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Abstract: This study aims to detect coastline changes using temporal synthetic aperture radar (SAR)
images for the state of Kelantan, Malaysia. Two active images, namely, RADARSAT-1 captured in
2003 and RADARSAT-2 captured in 2014, were used to monitor such changes. We applied noise
removal and edge detection filtering on RADARSAT images for preprocessing to remove salt and
pepper distortion. Different segmentation analyses were also applied to the filtered images. Firstly,
multiresolution segmentation, maximum spectral difference and chessboard segmentation were
performed to separate land pixels from ocean ones. Next, the Taguchi method was used to optimise
segmentation parameters. Subsequently, a support vector machine algorithm was applied on the
optimised segments to classify shorelines with an accuracy of 98% for both temporal images. Results
were validated using a thematic map from the Department of Survey and Mapping of Malaysia.
The change detection showed an average difference in the shoreline of 12.5 m between 2003 and
2014. The methods developed in this study demonstrate the ability of active SAR sensors to map and
detect shoreline changes, especially during low or high tides in tropical regions where passive sensor
imagery is often masked by clouds.
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1. Introduction

A coastline is defined as the boundary between land and water. It is an important and dynamic
linear feature [1]. An accurate delineation of coastline can be used in coastal zone management and
planning. A large percentage of the world’s population lives in coastal areas. Hence, these areas are
under intense pressure from urban growth, industry and tourism [2]. A prerequisite for sustainable
management of these environmentally sensitive areas is the availability of accurate and up-to-date
information on the status and extent of change. For countries with large coastal areas, such as Malaysia,
nautical products are useful sources of such information for military management and coastal zone
management and planning [3].

An active radar product interacts differently with surface features from passive optical
imagery [4], and it can also penetrate through clouds [5]. Radar imagery provides a large amount
of useful information in terms of structure and shape rather than surface reflectance [6,7]. Therefore,
they are valuable for many applications, such as disaster and natural resource management [3,8].
The information stored in multiple SAR polarisations may help reduce uncertainties in water
delineation, which needs an optimised classification method other than single band image

Remote Sens. 2018, 10, 1705; doi:10.3390/rs10111705 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-9863-2054
https://orcid.org/0000-0002-7690-8440
https://orcid.org/0000-0002-9581-9005
http://www.mdpi.com/2072-4292/10/11/1705?type=check_update&version=1
http://dx.doi.org/10.3390/rs10111705
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1705 2 of 18

processing [9]. Any developed and soft coastlines, such as Peninsula lands, always have a continuous
demand for an up-to-date, accurate and detailed map of the coastline [2]. Generally speaking, beaches
have a dynamic change; thus, coastal zone monitoring is important for shoreline protection [10,11].
Field applications that rely on important tasks of shoreline change detection and monitoring include
regional sediment yield, erosion–accretion, hazard zoning and setback planning [1,12].

Traditional field surveying methods by theodolites, GPS receivers, etc. are time-consuming and
costly compared with remote sensing and geographical information system (GIS)-based methods [3,13].
Satellite imagery becomes one of the most useful sources of information for coastal monitoring [14].
However, in tropical regions, frequent cloud coverage is a major issue in optical satellite imagery and
brings difficulty in delineation of land and ocean boundaries [15]. Identification of land and ocean
boundaries is complicated using optical imagery due to cloud coverage [16]. The recent systematic
tools of remote sensing and GIS are exceptionally important for coastal environmental studies and
coastal zone management and planning [17]. However, monitoring coastline changes using synthetic
aperture radar (SAR) images during high and low tides is challenging due to the mixed backscattering
response resulting from the variation of wet and dry sands. This leads to misclassification problem
when dealing with SAR image.

This research aims to identify the shoreline and assess the magnitude and direction of shoreline
changes from 2003 to 2014 using SAR images. This study attempts to propose an optimised
semiautomatic coastline detection method using temporal SAR images, which are subjected to notable
environmental parameters, such as wind and large amounts of textural noise over the sea surface.
We processed the SAR dataset to detect and monitor changes along the east coast of Kelantan, Malaysia,
using two sets of RADARSAT images. The noises on SAR imagery were filtered out, and an adequate
technique was then developed to discriminate lands from those noises. This process is critical in
feature detection using SAR images, especially in coastal areas.

2. Materials and Methods

2.1. Study Area

Kelantan is in the north eastern part of Peninsular Malaysia. This area is bordered by Neratiwat
from Thailand to the north, Terengganu to the southeast, Perak to the west and Pahang to the
south. The study area is located between 6◦00′30.67′ ′N and 102◦44′16.05′ ′E and 6◦25′11.00′ ′N and
102◦16′18.00′ ′E (Figure 1). In the north of the Clayton Bay lies the South China Sea, which is the largest
sea in Southeast Asia; a Sunda platform from the continental shelf exists with a depth of more than
100 m [18]. The annual temperature varies from 24 ◦C to 28 ◦C; the average humidity is approximately
80%. The cloud coverage over the sea ranges between 50% and 75%, and it has been observed to be
steady over the years.

2.2. Datasets

We used two active SAR images, namely, RADARSAT-1 and RADARSAT-2, which operate in
C-band frequency at a repeat cycle of 24 days. The images were acquired on 12 November 2003, and 12
November 2014, and cover the area of Tumpat-Kota Bharu District (Delta area) of Kelantan. The images
were further cut on the basis of the area of interest (Figure 2).
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implemented on both datasets by multiplying the multilook factors of sensor with the azimuth and 
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images with ground resolution of 8 m with HH polarisation were used for analysis. Subsequently, 
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Figure 2. (a) RADARSAT-2 and (b) RADARSAT-1 showing delta area of Kota Bharu District.

Each RADARSAT data has different swath width, azimuth, range and incidence angle that was
retrieved from single-look complex (SLC) data. To achieve the ground square pixels from RADARSAT
images and to decrease the image speckle noise, multilooking procedure was implemented on both
datasets by multiplying the multilook factors of sensor with the azimuth and range direction (Table 1).
Then, the resampled multilook intensity (MLI) images were obtained. The images with ground
resolution of 8 m with HH polarisation were used for analysis. Subsequently, the preprocessing steps,
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including filtering and image enhancement, were applied on the MLI images that have similar spatial
resolution characteristic to reduce the shoreline change detection uncertainties.

Table 1. Details of the satellite data and resolution.

Band Characteristics RADARSAT-1 RADARSAT-2

Active antenna C-Band C-Band
Centre frequency 5.3 GHz 5.405 GHz

Bandwidth (maximum) 30 MHz 100 MHz
Polarization HH HV, HH, VH, VV

Polarization isolation >20 dB >25 dB
Incidence angle [degree] 41 41

Multilook (range × azimuth) 1 × 4 1 × 4
Pixel dimensions [m] (range × azimuth) 8 × 8 m 8 × 8 m

ENVI 5.3 software was used for image sharpening, edge and change detection. eCognition
Developer 64 was used for segmentation and classification, and ArcGIS 10.4 was adopted for shoreline
extraction and validation. Figure 3 shows the overall flowchart and methodology of this research.
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Figure 3. Computational workflow applied in this study.

The following sections describe the computational framework of preprocessing techniques on SAR
images, segmentation experiments, optimisation process of segmentation parameters, classification of
segmented images into water and land, shoreline border extraction for 2003 and 2014, detection of
possible shoreline changes over 11 years and validation of the coastline map.
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2.3. SAR Preprocessing

Preprocessing of SAR images in shoreline detection can be achieved using basic operations:
geometric alignment, noise reduction, image enhancement and edge detection. Several low- and
high-pass filters were assessed in conjunction with image enhancement methods to develop an efficient
system for removing SAR distortions. Figure 4 shows that an adequate preprocessing must be
conducted on the SAR image to eliminate speckles without losing spatial resolution prior to extracting
information from radar images.
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Figure 4. Preprocessing methods applied in this research.

2.3.1. Geometric Corrections

The first step in the change detection analysis of SAR imagery is the geometric alignment of each
single image to a reference thematic map. Georeferencing the two images require projecting both
datasets into a correct coordinate system, which is crucial for such large images. The images should
undergo geometric correction to confirm an internal consistency within the SAR images. The 2014
RADARSAT image was calibrated by 40 ground control points (GCPs) distributed randomly all over
the scene and were collected by field surveying in 2014. Then, calibrated 2014 RADARSAT image
was used as a reference to correct 2003 RADARSAT image. All the well-distributed ground truth
points were selected randomly and could be identified in both SAR images. On the basis of these
ground truth points, a projective transformation was estimated. The projection was set as Kertau
RSO Malaya for 2003 and 2014 SAR images with root mean square errors (RMSE) of 1.8 and 1.3 m,
respectively. Generally, the coregistration process is a time-consuming procedure for interferometric
synthetic aperture radar (InSAR) technique.

2.3.2. Noise Reduction

Speckle noise is the main cause of error in active images, such as SAR images [5]. This phenomenon is
due to the accidental destructive and constructive interfering of the dephase; however, coherent return
of scattered waves by the elementary scatters are found within each individual cell [19] (Figure 4).

Most of these algorithms are based on smoothing the image whilst preserving the features present
in it. In SAR image, a multiplicative noise can be reduced by performing the noise reduction through
5 × 5 windows filtering. Following Lee and Jurkevich [20], the primary mathematical relation of the
model is shown by Equation (1):

zi,j = xi,j vi,j and vi,j ∼
(

1, σ2
)

(1)

where zi,j is the grey level of the observed SAR pixel; xi,j is the optimal noise-free complement; vi,j is the
noise categorised by a normal distribution when mean equals 1 and variance is σ2. This noise-assumed
statistical model may differ depending on the dissimilar approaches available to smooth the speckle
without undermining the sharpness of the main edges of the image.
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Lee and adaptive filters with a window size of 5× 5 were applied to obtain unbiased coherence
estimation and reduce the random noise over the ocean surface (high noise close to coastline) [21].
As shown in Figure 5, the image becomes smooth when the 5× 5 Lee filter is applied twice. Table 2
shows that the difference between standard deviations and means are low. Most of the pixel values are
near the overall mean of the image. The reason is that the image comprises only two classes of LULC
(ocean and land).
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Table 2. Quantitative details of synthetic aperture radar (SAR) pixels in noise reduction procedures.

Image Min Max Mean Std. Dev. Diff. Mean Diff. Std. Dev.

Original 0 65,535 1814.67 1439.00 − −
Lee (5 × 5) 9 57,205 1813.02 1290.65 −1.65 −148.35

Double Lee (5 × 5) 20 49,507 1812.26 1204.02 −2.41 −232.98

2.3.3. Image Enhancement

Sobel calculates the gradient separately in the vertical and horizontal directions at each pixel.
This filter is more accurate for image enhancement than the Roberts filter [22]. The orthogonal
components of the gradient are presented as follows:

Λ1 = [A(x− 1, y + 1)− 2A(x− 1, y) + A(x− 1, y− 1)]− [A(x + 1, y + 1)− 2A(x + 1, y) + A(x + 1, y− 1)]. (2)

Λ2 = [A(x− 1, y + 1)− 2A(x, y + 1) + A(x + 1, y + 1)]− [A(x− 1, y− 1)− 2A(x, y− 1) + A(x + 1, y− 1)] (3)

Horizontal, vertical and diagonal edges are detected. A threshold in responses is generally selected
to produce an edge map in which small responses caused by noise or small gradients are suppressed.
The Sobel edge detector is a derivative-based operator that is used in templates form for computational
purposes. It uses a tiny, distinct pattern as a model instead of a derivative operator [23]. In other
words, this detector is a spatial derivative technique with reduced templates. Here, the following
templates were used in the form of a convolution mask to locate the resulting cell value in the middle
of the template in the output. The kernels were designed to respond to edges running in horizontal
and vertical directions, which associated with the sample of 3× 3 pixel grid (Figure 6). Thereafter,
a threshold was applied to the results. All pixels respond to the templates, but edge pixels show the
largest response.
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These templates can be used to distinguish edges in the horizontal and vertical orders. A combination
of median and Sobel filters with a kernel size of 5× 5, which can highlight the horizontal, vertical and
diagonal edges, was applied to both images (Figure 7).

Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 18 

 

 
Figure 6. Image enhancement using different designs of Sobel templates: (a) horizontal and (b) 
vertical kernels. 

These templates can be used to distinguish edges in the horizontal and vertical orders. A 
combination of median and Sobel filters with a kernel size of 	5 × 5 , which can highlight the 
horizontal, vertical and diagonal edges, was applied to both images (Figure 7). 

In this stage, a median filter with a kernel size of 5 × 5 was applied to smooth the images whilst 
enhancing edges. Then, the Sobel detector with an edge algorithm of 5 × 5 was used to detect edges 
of filtered images. 

 
Figure 7. Median and Sobel filters with a kernel size of 	5 × 5. 

2.3.4. Edge Detection 

Edge detection determines the pixel location of the edge. Enhancing the edges increases the 
contrast between the edges and the background; as a result, the edges become more visible than 
before [23]. Edge tracing follows the edge, thereby placing each pixel along the edge onto a list [24]. 
An edge can generally be modelled as a step or as a ramp. In real-life applications, edges are gradual 
over the images. Thus, the ramp is the best one to fit. Jia and Richards [25] reported three efficient 
techniques for detecting edges over an image. The Sobel filter, which is a commonly used algorithm, 
was used in the current research. 

2.4 Object-Based Image Analysis (OBIA) 

OBIA is an effective approach to observe several object attributes, such as texture, pattern, size, 
shape and colour for image analysis [26,27]. The objects produced from segmentation can be 
categorised using either rule-based methods or supervised algorithms [28,29]. 

2.4.1. Segmentation Process 

The first step of OBIA classification is image segmentation. Several previous works have 
suggested that the multiresolution segmentation algorithm (MSA) is an accurate method for satellite 
image segmentation [30]. Therefore, in the current study, we applied MSA along with parameter 
optimisation and segmentation quality assessment. 

(a) Multiresolution Segmentation Algorithm (MSA) 

Figure 7. Median and Sobel filters with a kernel size of 5× 5.

In this stage, a median filter with a kernel size of 5× 5 was applied to smooth the images whilst
enhancing edges. Then, the Sobel detector with an edge algorithm of 5× 5 was used to detect edges of
filtered images.

2.3.4. Edge Detection

Edge detection determines the pixel location of the edge. Enhancing the edges increases the
contrast between the edges and the background; as a result, the edges become more visible than
before [23]. Edge tracing follows the edge, thereby placing each pixel along the edge onto a list [24].
An edge can generally be modelled as a step or as a ramp. In real-life applications, edges are gradual
over the images. Thus, the ramp is the best one to fit. Jia and Richards [25] reported three efficient
techniques for detecting edges over an image. The Sobel filter, which is a commonly used algorithm,
was used in the current research.

2.4. Object-Based Image Analysis (OBIA)

OBIA is an effective approach to observe several object attributes, such as texture, pattern,
size, shape and colour for image analysis [26,27]. The objects produced from segmentation can be
categorised using either rule-based methods or supervised algorithms [28,29].

2.4.1. Segmentation Process

The first step of OBIA classification is image segmentation. Several previous works have suggested
that the multiresolution segmentation algorithm (MSA) is an accurate method for satellite image
segmentation [30]. Therefore, in the current study, we applied MSA along with parameter optimisation
and segmentation quality assessment.

(a) Multiresolution Segmentation Algorithm (MSA)
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MSA is the first and most general segmentation technique, which creates objects using an iterative
algorithm. Thus, objects are organised (initialised with single pixels) until the variance of the objects
fall below a certain threshold. The threshold of variance (scale factor) is assigned on the basis of
the shape parameters (by separating the shape and compression factors) using Taguchi method to
minimise the fractal boundaries of the objects [31]. By increasing the threshold of variance, large
objects are created; however, their exact size and dimensions depend on the size of target objects and
quality of image. Table 3 describes the parameters available for this segmentation algorithm.

Table 3. Parameters for segmentation in parameter selection.

Parameter Description

Level name Name of level in the hierarchy created by segmentation.

Image layer
weights

Increases the weight of layer when calculating heterogeneity measure for deciding
whether pixels or objects are merged. Zero ignores the layer.

Thematic layer
usage

If any thematic layers are available, then thematic layers are allowed to be turned on and
off individually for use within segmentation.

Scale parameter Controls the amount of spectral variation within objects and therefore their resultant size.
Has no unit.

Shape–colour

A weight between objects’ shape and spectral colour. If the value is 0, then only colour is
considered. By contrast, if the value is >0, then shape and colour are considered so that a

small number of fractal boundaries are produced. A high value indicates a high
shape consideration.

Compactness A weight representing the compactness of objects formed during segmentation.

(b) Chessboard Segmentation

Chessboard segmentation is a simple segmentation technique that splits the image into square
segments with a predefined size. This segmentation ignores the underlying data. Therefore, the features
within the data, which we are trying to classify, will not be delineated when large objects are created.
This segmentation is mainly used in advanced processes in which segmentation is undertaken in a
number of steps combined with classification. This technique helps segments to be fitted effectively into
real features and improves the quality of segmentation. Converting a pixelated image into segmented
one is indeed the advance of OBIA.

(c) Spectral Difference Segmentation

Spectral difference segmentation merges neighbouring objects with a common specified spectral
threshold. Prior to implementing this segmentation, a segmentation (level) must be already obtained,
which is defined in MSA segmentation.

2.4.2. Segmentation Optimisation

Finding the ideal combination of the segmentation parameters by trial and error is time-consuming
and inaccurate, particularly when more than four possibilities are involved. Thus, optimisation
proficiency can be a suitable solution to reduce the time needed for the selection of parametric
quantities. To decrease the possible choices, influence of various factors on the segmentation attribute
can be examined by the orthogonal experimental design of Taguchi.

Tabular arrays provide an easy and consistent intention of the orthogonal experimentation.
This technique is used when various grades of argument are available. The Taguchi method is applied
in four stages: (1) defining the possible value of a parametric quantity for the process, (2) describing
the variation level of influenced parameters that depend on the outcome of the parameter, (3) creating
an orthogonal array to design the alignment of experiment iteration and (4) measuring the influence of
optimal factors on the performance. The Taguchi loss function l(y) can be calculated as follows [31]:
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l(y) = kc (y− T)2 (4)

where T is the target value of the performance characteristic of a process, and y is the measured value
of a loss function. kc is the constant in the loss function and can be calculated by considering the
acceptable interval as follows:

kc =
C
∆2 (5)

where C is the loss associated with specific limit, and ∆ is the deviation of the target specification.
When the entire affecting factors of the process are defined, the level of each factor should be
determined. The level indicates the probable value of each parameter in terms of maximum, minimum
and current values of the parameter. In case a large gap exists between the minimum and maximum
values of a specific parameter, additional levels are added to that parameter. After defining the number
of parameters and levels, the proper array is chosen. A constant array can be found for Taguchi
method in which each array can be chosen depending on the parameters and levels. In the present
study, a plateau objective function (POF) was measured for each test to evaluate the precision of the
model using each of the 25 experiments. POF is the combination of a spatial autocorrelation index
and a variance indicator. The optimal value of each factor is selected when it has the highest value of
SNR [32].

SNR = −10 log10

(
1
n ∑

1
y2

i

)
. (6)

where n is the number of repetitions under same test conditions (n = 1), and y signifies the POF values
obtained from all combination tests on segmentation parameters. In the end, the ideal combination
can be achieved.

2.4.3. Classification Algorithm

OBIA classification is based on segmentation of images, selection of training samples and
classification feature, adjustment of parameter setting and implementation of algorithm [29]. Firstly,
the image was segmented using multiresolution segmentation. Then, we applied chessboard and
spectral difference segmentation to allocate the fittest segments to real objects. After the selection
of training samples in two different classes (land and water), certain features were selected for
classification. Several spectral features were chosen in classification to generate high classification
accuracy. The support vector machine (SVM) classifier with radial base function kernel was adopted to
categorise the trained samples from SAR images. Optimal adjustment of parameters after classification
was performed, and object-based accuracy assessment was applied for evaluation. Four spectral
features, namely, mean value, mean difference to the RADARSAT super object, brightness and
maximum severity difference, were used for classification of SAR images (Table 4).

Table 4. Object features used for classification.

Object Features Description

Mean value The mean value for brightness in a certain band of image.

Mean difference to super object The variance between the average values of the input layer of the image
object with the average value of the input layer of that super object.

Brightness The mean value of each SAR bands.

Maximum severity difference The maximum intensity differences.
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For the semiautomatic coastline detection, a single temporal radar image was processed using
three segmentation techniques. The multiresolution segmentation generates a detailed polygon on the
images on the basis of the selection of the scale, shape and compactness parameters. The selection of
these parameters is the basic step for the development of this method.

2.5. Validation

The identified shoreline was validated by overlaying the surveyed shoreline from the Department
of Survey and Mapping of Malaysia (JUPEM) with the scale of 1:50,000. The identified shoreline of
2003 was validated with the JUPEM surveyed map at the same date to determine the changes and
shifts. The identified shoreline of 2014 was also validated by optical Digital Globe satellite imagery
from Google Earth at the same time (11 December 2014). JUPEM map and Digital Globe satellite
imagery, which were used for reference, had the same tides condition as RADARSAT imagery. The SAR
shorelines were converted to points (vertex) to perform distance measurement. From the two shorelines,
32 intersecting points were generated to obtain a pattern of connection. The descriptive statistic for the
overall near point (SAR shoreline) to the referenced shoreline distance from a point to a polyline is the
perpendicular or the closest vertex.

3. Results

3.1. Segmentation Results

Numerous image categorisation approaches have been used for coastal extraction [1,3,33]. In the
current study, MSA, maximum spectral difference and chessboard segmentation were used in
eCognition platform. The segmentation parameters were adjusted to determine the optimal size
and shape of the divided objects using the Taguchi method. The scale factor describes the determined
standard deviation of homogeneity in relation to the produced image-weight layers [34]. In general,
the magnitude of the larger scale is larger than the size of the objects, and the heterogeneity is
high. In this study, we considered the domain variation (possible maximum and minimum) of five
segmentation parameters, namely, scale, compactness, shape and maximum spectral difference and
chessboard value, to determine their effect on segmentation accuracy. In normal calculation, the most
ideal value of parameters should be discovered out of 1024 possibilities; however, by applying the
Taguchi method, the ideal values can be retrieved from less number of possibilities (i.e., 25), which
shrink the procedure efficiently. L25 is orthogonal array with 25 levels of experiments, and L1024 is
orthogonal array with 1024 levels of experiments. The orthogonal array, calculated as L25, was used
amongst all L1024 possibilities. Consequently, the highest SNR value indicates the best value for
segmentation parameters (Table 5).

After numerous experiments in this stage, the optimal result for the imagery was achieved when
the scale and maximum spectral difference values were 50, the shape and compression parameters
were 0.9 and the chessboard value was 20 (Table 5). Figure 8 shows the segmentation result based on
the selected parameters. Defining the ideal segmentation threshold is one of the main steps in our
model towards automation, which can be applied on similar environment and climate to accurately
classify land from water. The optimisation process on different imageries and conditions is subjected
to size, pattern and tone of environmental features.
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Table 5. L25 Taguchi orthogonal array on segmentation variables.

No
Multiresolution Segmentation

Algorithm
Maximum

Spectral
Differences

Chessboard
Value

POF S/N Ratio

Scale Compactness Shape

1 10 0.1 0.1 100 80 0.714 −4.461
2 10 0.3 0.3 0 80 0.951 −3.32
3 10 0.5 0.5 75 60 0.843 −2.531
4 10 0.7 0.7 50 60 1.120 0.654
5 10 0.9 0.9 50 40 1.089 0.184
6 30 0.9 0.9 25 40 1.218 1.368
7 30 0.7 0.7 25 10 1.140 0.052
8 30 0.5 0.5 0 10 1.070 −1.271
9 30 0.3 0.3 75 10 1.280 −0.621

10 30 0.1 0.1 100 60 1.019 −2.350
11 50 0.1 0.1 0 80 0.933 −2.352
12 50 0.3 0.3 75 10 0.971 −2.841
13 50 0.5 0.5 50 40 1.031 −1.013
14 50 0.7 0.7 25 20 1.501 1.848
15 50 0.9 0.9 50 20 1.611 2.358
16 70 0.9 0.9 25 20 1.274 2.050
17 70 0.7 0.7 50 10 1.351 1.820
18 70 0.5 0.5 0 40 1.051 −1.013
19 70 0.3 0.3 0 10 1.191 0.3731
20 70 0.1 0.1 75 60 0.954 −1.753
21 90 0.1 0.1 100 80 0.870 −3.485
22 90 0.3 0.3 0 10 0.991 −1.371
23 90 0.5 0.5 75 40 1.011 −2.612
24 90 0.7 0.7 0 10 1.121 −0.377
25 90 0.9 0.9 25 20 1.428 1.196
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Figure 8. Segmentation results. (a) initial segmentation; and (b) optimized segmentation.

The size of polygon boundaries indicates the result of segmentation (Figure 8). The initial
segmentation results that came from basic MSA, maximum spectral difference and chessboard
segmentation methods showed too many unessential segments, particularly in land and shoreline
border. The feature classes, such as water and land, could not be separated accurately using the
initial segmentation result; therefore, shoreline border identification was also not precise (Figure 8a).
However, after optimising the segmentation parameters, the segments were well defined. The fittest
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segments for features (e.g., land and water) on the images were generated due to the optimal selection
of the scale, shape, compactness, spectral difference and chessboard values. This optimised method
could remove the unessential and small segments that caused uncertainty in classification (Figure 8b).
The optimised segmentation helped the SVM classifier gain a consistent classified map.

3.2. SAR Classification Results

When the sample size in each individual class was less than 25, the accuracy of the classes
was unsatisfactory. When the sample size increased to 80, the highest accuracy in classification was
obtained. The SVM uses support vectors instead of all the training protocols to make the isolation
hyperplane. Therefore, the number of training samples may affect the classification accuracy. In the
current experiment, a sample size of 80 in each class was considered ideal; beyond this value, size would
not essentially lead to a considerable increase in the degree of accuracy of the classification.

The 2003 classified map was assessed by 30 ground control points (GCPs) for each class that
distributed randomly all over the scene. These GCPs were collected from a classified Landsat image
in November 2003. On the contrary, the 2014 classified map was assessed by 30 GCPs for each class
that were collected from Digital Globe imagery (Google Earth) on November 2014. A reliable thematic
map with the highest overall classification accuracy was used as the reference to determine the exact
accuracy of the implemented classification [35,36]. We stratified randomly selected sample training and
experimentation for both images to evaluate overall accuracy of classification with optimal parameter
values (Table 6). On the basis of the error matrix of the thematic maps, we calculated Z-statistics to
assess the difference in the results of the classification between the two categories [37].

Table 6. Comparison of the overall accuracy result.

SAR Images SVM Classifier Accuracy

2003 98.3%
2014 98.7%

3.3. Quantitative Assessment of Detected Changes

Frequent shoreline monitoring and accurate change detection are vital for understanding coastal
procedures and various dynamics of the coastal characteristics. Coastal position is an important
geographical indicator in coastal development and provides useful information on the dynamics of
coastal morphology [38]. Therefore, accurate detection and monitoring of the coastal area are essential
for recognising coastal processes and the dynamics of various coastal characteristics.

A quantitative assessment of the metrics and pattern of temporal shoreline dynamics should be
applied on specific transects on the shoreline retrieved from the RADARSAT images. Area and length
of shorelines were measured to indicate the magnitude of shoreline temporal changes (Table 7).

Table 7. Quantitative assessment of morphology of the shoreline dynamic.

Transect Onshore Changes (Erosion) Offshore Changes (Accretion) No Changes

I
105.97 ha 248.21 ha 1094.34 ha

7.3% 17.4% 75.6%

II
12.47 ha 115.60 ha 648.68 ha

1.6% 14.9% 83.5%

III
77.66 ha 48.07 ha 645.41 ha
10.1% 6.2% 83.7%

IV
13.67 ha 21.34 ha 533.65 ha

2.4% 3.8% 93.8%

V
4.21 ha 20.23 ha 579.88 ha
0.7% 3.3% 96.0%

VI
13.47 ha 1.77 ha 402.82 ha

3.1% 0.4% 96.5%
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The changes were calculated by measuring the observed distances between the shorelines of 2003
and 2014. Notably, the shoreline had shifted towards the northeast and had slightly shifted to the
southeast side of the coast by 12.8 m in average (Figure 9). Considering the shoreline morphological
pattern, the shoreline in 2003 was straighter than the shoreline in 2014. Overall, the coastal length
increased from 101.50 km to 115.22 km during the period of 2003 to 2014. To be more specific, the change
detection analysis was conducted in six transects in which it had experienced significant changes.
In each transect, the magnitude of the changed area was measured on the basis of onshore, offshore and
no changes calculation. Onshore changes reflect the movement of the sea towards land, causing erosion.
However, offshore changes happen where the sea is pushed back from land, resulting in accretion.

Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 18 

 

3.1% 0.4% 96.5% 

The changes were calculated by measuring the observed distances between the shorelines of 
2003 and 2014. Notably, the shoreline had shifted towards the northeast and had slightly shifted to 
the southeast side of the coast by 12.8 m in average (Figure 9). Considering the shoreline 
morphological pattern, the shoreline in 2003 was straighter than the shoreline in 2014. Overall, the 
coastal length increased from 101.50 km to 115.22 km during the period of 2003 to 2014. To be more 
specific, the change detection analysis was conducted in six transects in which it had experienced 
significant changes. In each transect, the magnitude of the changed area was measured on the basis 
of onshore, offshore and no changes calculation. Onshore changes reflect the movement of the sea 
towards land, causing erosion. However, offshore changes happen where the sea is pushed back from 
land, resulting in accretion. 

 
Figure 9. Shoreline changes from 2003 to 2014. Figure 9. Shoreline changes from 2003 to 2014.

During the given period, the shoreline experienced less dynamics in transects VI and V where 96.5
and 96.0 percentage of shoreline remains unchanged, respectively. Particularly, the shoreline in transect
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I and nearby areas had not changed remarkably. However, most changes had occurred in transect
I where just 75.6% of shoreline area remained unchanged. In transect I, almost 248 hectares were
added to shore areas, while 106 hectares were removed from shore area from 2003 to 2014. Basically,
the onshore and the offshore variation were noticeable in all the measured transects. In transect VI and
III, the number of offshore change was more than other transects (i.e., 0.4 and 0.6 percentage), which
indicated the eroded shoreline. In transects I, II, IV and V, offshore change was detected more than
onshore change (Table 7).

3.4. Validation

The delineated 2003 shoreline was validated by overlaying the surveyed shoreline from JUPEM,
while the delineated 2014 shoreline was validated by Digital Globe satellite imagery from Google
Maps. The referenced images provided details on the area and position information over the area, such
as the coordinate. Accordingly, we compared this shoreline with the extracted shoreline for accuracy
assessment. Comparison analysis of the extracted shoreline with the referenced shorelines were placed
in 32 random, well-distributed transects along the border for 2003 and 2014 (Table 8).

Table 8. Validation of SAR-extracted shorelines with references.

Compared Distance Statistics
Year

2003 2014

Minimum: 0.22 (m) 0.00 (m)
Maximum: 7.85 (m) 6.13 (m)

Mean: 2.56 (m) 1.97 (m)
Standard Deviation: 1.69 (m) 1.35 (m)

In 2003, the recorded minimum distance between both shorelines was 0.22 m, whereas the
maximum drift was 7.85 m. The average distance of differential for every point was 2.56 m. The range
of differences was up to 1.69 m. In 2014, the recorded minimum distance between both shorelines
was zero metre, whereas the maximum drift was 6.13 m. The average distance of differential for
every point was 1.35 m. The range of differences was up to 1.69 m. The validation results showed
a considerable correlation between referenced shorelines and extracted ones. However, in 2014,
we observed high similarity between the two shorelines that might be due to the higher quality of
RADARSAT-2 compared to the first product of RADARSAT.

After validation analysis, the final shoreline border of 2014 was calibrated. From the observation
and analysis, we found that accurate measurement of the differences needed to be quantified using
approximately the same level of the tidal condition in the identified shoreline.

4. Discussion

A coastline is an intersection between the midline of the water and the coast. The line that
divides the coastline into marine charts is nearly a moderate line [39]. Coastlines have fast-changing
nature. Thus, proper definition of coastline change is important for identification of county boundary,
navigation and shoreline matters. SAR imagery (e.g., RADARSAT-1 and RADARSAT-2) is a valuable
dataset for detection and description of coastlines. In general, extraction and recognition of coastal
features from SAR images involve a series of practices, including filtering, progression, image
segmentation, shoreline extraction and change detection. In this study, a semiautomated process was
created to monitor the shifts and extraction of the coastline of Kelantan, Malaysia, from RADARSAT.
This proposed process is an advanced technique for radar images. A system of different segmentation
analyses was applied to the filtered images to separate the land and ocean. After the segmentation
result was obtained, assessment of changes was conducted using an SVM classifier to achieve improved
classification result. The results revealed that SVM provided overall accuracies of 98.7% and 98.3%
on images in 2003 and 2014, respectively. To substantiate the accuracy of SVM classifier, two other
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classifier methods, namely, k-nearest neighbours (k-NN) and decision tree (DT), were applied on both
SAR imageries. The comparison results of classified maps with GCPs showed that SVM generally had
the best performance among the three classifiers with the optimal parameter setting; the minimum
overall accuracy of SVM was 98.34%, which was higher than the maximum overall accuracy of DT
(94.2%) and k-NN (96.6%). The high-performance classifier was used in further processing to derive the
final shoreline. The SVM classifier is less sensitive to sample sizes because SVM only uses the support
vectors instead of all training samples to build the separating hyperplane. Thus, adding a large number
of training samples would not considerably affect the classification accuracy, in which the increase
in sample size does not necessarily lead to a considerable increase in classification accuracies. In this
study, we tried to increase the number of training samples as much as possible. However, the result of
classification was not enhanced when the number of training samples was 80. When training samples
of 90 and 100 were tested for each class of land use in 2014, the classification accuracy dropped to
97.3% and 97.1%, respectively.

Distortions were shown in some locations, which may be attributed to the changes in the coastline
over the years due to the impact of tsunami; these changes might have affected the shifted shoreline of
Kelantan (Figure 10). The 2004 Indian Ocean earthquake with the magnitude of 9.1 to 9.3 (Mw) caused
the tsunami to collapse along the coast of Pahang and Kelantan, thereby shifting them from a few
metres to many hundred metres inland [40].
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Wet sands on the beach are a source of uncertainty for SAR image classification. Thus, they must
be considered in the process. Some sandy areas become wet due to tidal phenomena. This condition can
cause the distortion on the backscatter coefficient for the spectral difference segmentation in separating
land and ocean. Therefore, the date of image capturing should be synchronised on multitemporal
images when similar tidal level occurs on the sandy beach. A previous study estimated that the coast
is raised between 0.5 and 2 m from approximately 20 km in the south of Kaikoura [41].

Shoreline changes are usually influenced by cross-shore sediment transport processes and human
interferences. However, tsunamis and earthquakes considerably impact shoreline changes. In the
validation analysis, the average differences between the SAR shoreline and the surveyed shoreline
were 2.56 and 1.97 m for 2003 and 2014, respectively. A total of 32 randomly transects were measured to
calculate the validation parts, although the remaining points along the shoreline borders were visually
fitted on the intersection of one another in the two approaches. The visual interpretation showed that
the major coastline shift had occurred in the northeast side of the coast between 2003 and 2014 during
which the coastal movement was towards the ocean. The southeast part of the shoreline had also
shifted slightly compared with the northeast part.

http://info.geonet.org.nz
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5. Conclusions

A semiautomatic methodology for detecting shorelines using single SAR images is a powerful
method to extract coastlines for mapping purpose. Coastal surveying and detection are crucial for
environmental protection and sustainable coastal zone management. This paper describes a simple
and effective algorithm for detecting coastlines. An optimised technique for SAR image preprocessing,
segmentation and classification was proposed to detect shoreline dynamics. After coastline detection,
coastline extraction was achieved using a fast and reliable segmentation technique to delineate shoreline
information. SAR imagery has a high capability to extract shorelines in tropical regions under cloud
coverage. The results showed that the applied method had a high degree of accuracy based on the
validation of the surveyed thematic map. Ideally speaking, for an accurate change detection result
using multitemporal dataset, satellite images should be captured at the same date and time of the
years, with similar atmospheric condition and tide level.

The change detection results showed an average difference in the shoreline by 12.5 m between
2003 and 2014. A comparison of the extracted shoreline with the coastline drawn by JUPEM and
Digital Globe satellite image revealed general similarities in coastline curvature. Misrepresentations
were also shown in some places, and they might be due to coastal changes over the years because of
the effects of tsunami and earthquakes. The proposed methods and procedures can identify and map
coastlines for updating the geographic charts and other maps required for accurate coastal mapping.
Further works should use drone-based technologies and high-resolution satellite imagery for accurate
coastline detection and monitoring. Comprehensive and detailed in situ tidal variation data and land
use/land cover patterns should also be considered in future studies.
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