the ‘H95′ LiDAR metric of the Clear Creek dataset, as well
as the isoline GSmod = 0.37 corresponding to the optimal segmentation.

In general, for each LiDAR metric, the parameters that generate the optimal segmentation on
both datasets are very similar (Table 3). For instance, the shape is always 0.1, and the scale parameter
between both datasets never differ more than a scale increment of 3 units. A notable exception is
the ‘Stratum above 30 m’ metric, where the optimal scale parameter is 59 on the Clear Creek dataset
and 23 on the Selway dataset. This difference can be explained considering the low sensitivity of
this metric to vegetation recovery: the percentage of returns above 30 m will remain negligible until
the top of the trees is higher than 30 m, which might take several decades after a stand-replacing
disturbance. In the Clear Creek area many clearcuts are adjacent or spatially close to each other
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(Figure 1); because of the low sensitivity of the metric, there is no clear distinction in the “Stratum
above 30 m” metric between neighboring disturbed stands, and the optimal segmentation is the one
identifying these very large image objects. Figure 1 shows that the clearcuts of the Selway area are
instead surrounded by undisturbed stands, generating a more heterogenous patchy landscape that
create recognizable stand boundaries despite the low sensitivity of the ‘Stratum above 30 m’ metric.

Figure 8 illustrates that the optimal segmentation of different LiDAR metrics might show very
different vegetation-related structural objects. While in general the image objects that can visually
recognized in each of the LiDAR metrics are delineated by the optimal segmentation, not all metrics
return image objects that match the historic disturbances reported by the FACTS dataset. Figure 8
shows that the ‘H95′ and ‘Stratum above 30 m’ visually match closely the FACT dataset, whereas the
other metrics define image objects that do not immediately relate to the record of past clearcuts.
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Figure 6. Segmentations of the ‘H95′ LiDAR metric generated by the multiresolution segmentation
(MRS) algorithm with different combinations of the scale and shape parameters, and the same
compactness parameter (Comp. = 0.1). In all cases, the segmentation is displayed as orange vectors
overlaid on the ‘H95′ metric raster, shown in grayscale. The same 4× 4 km area of Figure 1 is presented.
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Figure 7. Scatter-plot of the normalized weighted variance (wVarnorm) and normalized Moran’s Index
(MInorm) of the segmentations of the ‘H95′ metric for the Clear Creek dataset, generated by different
sets of the MRS algorithm parameters. The two metrics are combined in a quadratic Global Score
(GSmod) and the segmentation with the lowest GSmod is selected as the optimal segmentation.

Table 3. Optimal segmentation of the seven considered LiDAR metrics. For each metric, the optimal set
of multiresolution segmentation (MRS) algorithm parameters (scale, shape, compactness), the number
of resulting image objects, and the unsupervised measures of spatial autocorrelation (normalized
Moran’s I, normalized weighted Variance, modified Global score) are presented. The two LiDAR
datasets were processed independently.

LiDAR Metric Scale Shape Comp. # Image
Objects MInorm wVArnorm GSmod

Clear
Creek

‘H95′ 29 0.1 0.1 347 0.47 0.23 0.37
‘CVH’ 5 0.1 0.1 11,119 0.55 0.14 0.41

‘Stratum below 0.15 m’ 17 0.1 0.5 1295 0.56 0.24 0.43
‘Stratum 0.15–1.37 m’ 14 0.1 0.1 1131 0.57 0.24 0.43

‘Stratum 1.37–5 m’ 8 0.1 0.9 1495 0.58 0.24 0.44
‘Stratum 20–30 m’ 14 0.1 0.1 1439 0.55 0.25 0.43

‘Stratum above 30 m’ 59 0.1 0.1 151 0.39 0.35 0.37

Selway

‘H95′ 26 0.1 0.5 835 0.49 0.22 0.38
‘CVH’ 5 0.1 0.1 16,592 0.57 0.14 0.42

‘Stratum below 0.15 m’ 20 0.1 0.1 994 0.59 0.25 0.46
‘Stratum 0.15–1.37 m’ 14 0.1 0.5 2112 0.55 0.26 0.43

‘Stratum 1.37–5 m’ 11 0.1 0.9 2585 0.54 0.26 0.42
‘Stratum 20–30 m’ 17 0.1 0.1 1915 0.54 0.28 0.43

‘Stratum above 30 m’ 23 0.1 0.1 1511 0.52 0.22 0.40
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4.2. Selection of the Optimal LiDAR Metric

The optimal segmentation of each LiDAR metric was compared against the reference objects
from the FACTs harvest dataset following the procedure described in Section 3.3; the results of the
analysis, for the two study areas and for the four scenarios of time since disturbances, are summarized
in Table 4. The ‘H95′ metric results in the lowest D value for both datasets in all but one case (Table 4),
namely when considering only the most recent disturbances (1984–1996) on the Clear Creek dataset.
In this case, the ‘Stratum 20–30 m’ metric results in the lowest score (D = 22), with the ‘H95′ metric
having the second lowest score (D = 0.25). Conversely, the ‘Stratum 20–30 m’ metric is the second-best
metric of the remaining three scenarios in the Clear Creek area, and the ‘Stratum above 30 m’ is
always the second-best metric in the Selway area. Additionally, the optimal segmentation of the ‘H95′

metric is the only one where all the reference objects have a non-null set of matching image objects
(i.e., Y∗i 6= ∅ ∀xi) (Table 4).

The ‘H95′ LiDAR metric was therefore selected as the optimal metric. Figure 9 shows the
segmentation of the ‘H95′ LiDAR metric as the optimal delineation for even-aged forest stand mapping
in the study area.
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Table 4. Supervised selection of the optimal LiDAR metric. Area-based dissimilarity metrics of oversegmentation (OS), undersegmentation (US), and summary score
(D) are presented for the optimal segmentation of the seven considered LiDAR metrics; the number of reference objects with no corresponding image objects is also
reported (Nnull). Four scenarios, based on the age of clearcut of the Forest Service Activity Track System (FACTs) harvest reference polygons, are considered: All
clearcuts (1956–1996), clearcuts performed before the start of the Landsat MSS record (1956–1972), clearcuts performed before the start of the Landsat TM record
(1956–1984), and clearcuts performed after the start of the Landsat TM/ETM+ record (1984–1996). For each scenario, the D score value of the optimal metric is marked
(bold and underlined).

All Clearcuts (1956–1996) Pre Landsat (1956–1972) Pre Landsat TM
(1956–1984) Landsat TM (1984–1996)

LiDAR Metric Nnull OS US D Nnull OS US D Nnull OS US D Nnull OS US D

Clear Creek

‘H95′ 0 0.21 0.37 0.30 0 0.15 0.55 0.40 0 0.15 0.52 0.38 0 0.28 0.20 0.25
‘CVH’ 0 0.86 0.16 0.62 0 0.81 0.19 0.59 0 0.82 0.18 0.60 0 0.90 0.14 0.64

‘Stratum below 0.15 m’ 12 0.53 0.47 0.50 4 0.55 0.52 0.53 5 0.55 0.51 0.53 7 0.52 0.43 0.48
‘Stratum 0.15–1.37 m’ 11 0.53 0.49 0.51 5 0.52 0.56 0.54 8 0.54 0.57 0.55 3 0.51 0.41 0.46

‘Stratum 1.37–5 m’ 8 0.44 0.52 0.48 4 0.46 0.56 0.51 6 0.47 0.56 0.52 2 0.40 0.47 0.43
‘Stratum 20–30 m’ 7 0.44 0.27 0.36 4 0.61 0.32 0.49 6 0.62 0.33 0.50 1 0.24 0.20 0.22

‘Stratum above 30 m’ 2 0.12 0.80 0.57 2 0.14 0.80 0.57 2 0.13 0.76 0.54 0 0.10 0.85 0.61

Selway

‘H95′ 0 0.22 0.21 0.22 0 0.13 0.32 0.24 0 0.16 0.29 0.24 0 0.28 0.14 0.22
‘CVH’ 1 0.87 0.17 0.63 1 0.88 0.17 0.63 1 0.85 0.18 0.62 0 0.89 0.16 0.64

‘Stratum below 0.15 m’ 15 0.45 0.62 0.54 6 0.58 0.50 0.54 8 0.56 0.53 0.55 7 0.36 0.69 0.55
‘Stratum 0.15–1.37 m’ 9 0.44 0.46 0.45 1 0.54 0.45 0.50 4 0.52 0.49 0.51 5 0.37 0.43 0.40

‘Stratum 1.37–5 m’ 9 0.44 0.38 0.41 6 0.57 0.47 0.52 7 0.56 0.46 0.51 2 0.34 0.30 0.32
‘Stratum 20–30 m’ 4 0.39 0.28 0.34 0 0.62 0.19 0.46 4 0.56 0.28 0.45 0 0.23 0.28 0.26

‘Stratum above 30 m’ 1 0.19 0.31 0.26 1 0.17 0.35 0.28 1 0.19 0.33 0.27 0 0.19 0.29 0.24
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Figure 9. Optimal segmentation of the optimal ‘H95′ metric (orange vector, overlaid on the ‘H95′ shown
in grayscale). Visual comparison with the FACTs dataset (Figure 2) indicates a good correspondence
between even-aged forest stands and image objects.

4.3. Validation

One hundred reference objects were manually delineated (Figures 10 and 11) to validate the
optimal segmentation results, as described in Section 3.4. This sample size corresponds to 8% of the
total number of image objects identified by the optimal segmentation (1182 objects in total, as reported
in Table 3), and the resulting reference dataset covers 16% of the surface of the study area. The reference
sample size is comparable with previous GEOBIA-based studies [27,54,61].
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Figure 10. Validation dataset: Reference objects delineated through visual interpretation of NAIP
imagery and LiDAR point clouds (left); and corresponding image objects of the optimal segmentation of
the ‘H95′ LiDAR metric (right). Even-aged forest stand (EAF) reference objects and their corresponding
image objects are shown in green, and uneven-aged forest stand (UAF) reference objects and their
corresponding image objects are shown in gray. A total of 100 reference objects were generated through
visual interpretation of NAIP imagery and LiDAR point clouds: 25 EAF (average area: ~23 ha) and 25
UAF (average area: ~158 ha) on each LiDAR dataset.
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Figure 11. Illustrative examples of the spatial relationship between visually interpreted reference
objects and corresponding image objects of the optimal segmentation of the ‘H95′ LiDAR metric.
The two top rows present examples of uneven-aged forest stands (UAF), and the two bottom rows
present examples of even-aged forest stands (EAF). Left column: Reference objects (red polygons) and
set of the corresponding image objects (gray polygons). Center column: Reference objects overlaid
on the ‘H95′ LiDAR metric shown in grayscale. Right column: Reference object and all image objects
(orange polygons) overlaid on 1 m spatial resolution NAIP imagery used to generate the validation
dataset, shown in true color.

The independent validation performed with the visually interpreted polygons representing
both EAF and UAF stands confirmed the good match between image objects and forest stands.
On EAF stands, in particular, in most cases there was a 1-to-1 correspondence between the EAF
reference objects and the set of corresponding image objects; whereas UAF reference objects were
generally undersegmented, and corresponded to several image objects (Figure 10). The validation
also showed that, in a few isolated cases, the ‘H95′ metric has an abnormal behavior on very recent
clearcuts, as in the example of Figure 11, third row, where a recently harvested stand is not visible in
the LiDAR raster. This is due to the specific definition of the ‘H95′ metric (Table 1): In the absence
of vegetation regrowth the majority of returns are classified as ‘ground’, and the 95th percentile of
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the non-ground returns corresponds to the height of isolated trees left standing for seedling after
the clearcut.

The area based dissimilarity metrics, reported in Table 5, indicate that the overall performance
(summarized by the D score) is very similar across the two datasets (DClear Creek= 0.26 and
DSelway = 0.27 when considering all objects), with consistently higher accuracy on EAF stands
(DClear Creek = 0.15 and DSelway = 0.16) than on UAF stands (DClear Creek = 0.37 and DSelway = 0.39).
This difference is largely due to the high rates of oversegmentation on UAF stands in both datasets
(OSClear Creek,UAF = 0.39 vs. OSClear Creek,EAF = 0.12; and OSSelway,UAF = 0.50 vs. OSSelway,EAF = 0.22).

Table 5. Area-based dissimilarity metrics calculated from the validation dataset presented in Figure 10:
Oversegmentation (OS), undersegmentation (US), summary score (D), modified oversegmentation
(OS∗), modified undersegmentation (US∗), and summary score (D∗).

Area Stands OS US D OS* US* D*

Clear Creek
All 0.25 0.26 0.26 0.18 0.27 0.23

UAF 0.39 0.35 0.37 0.24 0.37 0.31
EAF 0.12 0.18 0.15 0.12 0.18 0.15

Selway
All 0.36 0.15 0.27 0.21 0.14 0.18

UAF 0.50 0.21 0.39 0.22 0.21 0.21
EAF 0.22 0.08 0.16 0.20 0.08 0.15

As discussed in Section 3.4.2, the modified metrics (OS∗, US∗, D∗) represent the benchmark
level of error that could be achieve through the best possible post-processing of the segmentation.
The modified metrics indicate that post-processing has the potential to significantly reduce the areal
disagreements due to oversegmentation, especially over UAF stands (D∗Clear Creek,UAF = 0.31 vs.
DClear Creek,UAF = 0.37, D∗Selway,UAF = 0.21 vs. DSelway,UAF = 0.39).

5. Discussion

In the present paper we propose the integration in the same workflow of an object-based
unsupervised evaluation (which allows for the selection of the optimal parameters to automatically
segment an image) and an object-based supervised evaluation (which allows for the selection of
the best match between a segmentation and independently derived reference objects) to identify
objectively an optimal delineation output. Unsupervised methods favor automatic ranking of
multiple segmentations obtained by changing the parameters of an algorithm on the same input data,
without requiring any contribution from the operator, or any external datasets. They do not,
however, allow for ranking segmentations obtained on the same area from different input data,
as in the case of the LiDAR raster metrics examined in this paper, which reflect different structural
characteristics of the vegetation, as evident in Figure 3. Supervised evaluation methods instead
allow for ranking any segmentation—whether it is generated from the same image or not—but rely
entirely on reference data, whose generation is generally an expensive and time-consuming task [62].
As a consequence, supervised evaluation methods are generally employed only on relatively small
datasets [26]. The combination of these two standard object-based evaluation strategies, as proposed
in this paper, reduces considerably the amount of required reference data and increases the scope of a
reliable semi-automatic delineation to larger areas.

The application of the proposed methodology to LiDAR data demonstrates that a single LiDAR
raster metric, the ‘H95′ metric, can be used to delineate even-aged forest stands in a semi-automatic way.
In particular, the results show that forest stands harvested in the 1950s and 1960s can still be accurately
delineated (Table 4). This result is particularly significant, because it implies that LiDAR data can be
potentially used to reconstruct the disturbance history of a forest extending beyond the optical satellite
data record.
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The optimal segmentation was validated against a randomly selected reference dataset.
The reference objects were manually delineated by a skilled photo-interpreter, based on imagery
of higher resolution (1 m NAIP data) and richer thematic content (3D LiDAR point clouds) than
the 30 m LiDAR raster. While there is a degree of subjectivity, visually interpreted reference data
are commonly used for the validation of land cover and land cover disturbance satellite products
(e.g., [63,64]), and for the validation of GEOBIA outputs (e.g., [26,27,31,34,54,61]).

The independent validation confirmed the good overall match between image objects and visually
interpreted polygons, albeit with higher accuracy on EAF than on UAF forest stands. At least in part,
the low accuracy on UAF stands might be attributed to the lack of objective UAF stand definition,
and to the difficulty for the interpreter to consistently identify natural breaks between contiguous,
mature, uneven-aged forest stands. The validation also highlighted some limitations of the ‘H95′

metric. The optimal segmentation showed undersegmentation errors (e.g., Figure 11, third row) on
small stands recently (<10 year) harvested, where mature trees are left standing at regular intervals to
spread seeds (e.g., shelterwood cutting). At time of the LiDAR acquisition the majority of the young
regenerating seedlings have a height below 1.37 m (the cutoff used for the raster height metrics),
and the ‘H95′ metric therefore reflects the height of the mature trees left standing. We hypothesize that
the combined use of multiple LiDAR metrics (such as the ‘Stratum 20–30 m’ which ranked second in
the supervised evaluation) might overcome this particular issue.

Previous research to delineate structural or age-related forest stand types using object-based
techniques and LiDAR data (e.g., [2,10,11,31,34,35]) did not propose methodologies that could be
easily applied outside the original study areas, due to the complexity of the workflow (e.g., [10]),
to the exploitation of site-specific forest characteristics and to the small extent of the study areas
(e.g., [2,11,34,35]), and to the lack of objective evaluation protocols (e.g., [2,11]). The proposed two-stage
evaluation strategy is a general objective workflow, that could be easily replicated and adapted to
other study sites, to other data sources, and to delineate different features of the landscape. Overall,
we expect that the same ‘H95′ metric could be optimal, at the working resolution, in other areas
with similar species composition and with similar disturbance dynamics (such as most of the Pacific
Northwest of the United States), and that the optimal set of parameters of the MRS algorithm for each
area could be identified through an unsupervised selection procedure, hence without the need for
additional independent reference data. Additional validation would be required to verify whether
the same LiDAR metric could be also used for delineating forest stands resulting from disturbances
and management practices other than clearcuts. Future research will (1) evaluate a different set of
single or combined LiDAR metrics for segmentation (e.g., texture metrics, rumple index, local maxima
derived from the CHM); and (2) develop a rule-based fusion between segmentations generated from
complementary metrics and different harvest treatments, as some limitations in the detection of recent
disturbances has been observed after the independent validation was addressed.

6. Conclusions

This paper proposes a two-stage, semi-automatic evaluation strategy for object-based forest stand
delineation and implements it on two contiguous LiDAR datasets covering more than 54,000 ha in
the Clear Creek and Selway watersheds in Central Idaho. The paper was designed to address two
main objectives: (1) To integrate a straightforward and objective workflow for forest stand delineation
that can be easily replicated and adapted at regional scales; and (2) to evaluate the performance of
commonly used rasterized LiDAR metrics, such as ‘H95′ in this study, to identify in a semi-automatic
way the boundaries of relatively old even-aged forest stands.

With regards to the first objective, the proposed strategy allows the user to automatically select
the optimal set of MRS algorithm segmentation parameters to delineate image objects for each tested
LiDAR metric, and to identify the LiDAR metric that ensures the best match between image objects
(i.e., the segmentation) and a set of reference objects (i.e., the forest stands as independently delineated).
With regards to the second objective, the application of the methodology to LiDAR data demonstrates



Remote Sens. 2018, 10, 1622 21 of 24

that commonly used LiDAR raster metrics, namely distributional metrics of canopy height, can be
used to accurately delineate even-aged forest stands (>2 ha) in a semi-automatic way and that forest
stands older than 50 years can be identified at working resolution of 30 m. This is a particularly
significant result, considering that stand maps conventionally generated from change detection using
optical satellite data can only extend, in the best case, to the beginning of the Landsat MSS record
in 1972.

GEOBIA strategies to delineate forest stands at regional scales are promising to generate forest
stands maps ready to use, but generalized protocols are still required. The most effective way to
approach the delineation would depend on the adopted definition of a forest stand (e.g., based on
species composition, structure, etc.). In any case, robust evaluation strategies would be required
to assure a minimum quality on the final selected output. We proposed here a straightforward
and objective two-stage evaluation workflow to delineate forest stands defined in terms of age and
structural homogeneity. Our study shows that relatively old stands are accurately discriminated using
one single-date LiDAR raster metric, which is promising result not only to produce even-aged forest
stand maps but also to eventually characterize forest stands in terms of time since the last disturbance.
Additionally, this methodology can be adapted to address future study needs, such as to improve
stand delineation methods, or to map other geographic features of the landscape.
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