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Abstract: Remote sensing is an important means to monitor the dynamics of the earth surface. It is
still challenging for single-sensor systems to provide spatially high resolution images with high revisit
frequency because of the technological limitations. Spatiotemporal fusion is an effective approach
to obtain remote sensing images high in both spatial and temporal resolutions. Though dictionary
learning fusion methods appear to be promising for spatiotemporal fusion, they do not consider
the structure similarity between spectral bands in the fusion task. To capitalize on the significance
of this feature, a novel fusion model, named the adaptive multi-band constraints fusion model
(AMCFM), is formulated to produce better fusion images in this paper. This model considers structure
similarity between spectral bands and uses the edge information to improve the fusion results by
adopting adaptive multi-band constraints. Moreover, to address the shortcomings of the `1 norm
which only considers the sparsity structure of dictionaries, our model uses the nuclear norm which
balances sparsity and correlation by producing an appropriate coefficient in the reconstruction step.
We perform experiments on real-life images to substantiate our conceptual augments. In the empirical
study, the near-infrared (NIR), red and green bands of Landsat Enhanced Thematic Mapper Plus
(ETM+) and Moderate Resolution Imaging Spectroradiometer (MODIS) are fused and the prediction
accuracy is assessed by both metrics and visual effects. The experiments show that our proposed
method performs better than state-of-the-art methods. It also sheds light on future research.

Keywords: adaptive multi-band constraints; dictionary learning; sparse representation;
spatiotemporal fusion

1. Introduction

Remote sensing satellites are important tools for the monitoring of processes such as vegetation
and land cover changes on the earth surface [1–3]. Because of technological limitations in sensor
designs [4], compromises have to be made between spatial and temporal resolutions. For example,
Moderate Resolution Imaging Spectroradiometer (MODIS) can visit the earth once a day with 500-m
spatial resolution. As a comparison, the spatial resolution of Landsat Enhanced Thematic Mapper Plus
(ETM+) is 30 m, but its revisiting period is 16 days. Such a limitation restricts the application of remote
sensing in problems that need images high in both spatial and temporal resolutions. Spatiotemporal
reflectance fusion models [5] have thus been developed to fuse image data from different sensors to
obtain high spatiotemporal resolution images.
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The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [6] is a pioneering fusion
model based on a weighting method. This model uses neighboring pixels to compute the center pixel
at a point in time with a weighting function, and the weights are determined by spectral difference,
temporal difference and location distance. Furthermore, Zhu et al. [7] proposed an Enhanced Spatial
and Temporal Adaptive Reflectance Fusion Model (ESTARFM) based on a STARFM algorithm to
predict the surface reflectance of heterogeneous landscapes. Another improved STARFM method is
a Spatial Temporal Adaptive Algorithm for mapping Reflectance Change (STAARCH) [8], which is
designed to detect disturbance and changes in reflectance by using Tasseled Cap transformations.
However, performance of the weighting methods are constrained because linear combination smooths
out the changing terrestrial contents.

Another type of reflectance fusion method, known as dictionary learning methods, has been
proposed to overcome the shortcoming of the weighting methods. Dictionary-based methods that
use certain known dictionaries, such as wavelets and shearlets, have been proved to be efficient in
multisensor and multiresolution image fusion [9–11]. In remote sensing data analysis, Moigne et al. [12]
and Czaja et al. [13] proposed remote sensing image fusion methods based on wavelets and wavelet
packet, respectively. Shearlet transform is also used in a fusion algorithm in [14] because shearlets can
share the same optimality properties and enjoy similar geometrical properties. Using the capability
of dictionary learning and sparsity-based methods in the super resolution analysis, Huang et al. [15]
proposed a Sparse-representation-based Spatiotemporal Reflectance Fusion Model (SPSTFM) to
integrate sparse representation and reflectance fusion by establishing correspondences between
structures in high resolution images and their corresponding low resolution images through dictionary
pair and sparse coding. SPSTFM assumes that high and low resolution images of the same area have
the same sparse coefficients. Such assumption is, however, too restrictive [16]. Based on this idea,
Wu et al. [17] proposed the Error-Bound-regularized Semi-Coupled Dictionary Learning (EBSCDL)
model which assumes that the representation coefficients of the image pair have a stable mapping and
coefficients of the dictionary pair have perturbations in the reconstruction step. Attempts have been
made to improve the performance of the SCDL based models. For examples, Block Sparse Bayesian
Learning for Semi-Coupled Dictionary Learning (BSBL-SCDL) [18] employs the structural sparsity
of the sparse coefficients as a priori knowledge and Compressed Sensing for Spatiotemporal Fusion
(CSSF) [19] considers explicitly the down-sampling process within the framework of compressed
sensing for reconstruction. In comparison with the weighting methods, the advantage of the
dictionary-learning-based methods is that they retrieve the hidden relationship between image pairs
from the sparse coding space to better capture structure changes.

Besides the aforementioned methods, some researchers employed other approaches to fuse
multi-source data. Unmixing techniques have been suggested for spatiotemporal fusion because of
their ability to reconstruct images with high spectral fidelity [20–24]. Considering the mixed-class
spectra within a coarse pixel, Xu et al. [25] proposed the Class Regularized Spatial Unmixing (CRSU)
model. This method is based on the conventional spatial unmixing technique but is modified to include
prior class spectra estimated by the known image pairs. To provide a formal statistical framework for
fusion, Xue et al. [26] proposed Spatiotemporal Bayesian Data Fusion (STBDF) that makes use of the
joint distribution to capture implicitly the temporal changes of images for the estimation of the high
resolution image at a target point in time.

Considering structure similarity in spectral bands, structure information has been employed in
pan-sharpening and image fusion. Shi et al. [27], for example, proposed a learning interpolation
method for pan-sharpening by expanding sketch information of the high-resolution panchromatic
(PAN) image which contains the structure features of the PAN image. Glasner et al. [28] verified
that many structures in a natural image are similar at the same and different scales. Inspired by this,
a self-learning approach was proposed by Khateri et al. [29] which uses similar structures at different
levels to pan-sharpen the low resolution multi-spectral images. In multi-modality image fusion,
Zhu et al. [30] proposed a method which decomposes images into cartoon and texture components,
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and preserves the structure information of two components based on spatial-based method and sparse
representation, respectively.

However, none of these spatiotemporal fusion methods consider the structure similarity between
spectral bands in the fusion procedure. Although different bands have different reflectance ranges,
the edge information is still similar [31]. Obviously, a reconstruction model can have a better
performance if such information can be effectively used to predict the unknown high resolution
image. Otherwise, the dictionary pair obtained by the training image pair are inefficient to predict the
unknown images because of the lack of information for the target time. This can be explained from the
experience in machine learning in which the `1 norm is too restrictive in encoding the unknown data
in the prediction process because it only uses the sparsity structure of the dictionary [32,33]. Therefore,
the reconstruction model needs a replacement of the `1 norm to reduce the impact of insufficient
information and to improve the representation ability of the dictionary pair.

We propose a new model in this paper to enhance spatiotemporal fusion performance. Our model
uses the edge information in different bands via adaptive multi-band constraints to improve the
reconstruction performance. To overcome the disadvantage of the `1 norm, the nuclear norm is
adopted as the regularization term to increase the efficiency of the learnt dictionary pair. Nuclear norm
considers not only the sparsity but also the coordination in producing a suitable coefficient that can
harmonize the sparse and collaborative representations adaptively [32,33].

Overall, the main contributions of this work can be summarized as follows.

• The multi-band constraints are employed to reinforce the structure similarity of different bands in
spatiotemporal fusion.

• Considering the different structure similarity between two bands, the adaptive regularization
parameters are proposed to determine the importance of each multi-band constraint adaptively.

• The nuclear norm is employed to replace the `1 norm in the reconstruction model because the
nuclear norm considers both sparsity and correlation of the dictionaries and can overcome the
disadvantage of the `1 norm.

The remainder of this paper is organized as follows. Our method for spatiotemporal fusion,
called adaptive multi-band constraints fusion model (AMCFM), is proposed in Section 2. Section 3
discusses the experiments carried out to assess the effectiveness of the AMCFM and four state-of-the-art
methods in terms of statistics and visual effects. We then conclude the paper with a summary and
direction for future research in Section 4.

2. Methodology

2.1. Problem Definition

In the following, MODIS images are selected as low resolution images and Landsat ETM+ images
are selected as high resolution images. As shown in Figure 1, our spatiotemporal fusion model requires
three low resolution images M1, M2 and M3, and two high resolution images L1 and L3. The high
resolution image L2 is the target image that we want to predict. Let Lij (Lij = Li − Lj) and Mij
(Mij = Mi −Mj) be the high and low resolution difference images between ti and tj (i, j ∈ {1, 2, 3}),
respectively. We assume that changes of remote sensing images between two points in time are linear.
For effectiveness, the dictionary pair Dl and Dm is trained by the difference image pair L31 and M31 [15].
Then, the high resolution difference image L21 can be produced by using the dictionary pair to encode
the corresponding low resolution difference image M21. L32 can be obtained in the same way. Finally,
the high resolution image at time t2 can be predicted as follows:

L2 = W21 ∗ (L1 + L21) + W32 ∗ (L3 − L32). (1)

The weights W21 and W32 we used are same as those in [19], which take the average of the two
predicted difference images.
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Figure 1. Input images and the target image for spatiotemporal fusion (t1 < t2 < t3). Three low
resolution images M1, M2 and M3, and two high resolution images L1 and L3 are known. The high
resolution image L2 is the target image to be predicted.

2.2. Dictionary Learning Fusion Model

As mentioned above, the conventional dictionary learning fusion models are usually comprised
of two steps: the dictionary pair training step and the reconstruction step. The whole process is
performed on each band separately. Here, we show the mathematical formulation of these two steps
in SPSTFM [15], which is the initial dictionary learning model.

• Dictionary pair training step:

In the training step, the difference image pair, L31 and M31, is used to train the high resolution
dictionary Dl and the corresponding low resolution dictionary Dm as follows:

[Dl , Dm] = arg min
Dl ,Dm

∥∥∥Y − Dl A
∥∥∥2

2
+
∥∥∥X − Dm A

∥∥∥2

2
+ λ

∥∥∥A
∥∥∥

1
, (2)

where Y and X are the column combination of the lexicographically stacked image patches,
sampled randomly from L31 and M31, respectively. A is the column combination of the
representation coefficients corresponding to every column in Y and X, and λ is the regularization
parameter. We adopt the K-SVD (K is the abbreviation for K-means and SVD is the abbreviation
for Singular Value Decomposition) lgorithm [34] to solve for Dl and Dm in Equation (2).

• Reconstruction step:

Then, Dm is used to encode each patch of M21 and the sparse coding coefficient α is obtained by
solving the optimization problem:

α∗ = arg min
α

1
2

∥∥∥m21 − Dmα
∥∥∥2

2
+ λ

∥∥∥α
∥∥∥

1
, (3)

where m21 is a patch of M21. The corresponding patch of the high resolution image can be
produced by

l21 = Dlα
∗. (4)

Then, all patches of L21 are merged to get the high resolution image L21. L32 can be obtained in
the same way and the target image L2 can be predicted through Equation (1).

2.3. Adaptive Multi-Band Constraints Fusion Model

Our model uses the same strategy for dictionary pair training and focuses on the improvement of
the reconstruction step. We propose the following model for spatiotemporal fusion by replacing the `1
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norm with the nuclear norm ‖ · ‖∗ and incorporating the multi-band constraints. The reconstruction
formulation is given as follows:

[α∗N , α∗R, α∗G] = arg min ∑
c∈{N,R,G}

1
2

∥∥∥mc − Dmc αc

∥∥∥2

2
+ λ

∥∥∥Dmc Diag(αc)
∥∥∥
∗

+τNR

∥∥∥SDlN αN − SDlR αR

∥∥∥2

2

+τRG

∥∥∥SDlR αR − SDlG αG

∥∥∥2

2

+τGN

∥∥∥SDlG αG − SDlN αN

∥∥∥2

2
, (5)

where λ, τNR, τRG and τGN are the regularization parameters. ‖M‖∗ is the nuclear norm of M that is
the sum of all the singular values of matrix M. For a vector v, Diag(v) represents a diagonal matrix
whose diagonal elements are the corresponding elements of the vector v. S is a high-pass detector
filter. Here, we choose the two-dimensional Laplacian operator. The subscripts N, R and G mean the
near-infrared (NIR), red and green band, respectively.

The dictionary pair Dl and Dm is trained by the difference images L31 and M31 which do not
contain sufficient information of the images at time t2. When reconstructing L21 or L32, if the model
only uses the `1 norm regularization, then the performance are unsatisfactory. It is more reasonable
to integrate sparsity and correlation of the dictionaries. The nuclear norm term is just the kind of
regularization that can adaptively balance sparsity and correlation via a suitable coefficient. As the
property shown in [33,35], ∥∥∥αc

∥∥∥
2
≤
∥∥∥Dmc Diag(αc)

∥∥∥
∗
≤
∥∥∥αc

∥∥∥
1

, (6)

where all columns of Dmc have unit norm. When the column vectors of Dmc are orthogonal,∥∥∥Dmc Diag(αc)
∥∥∥
∗

is equal to
∥∥∥αc

∥∥∥
1
. When the column vectors of Dmc are highly correlated,∥∥∥Dmc Diag(αc)

∥∥∥
∗

will be close to
∥∥∥αc

∥∥∥
2

[35]. Generally, remote sensing images in the dictionary Dmc

are neither too independent nor too correlated because the test images and training images can contain
high correlative information (i.e., stable land-cover) and independent information (i.e., land-cover
change). Therefore, as shown in Equation (6), our model can benefit from both the `1 norm and the `2

norm. The advantage of the nuclear norm is that the nuclear norm can capture the correlation structure
of the training images which the `1 norm cannot.

The last three terms in the model are the multi-band regularization terms. Taking the NIR band as
an example, DlN αN denotes a high resolution patch of the NIR band and SDlN αN stands for the edge
in the patch. These terms make the sparse codes (The codes may not be sparse based on the nuclear
norm regularization, but, for convenience and without confusion, we still call them sparse codes.) in
different bands no longer independent and reinforce the structure similarity of different bands.

Nevertheless, the nuclear norm regularization and multi-band regularization make it more
complicated to solve the model. In Section 2.5, we propose the method to get a solution efficiently.

2.4. Adaptive Parameters between Bands

The ranges of reflectance in different bands are different in remote sensing images. In natural
images, the range of the three channels is [0, 255]. Table 1 implicitly shows the range differences of
three bands in terms of mean and standard deviation. Obviously, the structures are more similar
when the means and standard deviations are closer. Based on this rationale, we propose an adaptive
regularization parameter as follows:

τNR = γ · 10
− min(m̄N+σN ,m̄R+σR)

max(m̄N+σN ,m̄R+σR) , (7)
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where m̄c is the mean value of band c and σc is the standard deviation of band c; γ is a parameter to
control the magnitude; and τRG and τGN can be obtained by the definition as well.

Table 1. Mean and standard deviation in three bands of a multi-band image.

Image 1 Image 2 Image 3
Index

NIR Red Green NIR Red Green NIR Red Green

Mean Value 0.2212 0.0378 0.0483 0.2113 0.0345 0.0476 0.2320 0.0355 0.0487
Standard Deviation 0.0546 0.0105 0.0097 0.0383 0.0141 0.0121 0.0413 0.0108 0.0084

This parameter estimates the distribution of the reflectance values between two bands and
produces a suitable parameter adaptively. When two bands have similar reflectance values,
the parameter is close to γ. When the difference between two bands increases, the parameter decreases
exponentially. The more similar two bands are, the more important a role the corresponding term
plays in the model. This property fits such intuitive perception.

2.5. Optimization of the AMCFM

In this section, we solve the reconstruction model. For the optimization, a simplification is made
first. We introduce the following vectors and matrices:

α =

αN
αR
αG

 , m =

mN
mR
mG

 , Dm =

 DmN 0 0
0 DmR 0
0 0 DmG

 ,

A =

 (τGN + τNR)DT
lN

STSDlN −τNRDT
lN

STSDlR 0
0 (τNR + τRG)DT

lR
STSDlR −τRGDT

lR
STSDlG

−τGN DT
lG

STSDlN 0 (τRG + τGN)DT
lG

STSDlG

 ,

where α and m are concatenations of the sparse coefficients and low resolution image patches,
respectively. Dm is a dictionary that contains low resolution dictionaries of three bands in its diagonals.
We also define B as:

B =
1
2

DT
mDm + A. (8)

Then, Equation (5) can be simplified as follows:

α∗ = arg min
α

αT Bα−mT Dmα + λ
∥∥∥DmDiag(α)

∥∥∥
∗

. (9)

Here, we use the alternating direction method of multipliers (ADMM) [36–38] algorithm to
approximate the optimal solution of Equation (9). The optimization problem can be written as follows:

min
α

αT Bα−mT Dmα + λ
∥∥∥Z
∥∥∥
∗

s.t. DmDiag(α)− Z = 0, (10)

where Z is the dual variable in the ADMM algorithm. The augmented Lagrangian function L of the
optimization problem is given as

L = αT Bα−mT Dmα + λ
∥∥∥Z
∥∥∥
∗
+

ρ

2

∥∥∥DmDiag(α)− Z + µ
∥∥∥2

F
, (11)
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where ρ is a positive scalar and µ is a scaled variable. The ADMM consists of the following iterations:
αk+1 = arg minα αT Bα−mT Dmα + ρ

2

∥∥∥DmDiag(α)− Zk + µk

∥∥∥2

F

Zk+1 = arg minZ λ
∥∥∥Z
∥∥∥
∗
+ ρ

2

∥∥∥DmDiag(αk+1)− Z + µk

∥∥∥2

F
µk+1 = µk + DmDiag(αk+1)− Zk+1.

(12)

To minimize the augmented Lagrangian function, we solve each of the subproblems in
Equation (12) by fixing the other two variables alternatively. For the step of updating αk+1, αk+1
can be deduced as follows:

αk+1 = arg min
α

ρ

2
(αTDiag(diag(DT

mDm))α− 2(diag(ZT Dm + µT Dm))
Tα)

+ αT Bα−mT Dmα

= arg min
α

αT(
ρ

2
Diag(diag(DT

mDm)) + B)α

− (ρ(diag(ZT Dm + µT Dm))
T + mT Dm)α

= (C + CT)−1(ρ(diag(ZT Dm + µT Dm))
T + mT Dm), (13)

where C = ρ
2 Diag(diag(DT

mDm)) + B. For a matrix M, diag(M) represents a vector whose ith element
is the ith diagonal element of the matrix M.

For the step of updating Zk+1, Zk+1 can be calculated by the singular value thresholding
operator [39] as follows:

Zk+1 = arg min
Z

1
2

∥∥∥Z− (DmDiag(αk+1) + µk)
∥∥∥2

F
+

λ

ρ

∥∥∥Z
∥∥∥
∗

= D λ
ρ
(DmDiag(αk+1) + µk), (14)

where D λ
ρ

is the singular value shrinkage operator, which is defined as follows:

D λ
ρ
(X) := UD λ

ρ
(Σ)V∗, D λ

ρ
(Σ) = diag({max(σi −

λ

ρ
, 0)}), (15)

where λ
ρ is a positive scalar, UΣV∗ is the singular value decomposition of a matrix X, σi is the ith

positive singular value of X, and max(σi − λ
ρ , 0) =

σi − λ
ρ , if σi − λ

ρ ≥ 0,

0, if σi − λ
ρ < 0.

Now, we use UΣV∗ to

denote the singular value decomposition of (DmDiag(αk+1) + µk) and use σi to denote the ith positive
singular value of (DmDiag(αk+1) + µk). Then,

Zk+1 = UD λ
ρ
(Σ)V∗ = Udiag({max(σi −

λ

ρ
, 0)})V∗. (16)

The implementation details of the whole reconstruction procedure based on the ADMM algorithm
can be summarized in Algorithm 1.
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Algorithm 1 Reconstruction Procedure of the Proposed Method

1: Input: The regularization parameter λ, learnt dictionary pair Dl and Dm, low resolution difference

image and initial parameters α0, Z0, µ0, ρ.
2: Preprocessing: Normalize the low resolution difference image, then segment the low resolution

difference image into patches M = {mi}N
i=1 with a 7 × 7 patch size and a four-pixel overlap in

each direction.
3: Calculate: The structure similarity parameters τNR, τRG and τGN .
4: Repeat:

(1) Update the sparse coefficient αk+1 as:

αk+1 = (C + CT)−1(ρ(diag(ZT Dm + µT Dm))T + mT Dm).

(2) Update Zk+1 as:

Zk+1 = Udiag({max(σi − λ
ρ , 0)})V∗.

(3) Update µk+1 as:

µk+1 = µk + DmDiag(αk+1)− Zk+1.

Repeat the above procedure until the convergence criterion
∥∥∥DmDiag(α)− Z

∥∥∥
F
≤ ε is met or the

pre-specified number of iterations is reached and get the desired sparse coefficient α∗.
5: Output: The corresponding patch of the high resolution image can be reconstructed as l = Dlα

∗

and the predicted image L can be obtained by merging all patches.

2.6. Strategy for More Bands

The proposed method considers the structure similarity of different bands and uses pairwise
comparisons of the NIR, red and green bands. It should be noted that the relationship between n and m
is quadratic (m = n2−n

2 ), where n and m represent the number of bands and the number of multi-band
regularization terms, respectively. When n increases, the model will be much more complicated and
difficult to solve.

Table 2 shows that adjacent bands have consistent bandwidths. This property indicates that
structures of adjacent bands are more similar than those of the other pairs. It is thus reasonable to use
adjacent bands constraints instead of pairwise comparisons of all bands. Otherwise, the number of
combinations of the adjacent bands will get to be smaller and m will become linear to n (m = n− 1).
Therefore, to efficiently extend it to more bands, we use the strategy that only considers structure
similarity of two adjacent bands. This smaller model (AMCFM-s) can be reformulated as follows:

[αN , αR, αG] = arg min ∑
c∈{N,R,G}

1
2

∥∥∥mc − Dmc αc

∥∥∥2

2
+ λ

∥∥∥Dmc αc

∥∥∥
∗

+τNR

∥∥∥SDlN αN − SDlR αR

∥∥∥2

2

+τRG

∥∥∥SDlR αR − SDlG αG

∥∥∥2

2
. (17)

The procedure of solving AMCFM-s is the same as that of AMCFM. Details can be found in
Section 2.5.



Remote Sens. 2018, 10, 1646 9 of 18

Table 2. Bandwidth of Landsat and MODIS.

Band Name
Landsat MODIS

Band Number Bandwidth (nm) Band Number Bandwidth (nm)

Blue 1 450–520 3 459–479
Green 2 530–610 4 545–565
Red 3 630–690 1 620–670

Near-Infrared 4 780–900 2 841–876
Middle-Infrared 5 1550–1750 6 1628–1652
Middle-Infrared 7 2090–2350 7 2105–2155

3. Experiments

The performance of our proposed method is compared to those of the four state-of-the-art methods
for evaluation. ESTARFM [7] is a weighting method and CRSU [25] is an unmixing-based method.
The other two are dictionary learning methods, named SPSTFM [15] and EBSCDL [17].

All programs are run in Windows 10 system (Microsoft, Redmond, Washington, DC, USA) and the
processor is Intel Core i7-6700 3.40 GHz (Intel, Santa Clara, CA, USA). All of these fusion algorithms
are coded in Matlab 2015a (MathWorks, Natick, MA, USA) except the ESTARFM, which is in IDL 8.5
(Harris Geospatial Solutions, Broomfield, CO, USA).

3.1. Experimental Scheme

In this experiment, we use the data acquired from the Boreal Ecosystem-Atmosphere Study
(BOREAS) southern study area on 24 May, 11 July and 12 August in 2001, respectively. The products
from Landsat ETM+ and MODIS (MOD09GHK) are selected as the source data for fusion. The Landsat
image on 11 July 2001 is set as the target image for prediction. All the data are registered for fine
geographic calibration.

In the fusion process, we focus on three bands: NIR, red and green. The size of the test
images is 300 × 300. Before the test, we up-sample the MODIS images to the same resolution as
the Landsat images via bi-linear interpolation because the spatial resolutions of these two source
images are different.

3.2. Parameter Settings and Normalization

The parameters of AMCFM are set as follows. The dictionary size is 256, the patch size is 7 × 7,
the overlap of patches is 4, the number of training patches is 2000, λ is 0.15, α0 is 0, Z0 and µ0 are both
0, and ρ is 0.1. All the comparative methods keep their original parameter settings.

Normalization can speed up the computation time and has an effect on the fusion results. As a
preprocessing step, the high and low resolution images are normalized as follows:

L =
L− L̄

σL
, M =

M − M̄
σM

, (18)

where L̄ is the mean value of image L and σL is the standard deviation of image L.

3.3. Quality Measurement of the Fusion Results

Several metrics have been used to evaluate the fusion results by different methods. These metrics
can be classified into two types, namely the band quality metrics and the global quality metrics.

We employ three assessment metrics, namely the root mean square error (RMSE), average absolute
difference (AAD) and correlation coefficient (CC) to assess the performance of the algorithms in each
band. The ideal result is 0 for RMSE and AAD, while it is 1 for CC.

Three other metrics are adopted to evaluate the global performance, including relative average
spectral error (RASE) [40], Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS) [41] and
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Q4 [42]. The mean RMSE (mRMSE) of three bands is also used as a global index. The ideal result is
0 for mRMSE, RASE and ERGAS, while it is 1 for Q4. It should be noted that Q4 is defined for four
spectral bands. For our comparisons, the real part of a quaternion is set to 0.

3.4. Results

Tables 3–5 show the digital values of these methods in each band. All these methods can
reconstruct the target high resolution image. ESTARFM has a good performance in the red band.
CRSU performs well in the red band and green band of image 2, but, in most cases, this method
has undesirable results. SPSTFM and EBSCDL have similar results and EBSCDL produces slightly
higher quality in these three images. AMCFM and AMCFM-s produce the best results for NIR band.
Moreover, AMCFM has the best or the second best results in almost all metrics, showing the stability
and efficiency in its performance.

Table 3. Band quality metrics in image 1.

RMSE AAD CC
Approaches

NIR Red Green NIR Red Green NIR Red Green

ESTARFM 0.0177 0.0049 0.0043 0.0133 0.0039 0.0033 0.9553 0.9102 0.8951
CRSU 0.0286 0.0099 0.0071 0.0217 0.0084 0.0059 0.9050 0.7670 0.7975

SPSTFM 0.0157 0.0051 0.0040 0.0121 0.0040 0.0031 0.9717 0.8935 0.9148
EBSCDL 0.0157 0.0051 0.0040 0.0120 0.0040 0.0031 0.9721 0.8938 0.9152
AMCFM 0.0152 0.0050 0.0039 0.0118 0.0039 0.0030 0.9755 0.8979 0.9163

AMCFM-s 0.0154 0.0050 0.0039 0.0119 0.0039 0.0030 0.9743 0.8978 0.9158

RMSE, root mean square error; AAD, average absolute difference; CC, correlation coefficient.

Table 4. Band quality metrics in image 2.

RMSE AAD CC
Approaches

NIR Red Green NIR Red Green NIR Red Green

ESTARFM 0.0201 0.0109 0.0102 0.0133 0.0046 0.0045 0.8678 0.6488 0.5766
CRSU 0.0284 0.0120 0.0108 0.0215 0.0065 0.0054 0.7330 0.5436 0.4933

SPSTFM 0.0193 0.0110 0.0102 0.0125 0.0051 0.0044 0.8696 0.6508 0.5736
EBSCDL 0.0193 0.0110 0.0102 0.0125 0.0051 0.0044 0.8704 0.6515 0.5746
AMCFM 0.0189 0.0110 0.0102 0.0122 0.0051 0.0044 0.8756 0.6525 0.5730

AMCFM-s 0.0188 0.0110 0.0102 0.0121 0.0051 0.0044 0.8789 0.6509 0.5706

Table 5. Band quality metrics in image 3.

RMSE AAD CC
Approaches

NIR Red Green NIR Red Green NIR Red Green

ESTARFM 0.0194 0.0048 0.0049 0.0136 0.0036 0.0035 0.9136 0.8998 0.8366
CRSU 0.0285 0.0093 0.0064 0.0224 0.0073 0.0044 0.7965 0.6968 0.7251

SPSTFM 0.0165 0.0059 0.0040 0.0122 0.0044 0.0030 0.9276 0.8480 0.8859
EBSCDL 0.0164 0.0059 0.0040 0.0121 0.0044 0.0030 0.9280 0.8483 0.8861
AMCFM 0.0161 0.0057 0.0039 0.0120 0.0042 0.0029 0.9330 0.8583 0.8883

AMCFM-s 0.0162 0.0057 0.0040 0.0121 0.0042 0.0029 0.9324 0.8584 0.8878

The global metrics of different methods are shown in Tables 6–8. AMCFM has the best global
performance in all three images, except for Q4 in image 2 and ERGAS in image 3. Image 1 is best
captured by our proposed model with a noticeable performance in all four metrics. The outstanding
performance of AMCFM is attributed to its improved performance in the NIR band.
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Table 6. Global quality metrics in image 1.

Approaches mRMSE RASE ERGAS Q4

ESTARFM 0.0090 10.6579 0.6155 0.9515
CRSU 0.0152 17.5449 1.1343 0.8670

SPSTFM 0.0083 9.5958 0.6013 0.9628
EBSCDL 0.0083 9.5662 0.6002 0.9631
AMCFM 0.0080 9.2880 0.5866 0.9656

AMCFM-s 0.0081 9.4056 0.5884 0.9641

RASE, relative average spectral error; ERGAS, Erreur Relative Globale Adimensionnelle de
Synthèse.

Table 7. Global quality metrics in image 2.

Approaches mRMSE RASE ERGAS Q4

ESTARFM 0.0137 14.7738 1.3645 0.8251
CRSU 0.0171 19.3090 1.5131 0.6519

SPSTFM 0.0135 14.4394 1.3702 0.8074
EBSCDL 0.0135 14.4177 1.3686 0.8080
AMCFM 0.0134 14.2524 1.3644 0.8113

AMCFM-s 0.0133 14.1951 1.3671 0.8116

Table 8. Global quality metrics in image 3.

Approaches mRMSE RASE ERGAS Q4

ESTARFM 0.0097 11.2841 0.6511 0.9025
CRSU 0.0147 16.8017 1.0984 0.7556

SPSTFM 0.0088 9.8227 0.6849 0.9117
EBSCDL 0.0088 9.8013 0.6840 0.9120
AMCFM 0.0086 9.5761 0.6652 0.9159

AMCFM-s 0.0086 9.6288 0.6658 0.9148

Figures 2 and 3 compare the target (true) Landsat images with the images predicted by
ESTARFM, CRSU, SPSTFM, EBSCDL, AMCFM and AMCFM-s. We use NIR-red-green band as
the red-green-blue-band composite to show the images. These images are displayed with an ENVI 5.3
(Harris Geospatial Solutions, Broomfield, Colorado, United States) 2% linear enhancement.

All these fusion algorithms have the capability to reconstruct the main structure and details
of the target image. It appears that the colors of the dictionary learning methods are visually more
similar to the true Landsat image than the weighting method and unmixing-based method. The details
captured by AMCFM are more prominent than those captured by SPSTFM and EBSCDL, which can be
observed in the two-times enlarged red box in the images. Overall, our proposed method has the best
performance in visualization.

Figures 4–6 display the 2D scatter plots of NIR, red and green band of image 1. ESTARFM
performs slightly better than the other methods in the red band. This result is consistent with the
statistics in Table 3. However, in the NIR and green band, it is obvious that dictionary learning
methods outperform the weighting method and unmixing-based method because scatter plots of
ESTARFM and CRSU are more dispersed. The scatter plots of our proposed methods, AMCFM and
AMCFM-s, are closer to the 1-1 line than the other methods, indicating that using the edge information
can actually improve fusion performance, especially in the NIR band. In general, Figures 4–6 show
that our proposed methods reconstruct images closest to the true Landsat image.
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Figure 2. Comparisons between the true image 1 and images reconstructed by different fusion
methods. (a) MODIS (Moderate Resolution Imaging Spectroradiometer); (b) true Landsat image;
(c) ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model); (d) CRSU (Class
Regularized Spatial Unmixing); (e) SPSTFM (Sparse-representation-based Spatiotemporal Reflectance
Fusion Model); (f) EBSCDL (Error-Bound-regularized Semi-Coupled Dictionary Learning); (g) AMCFM
(adaptive multi-band constraints fusion model); (h) AMCFM-s.

Figure 3. Comparisons between the true image 2 and images reconstructed by different fusion methods.
(a) MODIS; (b) true Landsat image; (c) ESTARFM; (d) CRSU; (e) SPSTFM; (f) EBSCDL; (g) AMCFM;
(h) AMCFM-s.
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Figure 4. Scatter plots of NIR band of image 1. Abscissa is the true reflectance and ordinate is the
predicted reflectance.

Figure 5. Scatter plots of red band of image 1. Abscissa is the true reflectance and ordinate is the
predicted reflectance.
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Figure 6. Scatter plots of green band of image 1. Abscissa is the true reflectance and ordinate is the
predicted reflectance.

4. Discussion

Although the model performs well in the experiments, there still exists some questions to be
discussed. Therefore, more experiments are performed to answer these questions.

4.1. Which Condition Is Better for AMCFM

Tables 6–8 show that image 1 best fits our model. This can be explained by the level of details in
Table 9. We employ “ StandardDeviation

Mean ” to represent the level of details of a target image as in [19]. It is
clear that image 1 has the highest level of details in NIR band and the most similar levels of details
in the three bands. Therefore, more structure similarity information can be captured to improve the
fusion results. When there is a large divergence in a certain band, such as the red band in image 2,
the results of the dictionary learning methods in this band are unsatisfactory. Under this situation,
the ESTARFM performs better in red band.

Table 9. Level of details in a target image.

Image 1 Image 2 Image 3

NIR Red Green NIR Red Green NIR Red Green
StandardDeviation

Mean 0.2468 0.2777 0.2008 0.1812 0.4087 0.2542 0.1780 0.3042 0.1725

4.2. Computational Cost

Computational cost is an important factor in practical application. Table 10 records the running
time of all algorithms in image 1. It shows that SPSTFM has the fastest running speed. EBSCDL
is time-consuming because the algorithm models the relationship between high and low resolution
patches by a mapping function. AMCFM is a little slower than EBSCDL because of the complexity
of the ADMM algorithm. However, for the improvement in results obtained, the slightly increased
running time is acceptable. To accelerate the computation, an alternative approach can be designed to
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solve the reconstruction model efficiently, or the program can be coded with Graphics Processing Unit
(GPU) support for parallel running in the future work.

Table 10. Computational cost (in seconds).

Time ESTARFM CRSU SPSTFM EBSCDL AMCFM AMCFM-s

training - - 29 731 29 29
predicting 103 52 8 101 948 945

total 103 52 37 842 977 974

4.3. Parameters

The parameters of the multi-band constraints determine the importance of the corresponding
terms in the fusion model and the scalar γ affects the value of the parameter τ directly. In order to find
a suitable γ, Figure 7 depicts how Q4 changes with respect to γ. Q4 is an index which encapsulates
both spectral and radiometric measurements of the fusion result. Thus, we choose it to reflect the
fusion results. A larger value of Q4 means a better fusion performance. When γ is smaller than 10,
the performance of AMCFM evidently improves with the increase of γ. However, Q4 hardly increases
when γ is larger than 10. Therefore, we set γ to 10.

2 4 6 8 10 12 14 16 18 20

0.960

0.961

0.962

0.963

0.964

0.965

0.966

0.967

γ

Q
4

Figure 7. Relationship between Q4 and γ.

5. Conclusions and Future Work

In this paper, we have proposed a novel dictionary learning fusion model, called AMCFM.
This model considers the structure similarity between bands via adaptive multi-band constraints.
These constraints essentially enforce the similarities of the edge information across bands in high
resolution patches to improve the fusion performance. Moreover, different from existing dictionary
learning models which only emphasize on sparsity, we use the nuclear norm as the regularization term
to represent both sparsity and correlation. Therefore, our model can reduce the impact of inefficient
dictionary pair and improve the representation ability of the dictionary pair. Comparing with four
state-of-the-art fusion methods in metrics and visual effects, the experimental results support our
proposed model in the improvements of image fusion. Although our model is slower than the other two
dictionary learning methods in this empirical analysis because of the complexity of the optimization
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algorithm, the fusion results obtained from our model are improved indeed. One may wonder whether
it is justifiable to achieve a slight improvement on the expense of an increase in computational time.
Our argument is that, on a theoretical basis, our model is more reasonable and appealing than SPSTFM
and EBSCDL because it capitalizes on the structure information and correlation of dictionaries for
image fusion. Such advantages will be more evident when structure similarity increases.

However, there remains some room for improvement. Firstly, the `2 norm loss term assumes that
noise is an i.i.d. Gaussian. We can consider the use of other noise hypotheses, such as i.i.d. Gaussian
mixture and non-i.i.d noise structure, to improve the fusion results. Secondly, the computation cost
of the proposed method is high because of the complexity of the ADMM algorithm. To reduce the
computation time, an alternative approach can be designed to solve the reconstruction model efficiently
for practical applications. To analyze hyperspectral data efficiently, dimension reduction methods
might need to be incorporated into the fusion process.
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