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Abstract: Bricks are the vital component of most masonry structures. Their maintenance is critical
to the protection of masonry buildings. Terrestrial Light Detection and Ranging (TLidar) systems
provide massive point cloud data in an accurate and fast way. TLidar enables us to sample and
store the state of a brick surface in a practical way. This article aims to extract individual bricks
from an unorganized pile of bricks sampled by a dense point cloud. The method automatically
segments and models the individual bricks. The methodology is divided into five main steps:
Filter needless points, brick boundary points removal, coarse segmentation using 3D component
analysis, planar segmentation and grouping, and brick reconstruction. A novel voting scheme is used
to segment the planar patches in an effective way. Brick reconstruction is based on the geometry of
single brick and its corresponding nominal size (length, width and height). The number of bricks
reconstructed is around 75%. An accuracy assessment is performed by comparing 3D coordinates of
the reconstructed vertices to the manually picked vertices. The standard deviations of differences
along x, y and z axes are 4.55 mm, 4.53 mm and 4.60 mm, respectively. The comparison results
indicate that the accuracy of reconstruction based on the introduced methodology is high and reliable.
The work presented in this paper provides a theoretical basis and reference for large scene applications
in brick-like structures. Meanwhile, the high-accuracy brick reconstruction lays the foundation for
further brick displacement estimation.

Keywords: Terrestrial LiDAR; 3D connected component analysis; planar segmentation;
brick reconstruction; unorganized bricks; accuracy assessment

1. Introduction

Terrestrial Light Detection and Ranging (TLidar) provides 3D coordinates of a scene by measuring
distances between the scanner’s center and the points on the object surface in a spherical coordinate
system. The distances are commonly computed by measuring the time delay or phase shift between
the emission and return of a laser beam. In addition, the horizontal and the vertical angle of the
laser beams transmitted with predefined horizontal and vertical increments are recorded. The TLidar
system is regarded as the center (origin) in such coordinate system. Due to its ability to provide dense
and accurate measurements, TLidar has been already successfully applied in various fields related
to civil engineering, such as road modeling [1,2], deformation analysis [3–5], change detection [6–8],
cultural heritage [9–11] and health monitoring [12,13]. Specific applications for masonry structures
containing tiny bricks/stones can be seen in ref. [14], which reported on a point cloud acquired by
TLidar used to automatically reconstruct the armor cubes from rubble mound breakwaters. Besides this,
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a new methodology was presented for the 3D outline extraction of concrete armor units in a breakwater,
which enabled the estimation of displacements and rotation of these units [15]. More recently, a 3-D
morphological method was proposed to change analysis of a beach with seagrass berm using TLS,
in which a cost-efficient, accurate and quick tool was used to reconstruct the sand volume in natural
and artificial replenished beaches [16].

Point clouds gathered through TLidar consist of massive amounts of unorganized data that
should be processed accordingly, which has already become a vital bottleneck for the implementation
of the TLidar technology. As a basic step for surface reconstruction, point cloud segmentation plays a
key role in the further analysis. Segmentation is the process that collects similar surface points into
single feature surfaces. The accuracy of this process will inevitably influence the result of consecutive
processing. Point clouds are usually unorganized, noisy, sparse, lack semantic information [17],
have inconsistent point density, various surface shape, and their handling is therefore rather difficult
and complex.

Diverse methods and algorithms for segmentation have been suggested and proposed in
literature. In ref. [18], they are categorized into three types: (1) edge-based methods [19,20], where
edge points are first identified, then geometrical attributes, e.g., normal, curvature, gradient, in a
cross-section perpendicular to the edge dividing different surfaces, were computed to segment the
surface. Edge-based methods are sensitive to noise because of the sensitivity of geometrical attributes
(e.g., curvature) to noise, while smoothing will influence the estimation results as well. (2) Region-based
methods [21,22] are where local neighborhood properties are used to search for similarity within a
specific feature or to find variation among features. Then the surface is segmented by merging spatially
close points. Compared to edge-based methods, region-based methods are more robust to noise.
However, region-based methods may lead to over or under segmentation. Also, the difficulty of
localizing region edges accurately needs to be resolved. (3) hybrid methods [23,24], as the name
suggests, combine edge-based and region-based information to overcome deficiencies and limitations
involved in aforementioned approaches.

Actually, most scenarios have surface shapes that can be represented by primitive surfaces such
as planes, cylinders, cones and spheres. In this respect, an object model is always regarded as the
composition of such primitives. Various methods and algorithms for different intrinsic surfaces
were proposed and improved. Genetic algorithms (GA) were used to extract quadric surfaces [25].
Furthermore, GA was combined with an improved robust estimator to extract planar and quadric
surfaces [26]. A framework for the segmentation of multiple objects from a 3D point cloud was
presented in [27], which provided quantitative and visual results based on the so-called attention-based
method. Random Sample Consensus (RANSAC) was implemented to segment planar regions from 3D
scan data [28]. A 3D Hough Transform was used to segment continuous planes in point-cloud data,
the results of which were compared to RANSAC [29]. The 3D Hough Transform was also implemented
for sphere recognition and segmentation [30]. A fast approach for surface reconstruction by means
of approximate polygonal meshing was proposed, and a state-of-the-art performance was achieved
which was significantly faster than other methods [31].

Many studies have already reported on the problems in the segmentation of 3D point clouds.
One problem is that it is hardly possible to determine the structure or the mathematical model of a
surface sampled by a raw point cloud. Certainly, a series of solutions have been proposed. However,
while resolving the problem, new issues may emerge, e.g., ambiguity induced by the overlap of
different objects, algorithms are sensitive to noise, et al. In this regard, the segmentation problem still
requires more attention, especially for some specific applications such as segmenting point clouds
sampling ancient, irregular buildings, disordered stones, and so on. In our research, we focus on
planar segmentation since the objects (regular bricks) are composed of planar patches. Additionally,
most man-made structures in reality also consist of planar surface, therefore, this focus gives the
research a wider applicability.
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A step possibly following segmentation is 3D reconstruction. For points sampling the 3D object
surface, the objective of the reconstruction problem is to recover the geometric shape from the point
cloud. To solve this problem, diverse algorithms have been proposed and implemented, which fall
into three categories: (1) sculpting-based method, in which the surface is reconstructed using methods
from computational geometry, e.g., using a Delaunay triangulation [32], Boissonnat method [33],
alpha-shape [34], graph-based [35] and crust algorithm [36]. (2) contour-tracing methods, in which the
surface is approximated [37]. (3) region growing methods, in which a seed triangle patch is determined,
and new triangles are added to the mesh under construction [38]. In our research, considering that the
research object is a brick with a regular shape, a simplified model is sufficient to present the semantic
information of the brick, which focuses on estimating patches and brick vertices, assuming each brick
can be approximated by a cuboid.

This article aims at developing and testing a reliable methodology to segment and reconstruct
the bricks in a pile of bricks. For this purpose, terrestrial Lidar data were used as a basic source
to identify the geometry of each individual brick. To optimize the use of this technique and avoid
manual processing, an approach that automates the segmentation of single brick unit is developed.
Meanwhile, a data-driven method for extracting the vertices of the bricks and reconstructing the bricks
is proposed. Comparing this process with the existing approaches, our method is able to semantically
recognize the bricks and provide geometric information. The reason to work with a pile of bricks
is twofold. First, such piles are easily available for experiments as reported on in this manuscript,
while the problem is actually not so easy to solve. Second, the method developed to solve the problem
can be applied in different scenarios. Directly, for every similar problems, e.g., ref. [15], or, after some
adaption, for other problems considering bricks, stones or boulders. Possible applications could
include rock glaciers [39], rockfall [40], and assessing the state of archeological masonry structures [41].
Foreseen scenario’s include change detection. Therefore, the focus here to detect brick visible by
the scanner. In future work the methodology used in this manuscript could be used to compare
visible brick positions before and after an event, like a rock fall, or a partial collapse of a city
wall. The article starts with an introduction; then, Section 2 introduces the study area and data
acquisition; afterwards, Section 3 presents the developed methodology, which consists of five steps:
(1) filter needless (i.e., outliers, ground points, vegetation points, etc.) points, (2) brick boundary
points removal, (3) coarse segmentation using 3D component analysis, (4) planar segmentation and
grouping, (5) brick reconstruction. Section 4 presents the segmentation and reconstruction results,
and the accuracy assessment of the reconstruction is shown as well. Section 5 presents discussion of
the proposed methodology, applications and future works. Finally, the conclusions are discussed in
Section 6.

2. Materials

2.1. Experimental Area

In order to test the developed methodology, an experiment composing of the sampling scattered
bricks was designed and carried out. Figure 1 is a picture of the piles of bricks taken from the
perspective of the scanner station.
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Figure 1. Station view of the pile of bricks. Note that the targets have not been used in the work
discussed in this paper. In addition, this work focuses on the extraction of bricks in the viewpoint of
the scanner, not on the hidden bricks.

2.2. Scan Data Acquisition

In the experiment, scan data acquisition was performed using the FARO LS-880 Laser Scanner
(FARO, Lake Mary, FL, USA) which is a phase-shift scanner operating with a range of 360◦ in horizontal
and 320◦ in vertical. The angular resolutions of the scanner are 0.009◦ and 0.00076◦ in horizontal and
vertical, respectively. The nominal linear accuracy of this scanner is ±3 mm (one sigma) at ranges
up to 25 m in normal illumination and reflectivity conditions. One station is planned at a distance
of approximately 6 m from the center of the pile to acquire the 3D point cloud of the piles of bricks.
To improve visibility, the terrestrial Lidar was set at ~1.5 m height. The raw point cloud acquired by the
FARO Laser Scanner included about 1.5 million points. Figure 2 shows the raw point cloud colored.
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Figure 2. Raw point cloud acquired by the FARO LS-880 Laser Scanner.

3. Methods

Data acquired using the TLidar resulted in a 3D point cloud. The proposed geometry extraction
and modelling procedures include five main steps: (1) filter needless points; (2) remove the boundary
points of the bricks; (3) coarse segmentation using 3D component analysis; (4) planar segmentation;
(5) brick reconstruction. The workflow is summarized in Figure 3.
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3.1. Filter Needless Points

Once the 3D point cloud for the research scene is acquired, it is essential to filter outliers and
the needless points backscattered by ground, vegetations, et al. The filtering process is divided into
three steps. First, thanks to the scanner being levelled during the scanning, the ground points could be
filtered coarsely based on height information. Points on the ground have minimum Z coordinate [42].
Thus, a threshold is defined to detect and remove ground points, the value of which is determined by
the accuracy of the scanning, i.e., two times of the nominal accuracy of the scanner with the value of
6 mm. Next, point normal vectors are estimated. Through incorporating the point normal which is
estimated by PCA and the Z coordinate, points on the ground are determined and removed coarsely.
This implementation of the process is first to search the points with the Z value less than 6 mm in the
local area. The next step is to search the nearest neighbor points for a given point with a pre-defined
number of 50. Based on the neighbor points, the PCA is used to estimate the normal vector for the given
point, i.e., the third component of the PCA results denotes the normal vector. The normal vectors of the
ground points are expected to be parallel to the Z axis. Thus, an angular difference threshold of one
degree is used to determine the ground points, i.e., if the angular difference between the normal vector
and the Z axis is less than one degree, the given point is regarded as the ground point. Afterwards,
a method is adopted to remove vegetation points, in which vegetation and non-vegetation are classified
through a curvature index [43]. In other words, points in vegetation show a high curvature index,
since foliage points do not show a clear structure. An eigen values analysis of the local covariance
matrix is used to estimate the curvature for each point, as described below:

Let (xi, yi, zi), i = 1, 2, · · · , n be n points of the scene. For the current 3D point pi = (xi, yi, zi) in
the point cloud, the information of its local neighborhood is determined using k nearest neighbors
(in our study, k value is set as 300). Thus, the covariance matrix ∑ for the neighborhoods is defined as:

∑
3×3

=
1
k ∑k

i=1

(
pi −

−
p
)(

pi −
−
p
)T

(1)
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where
−
p = 1

k ∑k
i=1(xi, yi, zi) is the mean of the nearest neighbours of k. The covariance matrix ∑ in

Equation (1) describes the geometric characteristics of the underlying local surface. The Singular Value
Decomposition (SVD) is used to decompose ∑ into eigenvectors which are sorted in descending order
according to the composing eigenvalues λi(i = 2, 1, 0, 0 ≤ λ0 ≤ λ1 ≤ λ2) [44]. The eigenvalues λ2,
λ1 and λ0 correspond to the eigenvectors v2, v1 and v0, respectively. v0 approximates the surface
normal of the current point pi and the elements of the eigenvector v0 are used to fix the parameters of
a plane through the neighborhood of pi. The smallest eigenvalue λ0 describes the variation along the
surface normal and indicates if points are spatially consistent [45]. In most cases, the curvature is used
to describe the surface variation along the direction of the corresponding eigenvalues, the value of
which is estimated as

σ(pi) =
λ0

λ0 + λ1 + λ2
(2)

The value σ(pi) also reflects whether the current point pi and its neighbors are coplanar [46]. In this
way, the distribution of curvatures for all points are obtained and vegetation points are recognized and
removed. As demonstrated in ref. [46], it is commonly accepted that if a λ0 value of greater than 20%,
these points would be regarded as vegetation points. Finally, outliers as well as remaining ground
points and vegetation points are detected and removed based on local point density. Compared to
the brick points, outliers, remaining ground points and vegetation points always have relative lower
local density.

3.2. Roughness Estimation

For each point, its roughness value is defined as the distance between this point and the best
fitting plane estimated from its nearest neighbors. The plane is fitted by least squares to the K nearest
neighbors (KNN) [47,48] of a target point. The procedure is done as follows:

(1) Search the K-nearest neighbors of the target point and extract their coordinates. K is the input
parameter to the algorithm defined by the user (in our study, K is set as 50).

(2) A Least squares algorithm [49] is implemented based on the searched points and the plane
equation is estimated.

(3) Calculate the distance between the target point to the fitted plane which is regarded as
roughness value.

(4) Traverse every point in the point cloud and execute step (1) to step (3). In this way,
the roughness values for all points are determined.

Afterwards, point classification is done based on the roughness. It is evident that the variance of
roughness is relatively small in the middle of a brick surface and large on the edges, at the corners of
the bricks and at outliers. Points with smaller variance are adopted as seeds in the further analysis.

Here, it should be noted that if the points on edges, the corners of the bricks and the outliers are
not discarded, the following segmentation is probably incomplete. Since the bricks are piled in an
irregular way, typically only points from each individual brick are spatially connected. Therefore, it is
hard separating individual bricks in a regular way.

3.3. Coarse Segmentation Using 3D Connected Component Analysis

Once the roughness computation and the brick edge points removal have been done, it is possible
to initiate the brick surface segmentation. A 3D connected component algorithm [50–52] is used to
realize the coarse segmentation. The accuracy of connected component labelling is the base of the
latter parts.

The points on the object are represented by 3D coordinates, the connected component analysis is
therefore extended to 3D. A 3D connected component counting and labelling algorithm in [53,54] was
applicable to small neighborhoods and effective for many classification tasks. It is specified for local
neighborhoods, and 3D grid (voxel) deduced from octree structure is used to extracted the connected
components. Here, neighborhoods voxels with a size of 3 × 3 × 3 are used. The central voxel in a
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3 × 3 × 3 neighborhood has three types of neighbors: (1) 6-connectivity, 6 voxels are sharing a face
with the central voxel. (2) 18-connectivity, in addition 12 voxels are sharing an edge with the central
voxel. (3) 26-connectivity, in addition 8 voxels are sharing a point with the central voxel.

In our work, face connected neighbors are used to segment the bricks as implemented in the
Cloudcompare software (Paris, France) [55]. Ideally, points from different bricks are classified into
different components after the implementation of the 3D connected component analysis. However,
owing to the complicated position relation between the adjacent bricks, some bricks may still belong
to the same component although the edge points have already been removed.

3.4. Planar Segmentation and Grouping

Once the coarse segmentation is completed, the next step is the surface plane detection for
individual bricks. The workflow for plane detection is summarized in Figure 4.
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3.4.1. Attribute Computation Using Neighboring Points

The geometric features for a given point are derived from the spatial arrangement of all 3D points
within a neighborhood. For this purpose, some attributes such as distances, angles, and angular
variations have been proposed in refs. [56,57]. In our research, point attributes were computed based
on the neighboring points identified by a ball search within a defined radius.

For a target point, first determine its local neighborhood points within a radius set by the user
(in our case study, the radius is set as 0.02 m). Here we should demonstrate that the radius is determined
closely related to the nominal size of the brick. In our case study, the nominal length, width, and height
of the bricks are 0.10310 m, 0.05230 m and 0.03924 m, respectively. We tested the sensitivity of the
radius, the results indicate that under the radius between 0.15 m and 0.25 m, the attribute space is
distinguishable, that is, in the other application, the testing of the optimistic radius against the object
size should be done, the value of which is neither too greater nor to small. Then, principle component
analysis (PCA) is used to determine the surface normal of the neighborhood points as well as the plane
equation [58].

A normal position vector was proposed to describe the point attributes in ref. [59]. Based on
this, the geometry at the target point is determined by a spatial distance from a control point to
the fitted plane around the target point. Here, control is a relative concept and the control point
can be optionally specified as stated in ref. [59]. After fixing the control point, a position vector

→
n

from the control point to the plane fitted for a target point is defined and illustrated in Figure 5.
The magnitude of the position vector

∣∣∣→n ∣∣∣ is the special distance, which is adopted as the geometrical
attribute. It is assumed that the points belonging to the same plane have a similar magnitude of this
special distance. Therefore, the special distance can be used to judge the planar patch. However,
it may happen that different planes result in a similar special distance value, as illustrated in Figure 6:
the distances from control point 1 to plane 1, plane 2 and plane 3 are all equal. Hence, it would be
difficult to differentiate points belonging to different planes. In such a case, another control point 2
with drastically different distances, is introduced which avoids ambiguities in the special distance [59].
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Figure 6 shows a situation where one control point is located at equal distance from two planes and
the other control point is not. After two control points have been introduced, the magnitudes of
distance from the first control point to the planes have the same attribute value (i.e., d21 = d22 = d23),
nevertheless, the magnitudes of the distances to the second control point to the planes are mutually
different (i.e., d21 6= d22 6= d23). Based on these properties, the points belonging to different planes are
distinguished. Then, principle component analysis, PCA, is used to fit a plane and estimate the normal
of that plane through the points in the neighborhood.
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Figure 6. Graphical illustration for the special distance using control points (cf. the graphical figure
in [59]). (a) control point 1 is located at equal distance from three planes and for control point 2 distances
to the three planes are different. (b) the distance from three planes to two control points.

However, if one control point is located far away from the pile of bricks while the other control
point is located inside the pile of bricks, the magnitude of the distances from each point to the two
control points will have great difference. To illustrate, if the first control point is located 30 m from one
brick while the second control point is located 1 m from the same brick, the attribute space for the first
control point has poor recognition for different planes. This scale change will more or less influence
the effectiveness of the planar segmentation implementation, which have not been considered in the
previous works [59]. To avoid such scale change, the two control points are therefore always located
inside point cloud. The location of the two control points is selected such that the two control points
are well distributed meaning that the attributes of all points in the dataset will not have difference
significantly. In our research, the positions of the two control points are determined as follows:

(1) calculate the minimum and maximum value for each coordinate of the 3D point cloud.
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(2) estimate the 3D coordinates for the positions of the two control points (1 and 2) using
Equation (3), see also in Figure 7.

control point_1 =

 min X
min Y
min Z

+ 1
3

 maxX−minX
maxY−minY
maxZ−minZ


control point_2 =

 min X
min Y
min Z

+ 2
3

 maxX−minX
maxY−minY
maxZ−minZ


(3)

Here min X and max X denote the minimum and maximum x-coordinates. minY, maxY, min Z
and max Z are defined similarly.
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Figure 7. Location of the two control points.

By using two control points, the likelihood of segmentation ambiguity is reduced. In general,
the object space determined by an axis parallel bounding box. However, this cuboid might degenerate
to a cube. In such situation, if the control points are located at the diagonal of the cube, the distances
from the control points to the different faces of the cube are identical, as shown in Figure 7: Plane A
and plane B have an equal distance to the first control point as well as to the second control point
which means that plane A and plane B share the same location in attribute space. For removing such
ambiguity thoroughly, the two control points should not be located on the diagonal of the cuboid.
To optimize the locations, the two control points are shifted to the positions 1′ and 2′, see Figure 7
(refer to the location introduced in ref. [59], the optimization is done). Here we should demonstrate
that the positions of the control points are not unique as long as the ambiguity of location in the
attribute space could be avoided. In the following, the 3D coordinates of the two control points are
estimated by Equation (4).

Coordinates_1 =

 min X
min Y
min Z

+

 2
3 (maxX−minX)
1
3 (maxY−minY)
1
2 (maxZ−minZ)


Coordinates_2 =

 min X
min Y
min Z

+

 1
2 (maxX−minX)
1
3 (maxY−minY)
2
3 (maxZ−minZ)


(4)

3.4.2. Voting Scheme for Planar Segmentation

The attributes introduced in the last section are used to segment the points belonging to one plane.
A voting scheme is used to obtain the segmentation. Voting schemes were proposed and applied in
refs. [60–62]. The original idea is to extract implicit structural features in 3D point clouds affected
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by noise and isolated points. Voting schemes have been further developed given their significant
inferential capability of structures and it has been applied for the detection of structural features in 3D
point clouds [60,63,64]. In our research, it is used to segment the planar patches of bricks.

Note that the number of control points determines the dimension of the accumulator array, e.g.,
if one control point is selected for planar patch attribute computation, a one-dimensional accumulator
array is adopted for the voting scheme. In our research, two control points are selected, therefore the
accumulator array is two dimensional. As shown in Figure 6b, the accumulator array collects for
each 3D point based on its two distances to the two control points. These two distances span the axis
of the accumulator array. Next, the accumulator array is binned and the number of 3D points that
contribute to each bin is counted. Here, a point cloud from one brick that includes three planar patches
is selected to illustrate the voting scheme. For the points of this brick, the surface point density is about
1,200,000 pt/m2 , as the point spacing is ~1 mm. To ensure that enough points are collected in the
accumulators, the width is set as ten times the point spacing, i.e., 10 mm. Here we should demonstrate
that the width is set by the user as long as the number of points collected in the accumulators is
enough. In the following step (Section 3.4.3), the points will be refined clustered so that the value is not
very crucial in the current step. Figure 8a shows the input point cloud. Through the voting scheme,
three peaks are generated in the accumulator array, see Figure 8c. The points that belong to different
planar patches after segmentation, are shown in Figure 8b in different colors.
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Figure 8. Voting scheme for the segmentation of points. (a) Input point cloud; (b) The segmented
patches; (c) The 2D accumulator array.

3.4.3. Refined Clustering of Points

Once the locations of the two control points determined, the attributes (i.e., the special distance)
for all points in the point cloud are estimated and recorded in the accumulator array. Afterwards,
points with similar attributes (belonging to one planar patch) are clustered based on the points’
proximity and co-planarity. Points belonging to different planes in the object space are expected to
form different peaks in the attribute space. Figure 9 illustrates the proposed flow of segmentation of
points belonging to one planar patch.
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In the process of segmentation, first a threshold is defined for the number of points in a peak that is
expected to guarantee the composition of a planar patch, i.e., if the number of points in the peak is less
than the threshold, the current peak will not be considered as a seed planar patch. Then, plane fitting
is conducted using the points in the peak through PCA. Let the equation of the fitted plane be defined
as Equation (5).

ax + by + cz = d (5)

where the normal vector of the planar surface is defined as N = (a, b, c) and d is the distance of the
plane to the origin.

Next, the distances di of all points in the current peak to the fitted plane are calculated using
Equation (6).

di =
|axi + byi + czi − d|√

a2 + b2 + c2
(6)

In which i = 1, 2, · · · , n, n is the number of points in the current peak, di is the distance for the i− th
point in the current peak, (xi, yi, zi) denote the 3D coordinate for the i− th point.

Afterwards, the mean and RMS (Root Mean Square) of the distances are estimated as
−
d and

σ. The co-planarity of the points is evaluated by the RMS. More specifically, a fitting plane will be
accepted when the RMS is less than the accuracy of the dataset. Once the points in the peak pass
the co-planarity test, the points surrounding the current peak could be added to the fitted plane
above using the distance. If the distance of points in a neighboring peak to the fitting plane satisfy
−
d− dj < σ(j = 1, 2, · · · , m,m is the number of points in the neighborhood peak), it is accepted as a point
in the plane. In this way, all points in the current fitting plane are determined. Then, plane fitting using
the points contributing to the current plane is conducted again by PCA and the obtained eigenvector
with respect to the third component of PCA represents the final normal vector for the plane.

3.4.4. Planar Patches Merging and Clustering

The process introduced in Sections 3.4.1–3.4.3 is performed for all the components acquired in
Section 3.3. In this way all possible planar patches are identified, as well as the corresponding centroid
and normal vector. However, over-segmentation may occur induced by outliers and the sensitivity of
the algorithm. Thus, the next step is to merge planar patches that have similar normals and low bias
angles. Here, we use the centroid and the bias angle to realize this step, the core idea is to define a
threshold for the centroid and the bias angle. Through comparing these two values, patches belonging
to the same brick plane are found.

Afterwards, the process of clustering, i.e., finding the planar patches belonging to the same brick,
is done based on the centroid, normal vector and the angle correlation. It should be noted that the
normal vectors for the three patches belonging to one brick are mutually perpendicular. The process
is first to search the planar patches within a defined centroids’ distance, then the planar patches
belonging to one brick are found based on the induced angle between two planar patches within
a defined angle value around π/2. To avoid faulty clustering, a threshold is fixed for the distance
between the adjacent patches so that the maximum distance does not exceed this threshold. The idea
to fix the threshold for the distance is based on the nominal size of the brick, i.e., if l1, l2 and l3 denote
the nominal length, width and height of the brick respectively, the threshold could be expressed by√
(l1/2)2 + (l2/2)2 + ∆l. Here, l1 ≥ l2 ≥ l3 and l3 ≤ ∆l ≤ 0.01 m. In other words, it is better to set

the distance threshold similar with the size of the brick; otherwise, it seems difficult to detect the
planar patches.

3.5. Brick Reconstruction

Once all the planar patches are identified, the next step is to reconstruct the brick. Ideally, one brick
consists of six planar patches of points, from which the brick could be reconstructed successfully.
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However, due to occlusions, scanning geometry and the accuracy of the clustering method, two issues
exist in the processing. On one hand, the complete plane is hard to segment, i.e., only part of the
points in the interior of the plane are extracted. However, the reconstruction uses the plane fitted on
the detected points in one planar patch, so part of the points is enough for the fitting. In other words,
complete planes are not required. On the other hand, it is practically impossible to acquire six planar
patches for one brick. Generally, three perpendicular planar patches allow the reconstruction of a
brick, as the intersection of the three planes enables to reconstruct the vertices of the brick. Once three
planar patches are detected, the normal vector and the centroid of each planar patch are estimated,
and their intersection is computed as well. Based on the three intersections, the first vertex of the brick
is fixed. The next step is to reconstruct the other vertices. For some bricks, three surfaces could be
scanned with fine scanning geometry. In many cases, however, maybe only two or one surfaces are
scanned. When only one surface is scanned for one brick, it seems impossible to reconstruct the brick.
A possible likely way is first to decide this surface belonging to which side of the brick based on its
nominal length, width and height. Next step is to determine the brick direction in 3D space through
combining the picture or the raw point cloud manually. Then the brick reconstruction could be done.
However, considering that this process has uncertainty and needs manual work which results in the
process is lack of automation and efficiency. Therefore, we do not consider this case in our research.

Below, the process of reconstructing the brick from two or three planar patches is introduced.
In the case of three planar patches, once the first vertex, P0, is calculated and three normal vectors of the
planar patches, v1, v2 and v3, are estimated, a so-called brick coordinate system is defined as follows:
the vertex P0 is the origin of the brick coordinate system, v1, v2 and v3 are mutually perpendicular and
parallel to the three axes of the brick coordinate system respectively, as shown in Figure 10: points C1,
C2 and C3 denote the centroids of the plane A, B and C.
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Figure 10. Graphical illustration for the brick reconstruction.

Within this special coordinate system, the other vertices are estimated. Here we take one vertex P1

as example to illustrate the calculation procedure in detail. As shown in Figure 10, the first vertex P0 and
the centroid C2 are represented as P0

(
xP0 , yP0 , zP0

)
and C2

(
xC0 , yC0 , zC0

)
respectively; the normal vector

v1 is v1(a1, b1, c1). Thus, the vector
→

P0C2
(

xC2 − xP0 , yC2 − yP0 , zC2 − zP0

)
projected to the direction of v1

is given by Equation (7).
→

P0D2 =
→

P0C2 · v1 · v1 (7)

In practice, the normal vectors
→

P0D2 and
→

D2P1 are always identical. Therefore, the vector
→

P0P1

is determined as
→

P0P1 = 2
→

P0D2. In this way, the 3D coordinate of the vertex P1 are easily obtained.
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Similarly, the 3D coordinates of the vertices P3 and P5 are estimated. Afterwards, the other vertices’ 3D
coordinates are obtained based on the geometric attributes of the cuboid.

In the case of two planar patches, given that patches belonging to the same brick are mutually
perpendicular and, thus, normal vectors associated to each facet should be perpendicular. Therefore,
the normal vector for the third facet could be estimated. However, it seems there is no way to calculate
any vertex for one brick because the centroid for the third facet is still unknown. Nevertheless,
the nominal length (a), width (b) and height (h) can be used to obtain the coordinates of the vertex.
As shown in Figure 10, three possible situations may occur: (1) Only patch A and patch B are segmented,
(2) Only patch A and patch C are segmented, and (3) Only patch B and patch C are segmented.
The process of reconstructing the brick is slightly different for each configuration. Here, the first
situation is used as an example to illustrate the processing.

Only patch A and patch B are segmented. The process first estimates the centroids for the two
patches (C1 and C2). Next, six vertices, P0 ∼ P5, in the segmented planar patches, are estimated using
the centroids and the principle components for the patches given by Equation (8).

P0 = C1 − v2 · a/2− vA2 · b/2
P1 = C2 + v1 · h/2− vB1 · b/2
P2 = C2 + v1 · h/2 + vB1 · b/2
P3 = C1 − v2 · a/2 + vA2 · b/2
P4 = C1 + v2 · a/2 + vA2 · b/2
P5 = C1 + v2 · a/2− vA2 · b/2

(8)

Here vA2 is the second principle component for the points of patch A obtained by principle
component analysis (PCA), vB1 is the first principle component for the points of patch B, v2 is the
normal vector for patch B that is equal to the third principle component for the points of patch B.
It should be noted that the PCA results depend on the number of points on each of the patches of the
brick. However, the bricks in most cases are cuboids rather than cubic (faces are rectangles), and when
the height and width of the brick are almost identical, it will be difficult to use the first or second
components of the PCA for patch B. It is noteworthy that the normal vector (v2) of patch B is parallel
to the first principle component (vA1) of the PCA of patch C while the first principle component (vB1)
of the PCA of patch B is parallel to the normal vector (v3) of patch C. Thus, to solve the tricky of the
first or second components of the PCA, the improvement of Equation (8) is done by the following
replacement: vA1 = v2 and v3 = vB1.

Once the vertices P0 ∼ P5 are estimated, the vertices P6 and P7 are obtained according to the
attributes of a cuboid as shown in Equation (9).

P6 = P1 + P5 − P0

P7 = P2 + P4 − P3
(9)

4. Results

4.1. Filter Needless Points Results

The first step is filtering of needless points. The points of two targets are easy to be recognized,
and they are filtered manually by the user firstly. TLidar point cloud data were collected using a
FARO LS-880 laser scanner, the nominal accuracy of which is ±3 mm (one sigma) as introduced in
Section 2. Thus, the criterion for removing ground points is set as 6 mm. Combined with the normal
vector for each point, the ground points were discarded coarsely. Next, the curvature for the remaining
points was estimated by eigen value analysis of the local covariance matrix and vegetation points were
removed. Finally, the local density was computed with a radius of 0.03 m for the remaining points.
In this way, remaining outliers, vegetation points and ground points are filtered. The number of points
in the raw point cloud is 1,514,123, and the number of left brick points is 258,876, i.e., a total number of
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filtered needless points is 1,255,247. The scatter diagram colored by Z value after the filtering results is
shown in Figure 11. The remaining points are colored by Z value while removed points are colored by
red. Note that, compared to manually removing the needless results, our method could implement
in an automatic manner. On the other hand, the needless points close to the bricks are difficult to
detect and remove manually. From the perspective of computational efficiency, though our method
contains several steps, it is easy to implement based on the algorithms and methods proposed in
previous articles.
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4.2. Roughness Estimation Results

Afterwards, the roughness estimation for each point was completed in CloudCompare software
(Paris, France) [55] according to the theory introduced in Section 3.2. In our study, parameter K
was set at 50 to search nearest neighbors for the current point, and the least squares algorithm was
implemented using the identified 50 points to fit a plane. Next, the distance representing the roughness
was calculated from the current point to the fitted plane. Finally, the determined roughness values are
in [0.000 0.025] m (In the symbol [], the left value is the minimum roughness while the right value is
the maximum roughness). It is apparent that the points with relatively high roughness value are edge
points and can be separated. Here, 0.0045 m as roughness threshold is selected for determining edge
points. In other words, the points with a roughness values within the interval [0.0045 0.025] m are
regarded as edge points. Figure 12 shows the scatter diagram colored by roughness for the remaining
brick points. Note that, the roughness threshold determined here is related to the object shape and size,
that is, for other applications, it has to be adjusted accordingly. Obviously, the greater the roughness
threshold, the more points located at the edge of the bricks will be removed.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 

 

4.2. Roughness Estimation Results 

Afterwards, the roughness estimation for each point was completed in CloudCompare software 

(Paris, France) [55] according to the theory introduced in Section 3.2. In our study, parameter K was 

set at 50 to search nearest neighbors for the current point, and the least squares algorithm was 

implemented using the identified 50 points to fit a plane. Next, the distance representing the 

roughness was calculated from the current point to the fitted plane. Finally, the determined 

roughness values are in [0.000 0.025] m (In the symbol [], the left value is the minimum roughness 

while the right value is the maximum roughness). It is apparent that the points with relatively high 

roughness value are edge points and can be separated. Here, 0.0045 m as roughness threshold is 

selected for determining edge points. In other words, the points with a roughness values within the 

interval [0.0045 0.025] m are regarded as edge points. Figure 12 shows the scatter diagram colored by 

roughness for the remaining brick points. Note that, the roughness threshold determined here is 

related to the object shape and size, that is, for other applications, it has to be adjusted accordingly. 

Obviously, the greater the roughness threshold, the more points located at the edge of the bricks will 

be removed. 
 

 

Figure 12. Scatter diagram colored by roughness value for the remaining brick points. 

4.3. Coarse Segmentation Results 

Once the edge points are removed, the 3D connected component analysis is implemented to 

segment brick points. The 3D grid step was set at 0.005 m which denotes the minimum gap between 

two components. The minimum number of points was set at 80 which means that components with 

less than 80 points will be ignored. In this way, the smallest components were removed 

automatically. The coarse segmentation results for the piles of bricks are shown Figure 13. 

 

Figure 13. Coarse segmentation results colored at random. 

Figure 12. Scatter diagram colored by roughness value for the remaining brick points.



Remote Sens. 2018, 10, 1709 15 of 23

4.3. Coarse Segmentation Results

Once the edge points are removed, the 3D connected component analysis is implemented to
segment brick points. The 3D grid step was set at 0.005 m which denotes the minimum gap between
two components. The minimum number of points was set at 80 which means that components with
less than 80 points will be ignored. In this way, the smallest components were removed automatically.
The coarse segmentation results for the piles of bricks are shown Figure 13.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 

 

4.2. Roughness Estimation Results 

Afterwards, the roughness estimation for each point was completed in CloudCompare software 

(Paris, France) [55] according to the theory introduced in Section 3.2. In our study, parameter K was 

set at 50 to search nearest neighbors for the current point, and the least squares algorithm was 

implemented using the identified 50 points to fit a plane. Next, the distance representing the 

roughness was calculated from the current point to the fitted plane. Finally, the determined 

roughness values are in [0.000 0.025] m (In the symbol [], the left value is the minimum roughness 

while the right value is the maximum roughness). It is apparent that the points with relatively high 

roughness value are edge points and can be separated. Here, 0.0045 m as roughness threshold is 

selected for determining edge points. In other words, the points with a roughness values within the 

interval [0.0045 0.025] m are regarded as edge points. Figure 12 shows the scatter diagram colored by 

roughness for the remaining brick points. Note that, the roughness threshold determined here is 

related to the object shape and size, that is, for other applications, it has to be adjusted accordingly. 

Obviously, the greater the roughness threshold, the more points located at the edge of the bricks will 

be removed. 
 

 

Figure 12. Scatter diagram colored by roughness value for the remaining brick points. 

4.3. Coarse Segmentation Results 

Once the edge points are removed, the 3D connected component analysis is implemented to 

segment brick points. The 3D grid step was set at 0.005 m which denotes the minimum gap between 

two components. The minimum number of points was set at 80 which means that components with 

less than 80 points will be ignored. In this way, the smallest components were removed 

automatically. The coarse segmentation results for the piles of bricks are shown Figure 13. 

 

Figure 13. Coarse segmentation results colored at random. Figure 13. Coarse segmentation results colored at random.

It should be noted that different bricks have various positions in the pile. Additionally,
variation density and roughness induced by the scanning geometry inevitably happened. Those caused
the coarse segmentation results (components) to include diverse situations that are classified in the
following categories, see Figure 14: (a) less than three surface (one or two); (b) one brick, represented
by three surfaces; (c) more than three surfaces. Therefore, further segmentation and grouping is
required. In particular, searching for three surfaces belonging to one brick is a vital step for the
brick reconstruction.
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4.4. Planar Segmentation and Grouping Results

Next, the planar segmentation and clustering method introduced in Section 3.4 was implemented
to work on individually components. In the process of computing the special distances to the two
control points, a radius of 0.02 m was predefined for searching neighboring points. Then, the voting
scheme and clustering of points were done for planar segmentation. As a result, all possible planar
patches with their corresponding points were segmented. Figure 15a shows the segmentation result
for the component in Figure 14c.

In Figure 15b, we can see that several brick planes were over segmented. It is required to further
process such cases before reconstructing the bricks. In our study, the thresholds for the bias angle and
the distance difference between the adjacent patches are set at one degree and 0.10 m. After merging
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the over segmented patches, patches were clustered, in which the induced angle between two planar
patches in one brick was set equal to (π/2 ± π/180) and the centroid difference was set equal to 0.15 m.
Figure 15b shows the clustering results for the same component. For each cluster, brick reconstruction
was implemented, starting from the segmented planes, their centroids and corresponding normal
vectors. The distance between the centroids of the planes, the angles between their normal vectors and
the nominal length, width and height of the brick are used. In our experiment, the nominal length,
width and height of the brick are obtained by measuring 4 complete brick point clouds, resulting in
values of 0.10310 m, 0.05230 m and 0.03924 m, respectively. It should be noted that complete planes
are not required for the reconstruction. See Figure 15b.
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Figure 15. Segmentation and reconstruction results for one component.

4.5. Reconstruction Results and Accuracy Assessment

The process is repeated with the remaining components until all detectable bricks are
reconstructed. Figure 16a–d show the reconstruction results for four representative components.
Figure 17 shows the reconstruction results for the whole piles of bricks, while the detected planar
patches are plotted as well. Points for which no brick could be found are marked by a yellow ellipse.
The number of bricks successfully reconstructed is 132, while the ground truth number is 175. Therefore,
the completeness of the reconstruction result is about 75%. As we can see from Figure 17, bricks are in
general reconstructed well. However, parts of bricks are sometimes missed in the reconstruction result,
i.e., their planar patches could not be detected or the reconstruction process failed. Two main possible
reasons for missing bricks are: (1) only one patch of one brick is scanned or detected; (2) the number of
points in one patch is too small so that the true normal vector of the patch is hard to estimate.
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Figure 16. Reconstruction examples for four representative components. (a) shows an example of
components composing of one brick. (b) shows an example of components composing of more than
five bricks. (c) shows an example of components composing of two bricks. (d) shows an example of
components composing of five bricks.
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Figure 17. Reconstruction results for the entire piles of bricks.

One of the main interests of brick reconstruction is brick displacement estimation. For such
application, the reconstruction accuracy needs to be ensured. To evaluate the accuracy, vertex points
derived from automatic reconstruction are compared to points manually obtained from the raw point
cloud using the Cloudcompare software (Paris, France) [55]. The accuracy is evaluated by the distance
from the vertex manually obtained to the vertex computed by the proposed method. Vertices belonging
to bricks only partly scanned are ignored, as we cannot pick the vertices manually. The histogram of
the differences along x, y and z axes are plotted, see Figure 18a–c.
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The number of vertices used in the accuracy assessment is 951. The mean difference values are
0.46, −0.36 and 0.34 mm along the x, y and z axes, respectively. The maximum difference values are
29.79, 29.74 and 29.68 mm along the x, y and z axes, respectively. Corresponding standard deviations
are all below 10 mm with values of 9.66, 8.49 and 9.84 mm, respectively. It should be noted that
only a small number of values are above 10 mm caused by scanning conditions such as occlusions,
scanning geometry, et al., which results in no points or sparse points around brick corners. In other
words, the vertices, picked manually with a significant difference values compared to reconstructed
vertices, may not the ground truth values. In order to deepen the analysis of the accuracy, the vertices
with an absolute difference value less than 10 mm are considered for further analysis, the number
of which is 787 which means that about 83% of the vertices have a difference value of below 10 mm.
The mean difference values, maximum difference values and standard deviations are calculated again
for this subset. The mean difference values are −0.43, −0.70 and −1.00 mm along the x, y and z axes,
respectively. The standard deviations are 4.55, 4.53 and 4.60 mm along the x, y and z axes, respectively.
The standard deviations are relatively small which shows that the reconstruction accuracy is high from
the position point of view. The accuracy assessment results are summarized in Table 1. Here, we should
demonstrate that the mean difference values are expected to zero. However, brick fabrication is not
perfect so that corners are often rounded instead of straight, see Figure 19, that is, the brick is not always
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a perfect cuboid. Considering that the magnitude of difference values is very small, the reconstructed
results correspond well to reality. Furthermore, a successful workflow would profit from a carefully
deigned measurement, which ensures that structural units (like bricks) are sampled well.

Table 1. Accuracy assessment for the reconstruction.

Type Axis Mean
Difference (mm)

Maximum
Difference (mm)

Standard
Deviation (mm)

All
x 0.46 29.79 9.66
y −0.36 29.74 8.49
z 0.34 29.68 9.84

Part (mean difference
below 10 mm)

x −0.43 9.94 4.55
y −0.70 9.87 4.53
z −1.00 9.92 4.60
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5. Discussion

5.1. Analysis of the Proposed Methodology

A methodology for segmenting and reconstructing bricks from a pile of bricks sampled by a
terrestrial LiDAR point cloud is presented. In a automatic manner, the raw point cloud is first coarsely
segmented into different components using 3D connected component analysis, then a voting scheme
is used to segment planar patches. After refined clustering of points, merging and clustering patches,
three or two patches belonging to one brick are searched and brick reconstruction is performed based
on the geometry of a brick model, in which the nominal length, width and height are adopted as the
essential parameters. The brick reconstruction is based on the identified planar patches (two or three)
belonging to one brick. Through estimating the normal vectors using principle component analysis,
the main, second and third components for a patch are determined, which combined with the nominal
brick size, results in the brick vertices. Finally, to verify the accuracy of the proposed methodology,
vertices are picked manually using the Cloudcompare software [55]. Here, the picking vertices
are regarded as the ground true. The accuracy assessment results demonstrate that the proposed
methodology for reconstructing bricks has good accuracy and can reconstruct vertices in a reliable way.

The proposed methodology provided a new way for further monitoring changes through
comparing corresponding reconstructed bricks. In ref. [15], a method for the automatic extraction of
face geometry of concrete cubic blocks that typically used in breakwaters was presented. Point clouds
were segmented on the basis of their orientation and location, and through comparing corresponding
cuboids the transformation parameters over time were estimated. Compared to this study, it is evident
that the reconstructed bricks presented in this article for monitoring changes are much more intuitional.
A methodology for the automatic modelling of breakwaters with armor units of cube shape was
presented in ref. [14]. The accuracy of reconstructing the vertices was at centimeter level. Compared to
this work, our methodology was proved to greatly improve the accuracy of reconstructing vertices,
i.e., less than 5 mm along X, Y and Z axes, respectively. Furthermore, the size of cube (with a length
of 1.25 m) presented in [14] is greater than the size of brick (with a length of 0.1 m) presented in
this article, namely the brick is more complex to extract and reconstruct with respect to the cube.
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In this regard, the presented methodology here has better applicability for the brick-like structures
with relatively small size. Besides this, it should be noted that the step of coarse segmentation of
piles of bricks into small components using 3D component analysis simplified and accelerated the
brick reconstruction procedures. To further assess the factors influencing the number of 75% accuracy,
an experiment could be setup, where a pile is carefully constructed and scanned over and over again
from different viewpoints, so that a more complete knowledge on the position of all individual bricks
would be available.

5.2. Further Applications of the Proposed Methodology

The methodology presented here is an initial version using a dense point cloud acquired from a
single scan position by terrestrial LiDAR. Considering a single scan may have avoided minor issues
caused by registration, but the methodology in this paper is expected to work too for point clouds
combining single scans. Dense point cloud data make it possible to extract almost all the brick surfaces
and separate the individual bricks in a pile of bricks, which was not achieved previously in literature.
Due to the inner characteristics of the 3D point cloud data, all the reconstructed bricks are located
in its real position in 3D space, and subsequent change analysis or deformation analysis could be
performed. Actually, many ancient masonry buildings that are composed of individual bricks, such as
the Great Wall in China and Great Pyramid of Giza in Egypt, are still in service in modern society.
In addition, the historical sites as related in ref. [41] are hot topics in archaeological engineering
and their safety are of great importance. However, they suffer from aging effects, geo-hazards,
urban construction, etc., thus it is necessary to analyze and detect changes from these structures.
The presented methodology for separating and reconstructing the bricks could be a good ingredient to
document masonry structures in a quantitative and accurate way. Furthermore, for the purpose of
change detection, it can be extended to two situations:

(1) multiple scans from different positions in one epoch, in case larger scenes could be analyzed.
In one scan, occlusions are unavoidable but occlusions can be largely avoided by using multiple scans.
Meanwhile, for one brick, more planar patches will be scanned and segmented which will improve the
accuracy and the efficiency of the brick reconstruction.

(2) multiple scans from the same position in different epochs, which would enable the brick
change detection by comparing the corresponding bricks from different epochs. In this case, the point
clouds from different epochs should be registered with high accuracy. Otherwise, small changes are
difficult to identify due to alignment errors.

5.3. Future Work

The newly proposed methodology is an effective way of segmenting and reconstructing a large
number of bricks sampled by terrestrial LiDAR point cloud that will enable applications on larger
brick-like structures such as ancient walls, masonry churches, etc. For such applications, it is important
that the components of a structure can be identified. However, the segmentation process is affected by
variations in the point density, incident angle and point quality. Therefore, some manual processes are
required for better segmentation results. In order to improve the applicability, some improvements
can be made to enhance the process such as promote the adaptative to the point density, improve the
performance of the noise reduction and the ability of extracting the boundary points. Furthermore,
due to the limitations of the TLidar system that has varying performance induced by the variation
in object range, object reflectivity and incident angle [65,66], it is better to set the system close to the
structure, the value of which is determined by the size of the constitutional unit. The relationship
between the ranges and the size of constitutional unit will be researched in future work.

6. Conclusions

This paper deals with a novel use of TLS applied to the 3D reconstruction of unorganized
piles of bricks. The framework of segmenting and reconstructing the brick model is proposed and
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implemented. As part of the suitability assessment of the proposed methodology, an accuracy
assessment by comparing the reconstructed vertices to the manually picked vertices was carried
out. The results demonstrate the potential of dense TLS point cloud to reconstruct the objects with
small size such as bricks and stones. The proposed methodology combines highly used algorithms,
i.e., connected component analysis, principle component analysis and voting scheme, that enables the
framework of our methodology to be highly transferable to data collected with other TLS instruments
and similar scenarios. Furthermore, the detailed and high-precision brick model is of great value
for post change detection and deformation analysis. This study provides new sights and references
for the applications of TLS in segmenting and reconstructing individual objects from the scenarios
composed by a large number of similar units such as masonry buildings, masonry bridges, rock slopes
and high slopes.
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