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Abstract: Accurate acquisition of forest structural parameters, which is essential for the parameterization
of forest growth models and understanding forest ecosystems, is also crucial for forest inventories
and sustainable forest management. In this study, simultaneously acquired airborne full-waveform
(FWF) LiDAR and hyperspectral data were used to predict forest structural parameters in subtropical
forests of southeast China. The pulse amplitude and waveform shape of airborne FWF LiDAR data
were calibrated using a physical process-driven and a voxel-based approach, respectively. Different
suites of FWF LiDAR and hyperspectral metrics, i.e., point cloud (derived from LiDAR-waveforms)
metrics (DPC), full-waveform (geometric and radiometric features) metrics (FW) and hyperspectral
(original reflectance bands, vegetation indices and statistical indices) metrics (HS), were extracted and
assessed using correlation analysis and principal component analysis (PCA). The selected metrics
of DPC, FW and HS were used to fit regression models individually and in combination to predict
diameter at breast height (DBH), Lorey’s mean height (HL), stem number (N), basal area (G), volume
(V) and above ground biomass (AGB), and the capability of the predictive models and synergetic
effects of metrics were assessed using leave-one-out cross validation. The results showed that: among
the metrics selected from three groups divided by the PCA analysis, twelve DPC, eight FW and
ten HS were highly correlated with the first and second principal component (r > 0.7); most of the
metrics selected from DPC, FW and HS had weak relationships between each other (r < 0.7); the
prediction of HL had a relatively higher accuracy (Adjusted-R2 = 0.88, relative RMSE = 10.68%),
followed by the prediction of AGB (Adjusted-R2 = 0.84, relative RMSE = 15.14%), and the prediction
of V had a relatively lower accuracy (Adjusted-R2 = 0.81, relative RMSE = 16.37%); and the models
including only DPC had the capability to predict forest structural parameters with relatively high
accuracies (Adjusted-R2 = 0.52–0.81, relative RMSE = 15.70–40.87%) whereas the usage of DPC and
FW resulted in higher accuracies (Adjusted-R2 = 0.62–0.87, relative RMSE = 11.01–31.30%). Moreover,
the integration of DPC, FW and HS can further improve the accuracies of forest structural parameters
prediction (Adjusted-R2 = 0.68–0.88, relative RMSE = 10.68–28.67%).
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1. Introduction

As the dominant terrestrial ecosystem on earth, forests occupy approximately 30% of the land
surface area and contribute to 75% of land gross primary production [1,2]. Subtropical forests have
high diversity, dense carbon and complex structure, and cover approximately one quarter of China’s
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total area. They provide valuable ecosystem goods and services to humanity and play a key role
in the mitigation of climate change [3,4]. Forest structures, shaped by silvicultural practices and
natural events, provide considerable information about ecosystem values such as biodiversity, water
conservation and erosion control [5]. Forest structural parameters (e.g., diameter at breast height (DBH),
tree height (H), tree density (N), basal area (G), etc.) are essential for the parameterization of forest
growth models and understanding forest ecosystems [6,7]. Timely, accurate and reliable acquisition
of forest structural parameters across large areas is crucial for sustainable and multifunctional forest
management [8]. Traditionally, forest structural parameters were collected using field inventory,
which is labor intensive and time-consuming [9,10]. Remote sensing technology is able to provide
detailed continuous-spatial, multi-dimensional and massive-spectral information, allowing for precise
forest structural parameter prediction based on their structural and spectral signatures [11–13].
Remote sensing data have advantages such as spatial information quantification, high geometric
precision and vast geographic coverage [14,15], and have been used in the prediction of forest structural
parameters over a range of forest types [16–18].

Light detection and ranging (LiDAR) has been applied as a promising technology for predicting
forest structural parameters due to its capability to provide three-dimensional information about
forest structures with high accuracy [19–21]. Airborne discrete-return LiDAR systems record multiple
return signals, which contain the three-dimensional position and intensity of reflected light from
each transmitted pulse. The metrics extracted from discrete point clouds represent the vertical
structural characteristics of canopy such as height measures, Weibull distribution parameters, and
classes of crown volume zones, etc., which can be used to predict forest structural parameters [22–24].
Forest structural parameters, i.e., H, G, V and AGB, have been predicted using discrete point cloud
data in previous studies [21,22,24,25]. However, discrete-return systems record limited information in
each returned signal, and can only detect the surfaces which are separated sufficiently in space [26].
Airborne full-waveform (FWF) LiDAR systems record the whole backscattered returns, thus they
can record the geometric and biophysical attributes of forests [27]. The point cloud can be derived
from FWF LiDAR data, and the number of returns extracted from FWF data is much higher than that
from discrete point cloud data [28]. The waveforms obtained by full-waveform systems depend on
many factors such as target backscattering characteristics, LiDAR sensor types, scan geometry [29],
etc. In order to make pulse amplitude possible to be used as its true value, the pulse amplitude needs
to be calibrated and corrected in full-waveform data processing [30,31]. Owing to the waveform
recorded by full-waveform system being stretched by the increases of off-nadir angle and the
waveforms from different trajectories often being non-vertical, the waveform processing approach
needs to be developed to synthesize the raw waveforms in multiple directions into composite vertical
waveforms. The full-waveform metrics (FW) extracted from FWF data describe the canopy response
using parameters of waveform shape and can be applied in the prediction of forest structural
parameters [13,32]. Lindberg et al. [33] extracted the amplitude of waveforms in height intervals
to predict the volume in hemi-boreal forest in the southwest of Sweden, and found that the predictive
model of total volume had high accuracy for waveform data (relative RMSE = 31.9%). In the prediction
of forest structural parameters (e.g., DBH, H, N and AGB, etc.), the accuracies of predictive models
were improved when using full-waveform metrics [34,35].

Hyperspectral data offer large amounts of continuous-narrow bands which contain detailed
spectral signatures associated with forest biophysical properties, and which can be applied to
predict forest structural parameters [16,36,37]. Airborne hyperspectral data usually have finer spatial
resolution than space-borne data because airborne platforms commonly having lower altitudes than
space-borne platforms [38,39]. Previous studies have demonstrated that airborne hyperspectral
data perform well in forest tree species classification [40,41], and structural parameters prediction,
e.g., DBH [42], tree height [43], basal area [44], stem density [23] and biomass [44–46]. The visible
(VIS) and near-infrared (NIR) regions of hyperspectral narrow bands are usually considered to be
correlated with forest structure properties [39,47]. Latifi et al. [23] found that a number of atmospheric
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window bands in the domains of VIS and NIR such as 540 nm, 680–730 nm and 970 nm were the most
important and stable predictors of forest stem density and biomass. The hyperspectral narrow band
metrics, formulated using the bands in VIS and NIR domains, rely on the pigments (e.g., chlorophyll,
carotene and anthocyanin, etc.), structure and physiology of tree canopy and have great potential
in the prediction of forest structural parameters [48,49]. Particularly, using hyperspectral narrow
band metrics can relatively weaken the influences of soil background reflectance, illumination and
atmospheric absorption [17,50]. The vegetation indices are the most commonly used narrow band
metrics in the prediction of forest structural parameters [37,51,52]. The vegetation indices such as
the soil-adjusted vegetation index (SAVI), atmospherically resistant vegetation index (ARVI), and
normalized difference vegetation index (NDVI) are considered to be correlated with N, G, V and
AGB [23,53]. Zhang et al. [54] used HJ-1 hyperspectral data to predict forest AGB in a subtropical forest
and found that SAVI is strongly related to the AGB (r = 0.91). Nevertheless, in a densely forest area, the
hyperspectral data metrics are prone to asymptotically reach a saturation level [55]. Moreover, since
the hyperspectral data usually provide horizontal information, it has certain limitations in quantifying
the vertical structure of forests [56]. These limitations can influence the accuracy of predictions of
forest structural parameters.

An integration of airborne LiDAR and hyperspectral data is expected to provide more information
on the prediction of forest structural parameters. However, few studies have attempted to improve
forest structural parameters predictions by integrating airborne LiDAR and hyperspectral data.
Dalponte et al. [42] integrated airborne discrete point cloud LiDAR and hyperspectral data to predict
stem diameter and volume in a temperate forest and found that the improvement in accuracies of stem
diameter and volume were 0.4% and 0.5%, respectively. Luo et al. [57] integrated airborne discrete
point cloud LiDAR and hyperspectral data to estimate AGB in a northern temperate deciduous forest.
The results indicated that by using integrated discrete point cloud LiDAR and hyperspectral data, 2.2%
more of the variability in AGB was explained. In previous studies, most have only focused on the
prediction of forest biomass by integrating discrete-return LiDAR and hyperspectral data in temperate
and boreal forests. Since the acquisition modalities and structures of FWF LiDAR and hyperspectral
data are disparate, it is difficult to integrate FWF LiDAR and hyperspectral data at the raw data
level [58]. The integration commonly includes transforming FWF LiDAR data into two-dimensional
images and adding suites of hyperspectral metrics or the information of tree-species derived from
hyperspectral data into FWF data [23,32,53].

However, the predictions of forest structural parameters have been mainly implemented in
temperate and boreal forests, and there are few published studies from subtropical forest. Moreover,
few studies have used radiometrically and geometrically calibrated FWF LiDAR data in analysis,
therefore, the synergetic effects of FWF LiDAR and hyperspectral data could be influenced by
the target backscattering characteristics and scan geometry. In addition, previous studies did not
comprehensively extract and optimize suites of FWF LiDAR and hyperspectral metrics, and the
relativities and synergetic effects of point cloud, full-waveform and hyperspectral metrics have not
been fully explored in the prediction of forest structural parameters. To the best of our knowledge, no
previous study has integrated simultaneously acquired airborne FWF LiDAR and hyperspectral data
to predict forest structural parameters in subtropical forests. The objectives of this paper are: (1) to
calibrate the airborne FWF LiDAR data by the physical process-driven and voxel-based models; (2) to
integrate and assess the synergetic effects of FWF LiDAR and hyperspectral data-derived metrics for
predicting forest structural parameters in subtropical forests; and (3) to validate the predictive models
fitted by DPC, FW and HS individually, and in combination using field measured data and to analyze
the residuals of the prediction.
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2. Materials and Methods

Figure 1 shows the workflow for forest structural parameters prediction. First, the FWF LiDAR
data and hyperspectral data were preprocessed to extract discrete point cloud data, calibrate the pulse
amplitude and waveform shape, and reduce the influences of atmospheric interference and terrain
distortion. Second, different suites of FWF LiDAR and hyperspectral metrics, i.e., point cloud (derived
from full-waveform) (DPC) metrics and full-waveform (geometric and radiometric features) (FW)
metrics and hyperspectral (original reflectance bands, vegetation indices and statistical indices) (HS)
metrics, were extracted and selected using correlation analysis and principal component analysis (PCA),
and the relativities of selected metrics were assessed using Pearson’s correlation analysis. Finally, the
selected DPC, FW and HS were used to fit regression models individually, and in combination to
predict DBH, HL, N, G, V and AGB, and the capability of the predictive models and synergetic effects
of metrics were assessed.
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Figure 1. The overview of the workflow for prediction of forest structural parameters using
simultaneously acquired airborne full-waveform LiDAR and hyperspectral data in subtropical forests.

2.1. Study Area

The nearly 1103 ha study area is located in the Yushan forest (120◦42′9.4” E, 31◦40′4.1” N), situated
in the southern Jiangsu provinces, southeast China (Figure 2). The annual mean temperature and
precipitation are 15.6 ◦C and 1062.5 mm, respectively. The elevation of the Yushan forest ranges from 20
to 261 m above sea-level. The Yushan forest is north subtropical secondary forest and has three types of
forests: coniferous tree species dominated, broadleaved tree species dominated and mixed tree species
forests [59]. Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) and Masson pine (Pinus massoniana
Lamb.) are the main coniferous tree species. Sweet gum (Liquidambar formosana Hance) and Sawtooth
oak (Quercus acutissima Carruth.) are the major broadleaved tree species in the study area.
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Figure 2. (a,b) Location of the Yushan Forest study site in Suzhou city, Jiangsu province; (c) the remote
sensing image of Yushan Forest with a true color composition and the plot distributions of the three
forest types; (d) three-dimensional display of a strip of point cloud data (the color of each point is
extracted from the hyperspectral image). Picture, hemispherical, composite waveform and spectral
reflectance of three typical forest plots are presented along the strip.

2.2. Field Data

Field surveys were conducted under leaf-on condition in June and August 2012 and August 2013.
Guided by the pre-stratified stand inventory data in 2012, a total of 67 square (30 × 30 m2) field plots
were established. These plots covered multiple site indices, age classes and tree species, which can be
classified into three types according to the composition of the tree species: (i) coniferous tree species
forest (n = 15); (ii) broadleaved tree species forest (n = 18); and (iii) mixed tree species forest (n = 34).

The coordinates of the plot corners were acquired using Trimble GPS measurements with the
result of sub-meter accuracy. All the live trees within each plot, which have a DBH > 5 cm were
measured. The measurement of individual tree parameters can be seen in [41]. The dead wood and
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small trees which has a DBH < 5 cm within the plot were also recorded, but excluded in the calculations
of biomass and volume. The six plot-level forest structural parameters, including DBH, HL, N, G,
V and AGB, were calculated using the measured individual tree data. Species-specific allometric
equations and general volume equations of local or nearby provinces were used to calculate AGB and
V, respectively (Tables A1 and A2). Within each plot, the AGB and V of each individual tree were
calculated according to the DBH and H measured in the field, and then summed to the plot-level AGB
and V. Table 1 provides a summary of the six forest structural parameters at plot-level.

Table 1. Summary statistics of field-measured forest structural parameters in the study area (n = 67,
size = 900 m2).

Parameters
Coniferous Forests (n = 15) Broadleaved Forests (n = 18) Mixed Forests (n = 34)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

DBH 13.92 3.09 16.90 4.01 14.33 3.16
HL 10.41 1.84 12.25 3.00 10.60 1.57
N 1692.73 619.81 986.28 441.67 1467.59 413.82
G 25.96 6.01 24.44 6.56 25.23 6.24
V 124.80 24.51 142.05 34.31 126.71 26.91

AGB 77.87 23.27 98.69 47.45 88.81 30.04

Note: DBH = diameter at breast height (cm); HL = Lorey’s mean height (m); N = stem number (ha−1); G = basal area
(m2·ha−1); V = volume (m3·ha−1); AGB = above ground biomass (Mg·ha−1). Std. Dev. = standard deviation.

2.3. Remote Sensing Data

In August 2013, the airborne full-waveform LiDAR and hyperspectral data were simultaneously
obtained using the LiCHy System [60]. The platform was flown at the height of 900 m above ground
and the datasets covered the whole Yushan Forest. Full-waveform LiDAR data were obtained using
the Riegl LMS-Q680i scanner. The scanning angle was ±15◦ from nadir, and the pulse repetition
frequency was 360 kHz. The temporal sample spacing for recording returned waveforms was 1 ns
(15 cm in distance approximately), and the size of the footprint at nadir was 0.45 m in diameter. In the
overlapping regions, the pulse density was three times higher than a single strip. Hyperspectral data
were acquired using an AISA Eagle II sensor with 64 bands and the spectral resolution was 3.3 nm.
The sensor obtained hyperspectral images in the pattern of push-broom imaging and the spectrum
ranges covered from 400 nm to 970 nm. The spatial and radiative resolution of the hyperspectral
data were 0.6 m and 12 bit, respectively. The geometric accuracy of each pixel was less than one
meter with an inertial measurement unit (IMU), which utilized real-time differential corrections by
a 12-channel GPS receiver. Table 2 summarizes the characteristics of the full-waveform LiDAR and
hyperspectral sensors.

Table 2. The summary of flight parameters and properties of the full-waveform LiDAR and
hyperspectral sensors.

Parameters Riegl LMS-Q680i AISA Eagle II

Data of acquisition 17 August 2013 17 August 2013
Flight height 900 m 900 m
Flight speed 55 m/s 55 m/s
Beam divergence 0.5 mrad –
IFOV - 0.65 mrad
Spatial resolution 0.45 m 0.6 m
Wavelength 1550 nm 400–970 nm
Bands 1 64
Swath width 1040 m 612 m
Bit depth – 12 bits
Average pulse distance 0.49 –
Average point density 8.37 –
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2.4. Remote Sensing Data Pre-Processing

2.4.1. Full-Waveform LiDAR Data Pre-Processing

First, a de-noising algorithm and a Gaussian filter were applied to suppress and smooth the
background noise of each returned waveform. The full width at half-maximum (FWHM) was used to
calculate the kernel size of Gaussian filter [61]. Then, the locations and amplitudes of each peak within
the waveform were extracted using a local maxima peak detection filter [62]. Finally, the returned
waveform was decomposed using the Gaussian decomposed algorithm.

The LiDAR point clouds can be derived from the FWF LiDAR data using the Gaussian
decomposed algorithm. Generally, the following equation can be used to decompose the backscattered
waveform into Gaussian components:

f (x) = b + ∑n
i=1 aie−(x−ti)

2/2σ2
i (1)

where f (x) stands for the returned waveform, b represents the background noise, and n is the number
of decomposed Gaussian components. The ai, ti and σi are the parameters corresponding to pulse
amplitude, time of round trip, and the pulse width, respectively [31]. Then, the Levenberg-Marquardt
algorithm and a nonlinear least squares method were applied to fit multiple Gaussian components into
the backscattered waveform. The LiDAR point clouds extracted from FWF LiDAR data were stored as
the format of LAS 1.3 and used for analysis.

In this study, the points in the ground and upper surface of the forest canopy were applied to
create the digital terrain model (DTM) and digital surface model (DSM), respectively. The cell size
of DTM and DSM was 0.6 m, the same as the resolution of the hyperspectral data. The value in each
cell was calculated as the mean elevation of these points, and the cells which had no points were
interpolated using neighboring cells by a linear interpolation approach. The value of the DTM was
subtracted from each point elevation to calculate the normalized point cloud of whole study area.

The returned pulse width (Wi
Г, the standard deviation of pulse) and amplitude (Ii

Г, the integral of
returned waveform, which represent the pulse energy) were derived from Gaussian components [63].
In this study, the pulse width (Wi

Г) and amplitude (Ii
Г) were calibrated using a physical process-driven

approach [31]. The values of the pulse width (We) and amplitude (Ie) of the scanner emitted pulses
were used to calibrate Wi

Г and Ii
Г, and the Ii

Г was corrected for the loss of signal using the distance
between the sensor and the object (Di) and the normalization distance of Do [30]:

Wc
i =

WΓ
i

We (2)

Ic
i =

IΓ
i

Ie ×
(

Di
Do

)k
(3)

where Wi
c and Ii

c is the calibrated pulse width and amplitude, respectively. The value of k which
depended on the attenuation of signal occur in the atmosphere was set to 2 [30], and the Do was set to
900 m (the mean height of the platform).

It has been demonstrated in previous studies that the waveform is stretched by the increase in
the off-nadir angle [64,65]. Moreover, due to the obtained airborne FWF LiDAR data are normally
comprised of multiple overlapping strips, the waveforms in a specific location may come from several
strips [66,67]. In this study, a voxel-based approach to composite waveforms was used to correct FWF
data to avoid the influences of off-nadir angle in the waveform shape and to integrate non-vertical
waveforms from multiple strips into composited vertical waveforms. This approach first decomposed
the forest canopies into voxels by vertical space partition (0.6 × 0.6 × 0.3 m3), and then synthesized
raw waveforms from multiple strips into composite vertical waveforms using the maximum amplitude
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value in each voxel (Figure 3). Each composite vertical waveform was normalized using the digital
terrain model (DTM).
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Figure 3. The framework of integration of simultaneously acquired airborne full-waveform (FWF)
LiDAR and hyperspectral data (including the processes of data acquisition, datasets integration and
metrics extraction). DN = Digital Number.

2.4.2. Hyperspectral Data Pre-Processing

The radiance hyperspectral images covering the whole Yushan forest were geometrically rectified
with Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) data. Then, the
geometric-rectified images were mosaicked into a single scene. Atmospheric correction was applied
using an empirical line model, combined with field-measured reflectance spectra of different target
objects obtained by ASD FieldSpec spectrometer, to get the surface reflectance of covers. In this study,
the FWF LiDAR and hyperspectral data were integrated at feature level based on a common coordinate
frame. The framework of integration usage of these two datasets can be seen in Figure 3. In order to
have the best possible geographical matches between the FWF LiDAR and hyperspectral data, the
hyperspectral data were co-registered to the digital surface model (DSM) which calculated from FWF
LiDAR data. In the area of each plot, more than 30 ground control points (GCPs) were used on the
hyperspectral image (30 × 30 m2). The root mean square error of co-registration was lower than 0.3 m
(half of one pixel).

2.5. Full-Waveform LiDAR Metrics

2.5.1. Point Cloud Metrics

The metrics derived from the height normalized LiDAR point cloud were applied to describe
the canopy structure of the plots. In this study, the calculated point cloud metrics (DPC) were: (i) the
selected height measures (n = 11); (ii) the Weibull parameters fitted to the profile of apparent foliage
density (n = 2); and (iii) the crown volume zones (n = 4). A summary of the point cloud metrics and
their descriptions is given in Table 3.

To exclude the influences of below-canopy and non-canopy returns, the point cloud metrics such
as percentile heights and canopy return densities were calculated using the points that were two meters
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above ground [68]. The parameters α and β of the Weibull curve were extracted from the profile of
apparent foliage density as follows [22]:

L(z) = 1−
[

e−(
1−z/H

α )
β
]

(4)

where α and β are the parameters of Weibull, z is the height and H is the maximum canopy height in
a plot.

The zones of crown volume model (i.e., Og, Cg, E and O) were used to characterize the forest
crown volume and spatial arrangement of the canopy materials in three-dimensions [69]. First, the
forest canopy was decomposed into a matrix of voxels, the size of each voxel was 0.6 × 0.6 × 0.3 m3.
Second, the voxels within the matrix were classified into “filled” if there was energy returned from the
voxel and classified into “empty” if there was no energy returned from the voxel. Third, the “filled”
voxels were classified as “euphotic” and “oligophotic” depending on whether the voxel was above or
below the threshold height of the uppermost 65% for all “filled” voxels. Finally, the “empty” voxels
were classified into “open” and “closed” gap zones depending on whether they were located above or
below the filled voxels.

Table 3. The summary of the FWF LiDAR metrics (i.e., DPC and FW) extracted from FWF LiDAR data
(the code and description of each metric are listed).

FWF LiDAR Metrics Description
a Point cloud metrics (DPC)

Percentile heights (h25, h50, h75 and h95) The percentiles of the canopy height distributions (25th, 50th, 75th
and 95th).

Canopy return density (d1, d3, d5, d7
and d9)

The proportion of points above the height percentiles (10th, 30th,
50th, 70th and 90th).

Coefficient of variation of heights (hcv) Coefficient of variation of heights of all points.
Canopy cover above 2 m (Cover) Percentage of all points above 2 m.
α and β parameter of Weibull
distribution (i.e., Wα and Wβ)

The α and β parameters of the Weibull distribution fitted to foliage
density profile.

Open and Closed gap zones of canopy
volume models (CVM) (i.e., Og and Cg)

The empty voxels located above and below the canopy
respectively.

Euphotic and Oligophotic zones of CVM
(i.e., E and O)

The voxels located within an uppermost percentile (65%) of all
filled grid cells of that column, and voxels located below the point
in the profile.

b Full-waveform metrics (FW)

Height of median energy (HOME) The distance from waveform centroid to the ground.
Waveform distance (WD) The distances from waveform beginning to the ground.
Vertical distribution ratio (VDR) The differences between the WD and the HOME, divided by WD.

Number of peaks (NP) The number of detected peaks within each normalized
composite waveform.

Roughness of outermost canopy
(ROUGH) The distance from the waveform beginning to the first peak.

Front slope angle (FS) The vertical angles from waveform beginning to the first peak of
canopy return energies.

Return waveform energy (RWE) The total received energy, i.e., the area below the waveform
between beginning and end.

Intensity of Gaussian component (Int) Mean of the intensity of Gaussian components within
one waveform.

Full width at half maximum (FWHM) Full width at half maximum of one waveform.

Note: a These DPC were calculated using point cloud derived from FWF LiDAR data; b The FW were extracted
from the waveforms which were pre-processed and calibrated. See text for details.
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2.5.2. Full-Waveform Metrics

Full-waveform metrics (FW) provide three-dimensional forest structure information by extracting
radiometric and geometric properties of recorded backscattered waveforms. In this study, 18 full-waveform
metrics including the mean (µ) and standard deviation (σ) within each plot were extracted from
composite waveforms (Figure 3). First, the full-waveform metrics (Table 3) of each composite waveform
were calculated; second, the mean and standard deviation of all the full-waveform metrics in each
plot were calculated as the full-waveform metrics at plot-level. Table 3 gives the summary of these
full-waveform metrics and descriptions.

2.6. Hyperspectral Metrics

The hyperspectral metrics (HS) are good indices in the prediction of forest structural properties,
due to their ability to describe crown structures, which are related to vegetation pigments, physiology
and stress, directly or indirectly. In this study, 112 hyperspectral metrics were derived from the
preprocessed hyperspectral image, including: (i) reflectance values from AISA Eagle II channels;
(ii) vegetation indices; (iii) first 10 components of the principal component transformation (PCT),
independent components transformation (ICT) and minimum noise fraction transformation (MNF).

The spectral reflectance was strongly correlated with the structural properties (e.g., leaf area index,
the amount of biomass and spatial arrangement of structures) of forests [70]. In this study, all channels
in the domains of VIS, RE, and NIR were used. The mean values of 50 × 50 pixels within the plots
were calculated from the reflectance of the entire 64 channels. The same procedure for calculation was
followed to extract the other hyperspectral metrics (vegetation indices and first 10 components of PCT,
ICT and MNF).

Hyperspectral vegetation indices, which rely on specific absorption features, are the most
commonly used narrow band metrics. The vegetation indices calculated from the hyperspectral image
have great advantages in predicting forest structural parameters [23,49]. In this study, 18 vegetation
indices were extracted and summarized in Table 4.

Table 4. A summary of the vegetation indices with respective equations and references. Wavelengths
chosen were the closest AISA wavelengths to the equations in the cited literature.

Vegetation Index Equation Reference

Simple ratio (SR) ρ801/ρ676 [71]
Normalized difference vegetation index
(NDVI) (ρ801− ρ676)/(ρ801 + ρ676) [72]

Enhanced vegetation index (EVI) 2.5× [(ρ801− ρ676)/(1 + ρ801 + 6× ρ676− 7.5× ρ479)] [73]
Green normalized difference vegetation
index (GNDVI) (ρ801− ρ553)/(ρ801 + ρ553) [74]

Soil adjusted vegetation index (SAVI) 1.5× (ρ801− ρ676)/(ρ801 + ρ676 + 0.5) [75]
Atmospherically resistant vegetation
index (ARVI) [ρ801− (2× ρ676− ρ479)]/[ρ801 + (2× ρ676− ρ479)] [76]

Red-edge vegetation stress index (RVSI) [(ρ724 + ρ753)/2]− ρ733 [77]
Plant senescence reflectance index (PSRI) (ρ676− ρ498)/ρ753 [78]
Vogelmann red edge index 1 (VOG1) ρ743/ρ724 [79]
Vogelmann red edge index 2 (VOG2) (ρ733− ρ743)/(ρ714− ρ724) [79]
Red green ratio index (RGRI) RED/GREEN [80]
Photochemical reflectance index (PRI) (ρ534− ρ572)/(ρ534 + ρ572) [81]
Photochemical reflectance ratio (PRR) ρ534/ρ572 [82]
Water band index (WBI) ρ898/ρ975 [83]
Carotenoid reflectance index 1 (CRI1) (1/ρ507)− (1/ρ553) [84]
Carotenoid reflectance index 2 (CRI2) (1/ρ507)− (1/ρ705) [84]
Anthocyanin reflectance index 1 (ARI1) (1/ρ553)− (1/ρ705) [85]
Anthocyanin reflectance index 2 (ARI2) ρ801× [(1/ρ553)− (1/ρ705)] [85]

The principal component analysis (PCA), minimum noise fraction analysis (MNF) and
independent components analysis (ICA) are three algorithms which are commonly used to de-noise
and extract primary information from hyperspectral images. We used these three approaches to
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calculate 192 components (64 components for each approach), out of which we used the first 10 of each
approach for analysis, to explore whether there was a component that summarized the forest structural
parameters-related channels to one value, and therefore, to ensure the models’ conciseness [48,86].

2.7. Metrics Optimization and Regression Analysis

Previous studies have demonstrated that optimization of the candidate metrics can reduce
irrelevant and redundant information and help create highly efficient, transferable and robust
productive models. In this study, all of the FWF LiDAR and hyperspectral metrics were first optimized
using correlation analysis. The 15 metrics, which had relatively high correlation with the forest
structural parameters, were correspondingly selected from point cloud metrics (DPC), full-waveform
metrics (FW) and hyperspectral metrics (HS). Then, the 45 metrics (15 point cloud, 15 full-waveform
and 15 hyperspectral metrics) were analyzed using the biplot of PCA, which can be used to select
the important metrics in the clusters [87]. The 12 point cloud, 8 full-waveform and 10 hyperspectral
metrics which highly correlated with the first and second principal component (r > 0.7) and were
selected from the three groups divided by the PCA. Finally, the five metrics that had the highest
correlations with the first and second principal component in each group were selected as the best
metrics to fit the combo models.

The backward stepwise regression approach was applied to relate FWF LiDAR and hyperspectral
metrics to field-measured forest structural parameters. In the models, three predictor variables at the
5% significance level were selected. To ensure the metrics in the models had no serious collinearity, the
models which had the condition number (k) < 30 were selected. Finally, according to the value of the
Akaike information criterion (AIC), the best fitting models with the lowest AIC were selected.

In the study, three types of predictive models of DBH, HL, N, G, V and AGB were developed using
DPC, FW, HS and an integration of two or three of these for the combo models. First, the DPC models
(DPC based models) were fitted using 12 DPC alone to predict the six forest structural parameters;
second, the FW models (DPC and FW based models) were fitted using the integration of 12 DPC and
8 FW to predict the six forest structural parameters; third, the combo models were fitted using the
integration of the best metrics (each of the five metrics selected from PCA groups) to predict the six
forest structural parameters. All of the models were assessed by adjusted coefficient of determination
(Adj-R2), Root-Mean-Square-Error (RMSE), and relative RMSE (rRMSE). The leave-one-out (LOO)
cross validation was applied to assess the accuracy of prediction models and assess the synergetic
effects of FWF LiDAR and hyperspectral metrics.

3. Results

3.1. Full-Waveform LiDAR and Hyperspectral Metrics Extraction

All of the metrics, including the point cloud metrics (n = 17), full-waveform metrics (n = 18) and
hyperspectral metrics (n = 112) were extracted from the LiDAR point cloud (with height normalized),
composite waveform and preprocessed hyperspectral image, respectively. Figure 4 shows the profiles
of point cloud and apparent foliage (I), profiles of intensity of energy and composite waveform (II),
and the spectral reflectance from 400 nm to 1000 nm (III). The profiles of apparent foliage and Weibull
distribution appropriately describe the vertical distribution of point cloud. The peak of the Weibull
distribution curve in broadleaved forest plot is relatively higher (height = 8.55 m), followed by the
mixed forest plot (height = 6.34 m), and the peak of the Weibull distribution curve in coniferous plots
is relatively lower (height = 5.41 m). The profiles of composite waveform truly describe the space
distribution of energy, and the height of peaks of composite waveform are same as the height of
energy concentration. The profiles of intensity of energy and composite waveform are similar to the
profiles of point cloud and Weibull distribution, respectively. The spectral reflectance describes the
biophysical and biochemical properties of the canopy. The spectral reflectance in the broadleaved
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forest plot is highest (mean = 0.06–0.52), followed by spectral reflectance in the coniferous forest plot
(mean = 0.06–0.41), and spectral reflectance in the mixed forest plot is lowest (mean = 0.05–0.33).
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Figure 4. LiDAR point cloud profiles (I left), apparent foliage profiles (FP) (I right), Weibull distributions
(I right), intensity of energy profile (II left), composite waveform (II right), and spectral reflectance (III)
derived from the plots of coniferous forest (column 1), broadleaved forest (column 2) and mixed forest
(column 3).

3.2. Metrics Selection and Optimization

Figure 5 shows the projection of the first two PCA scores from the selected point cloud (n = 15),
full-waveform (n = 15) and hyperspectral (n = 15) metrics. The first (PCA1) and second (PCA2)
components of PCA account for 57.61% and 31.02% of the total variance, respectively. In the four
groups divided by PCA, 37 metrics in three groups were highly correlated with the PCA1 and PCA2.
The 12 point cloud (h25, h50, h75, h95, d1, d5, d9, hcv, Cover, Wα, E, O), 8 full-waveform (HOMEµ,
WDµ, VDRµ, NPµ, RWEµ, Intµ, HOMEσ, WDσ) and 10 hyperspectral (B45, B63, VOG1, NDVI,
RVSI, EVI, ARVI, CRI1, PCA1, PCA2) metrics were correlated with the PCA1 and PCA2 higher than
0.7. Most of the point cloud and full-waveform metrics were in the opposite direction. Moreover,
most of hyperspectral metrics and FWF LiDAR metrics (point cloud and full-waveform metrics)
were orthonormal. Therefore, the FWF LiDAR metrics and hyperspectral metrics could be used as
complementary metrics in forest structural parameters prediction.
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Figure 5. Projection of the first two PCA scores from the selected point cloud, waveform and
hyperspectral metrics. The color ellipsoids represent the visual metrics clusters. See Tables 3 and 4 for
the description of the metrics.

The five point cloud metrics (h50, h75, d1, E, O), five full-waveform metrics (HOMEµ, VDRµ, NPµ,
RWEµ, and WDσ) and five hyperspectral metrics (NDVI, RVSI, ARVI, CRI1 and PCA2), which had
the highest correlation with PCA1 and PCA2 in each group are shown in Figure 6. According to the
result of the correlation analysis, most of the metrics had weak relationships with each other (r < 0.7)
(Figure 6). Therefore, the metrics in the combo models were non-collinear and the combo models
were robust. The hyperspectral metrics of CRI1 and PCA2 had the weakest relationships with the
other metrics. However, the metrics related to crown height were relatively strongly correlated with
each other (h50, h75 and HOMEµ) and the waveform metric HOMEµ had a relatively strong positive
correlation with the hyperspectral metrics of RVSI.
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3.3. Predictive Models with Point Cloud Derived Metrics

The DPC models obtained using point cloud derived metrics are summarized in Table 5. The point
cloud metrics performed well with models significant at p < 0.01. All of the forest structural
parameters were well predicted, and the accuracies of the predictive models ranged from 0.52
(Adj-R2, rRMSE = 40.87%) to 0.81 (Adj-R2, rRMSE = 15.70%). The Lorey’s mean height model had
the highest accuracy (Adj-R2 = 0.81, rRMSE = 15.70%), followed by the volume model (Adj-R2 = 0.69,
rRMSE = 25.76%), the above ground biomass model (Adj-R2 = 0.68, rRMSE = 25.22%), the stem
number model (Adj-R2 = 0.63, rRMSE = 30.63%) and the DBH model (Adj-R2 = 0.54, rRMSE = 37.02%).
The basal area model had the lowest accuracy (Adj-R2 = 0.52, rRMSE = 40.87%).

Table 5. Summary of the forest structural parameters prediction models with point cloud data based
metrics and plot-level accuracy assessment results.

Dependent Final Models a Adj-R2 RMSE rRMSE (%) k

DBH 18.527 + 0.644h25 − 1.402Wα − 33.340E 0.54 ** 5.53 37.02 17.00
HL 1.441 + 0.901h50 + 8.703d9 + 3.206Wα 0.81 ** 1.73 15.70 11.26
N −4699.282 − 71.688h50 + 5796.245Cover + 4437.070E 0.63 ** 425.41 30.63 15.77
G −44.816 + 68.045d1 − 4.286d5 + 12.927O 0.52 ** 10.29 40.87 13.90
V −105.911 + 10.211h50 + 166.787d1 − 229.444d9 0.69 ** 33.59 25.76 10.52

AGB −181.605 + 8.059h95 + 237.778d1 − 158.626hcv 0.68 ** 22.45 25.22 9.53

Note: See Tables 1 and 3 for code of forest structural parameters and point cloud metrics, respectively. a Level of
significance: ** p < 0.01.
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3.4. Predictive Models with Full-Waveform LiDAR Metrics

The FW models obtained using FWF LiDAR metrics are summarized in Table 6. The FWF LiDAR
metrics performed well with models significant at p < 0.01. All of the forest structural parameters were
well predicted, and the accuracies of predictive models ranged from 0.62 (Adj-R2, rRMSE = 25.24%) to
0.87 (Adj-R2, rRMSE = 11.01%). The Lorey’s mean height model had the highest accuracy (Adj-R2 = 0.87,
rRMSE = 11.01%), followed by the above ground biomass model (Adj-R2 = 0.82, rRMSE = 15.41%),
volume model (Adj-R2 = 0.80, rRMSE = 17.32%), stem number model (Adj-R2 = 0.70, rRMSE = 21.92%)
and basal area model (Adj-R2 = 0.64, rRMSE = 31.30%); the DBH model had the lowest accuracy
(Adj-R2 = 0.62, rRMSE = 25.24%). Compared with the models only using DPC, the improvement in
models using DPC and FW were significant. The improvements in accuracy ranged from 0.06 to 0.14
(∆Adj-R2, ∆rRMSE = 4.69–11.78%).

Table 6. Summary of the forest structural parameters prediction models with FWF LiDAR metrics
(integration of point cloud based metrics and full-waveform based metrics) and plot-level accuracy
assessment results.

Dependent Final Models a Adj-R2 RMSE rRMSE (%) k

DBH 10.925 + 1.051h25 − 31.923E + 20.846VDRµ 0.62 ** 3.77 25.24 13.18
HL 2.549 + 0.408h95 + 0.431HOMEµ − 0.007Intµ 0.87 ** 1.21 11.01 19.58
N −5313.482 + 6506.593Cover + 4449.668E − 65.711WDµ 0.70 ** 304.40 21.92 9.60
G −51.975 + 68.144d1 + 11.438Cover − 0.080HOMEσ 0.64 ** 7.88 31.30 14.84
V −28.826 + 44.895d1 + 7.627HOMEµ + 0.177RWEµ 0.80 ** 22.58 17.32 14.64

AGB −446.300 + 12.749h50 + 398.166d1 + 262.543VDRµ 0.82 ** 13.72 15.41 15.81

Note: See Tables 1 and 3 for code of forest structural parameters and FWF LiDAR metrics, respectively. a Level of
significance: ** p < 0.01.

3.5. Predictive Models with Combined Full-Waveform LiDAR and Hyperspectral Metrics

The combo models obtained using integrated point cloud, full-waveform and hyperspectral
derived metrics are summarized in Table 7. The integration of point cloud, full-waveform and
hyperspectral metrics performed well with models significant at p < 0.01. All of the forest structural
parameters were well predicted, and the accuracies of the predictive models ranged from 0.68 (Adj-R2,
rRMSE = 28.67%) to 0.88 (Adj-R2, rRMSE = 10.68%). The Lorey’s mean height model had the highest
accuracy (Adj-R2 = 0.88, rRMSE = 10.68%), followed by the above ground biomass model (Adj-R2 = 0.84,
rRMSE = 15.14%), volume model (Adj-R2 = 0.81, rRMSE = 16.37%), stem number model (Adj-R2 = 0.72,
rRMSE = 20.16%) and DBH model (Adj-R2 = 0.69, rRMSE = 23.11%); the basal area model had the
lowest accuracy (Adj-R2 = 0.68, rRMSE = 28.67%). Compared with the models only using DPC,
the models using integrated DPC, FW and HS significantly improved the accuracies of prediction.
The improvements in accuracy ranged from 0.07 to 0.16 (∆Adj-R2, ∆rRMSE = 5.02–13.91%). Moreover,
compared with the models using FWF LiDAR metrics, the models using integrated DPC, FW and HS
slightly improved the accuracies of prediction. The improvements in accuracy ranged from 0.01 to 0.07
(∆Adj-R2, ∆rRMSE = 0.27–2.63%).

Table 7. Summary of the forest structural parameters prediction models with integrated point cloud,
full-waveform and hyperspectral metrics and plot-level accuracy assessment results.

Dependent Final Models a Adj-R2 RMSE rRMSE (%) k

DBH 32.009 − 41.480VDRµ − 0.786NPµ − 1.454CRI1 0.69 ** 3.45 23.11 6.93
HL 1.549 + 0.916h75 − 0.047WDσ + 1.533NDVI 0.88 ** 1.18 10.68 6.34
N −66.329 + 2940.122E + 1879.922O − 90635.301RVSI 0.72 ** 279.98 20.16 5.18
G 16.252 + 9.265NPµ + 0.050RWEµ − 36.932ARVI 0.68 ** 7.22 28.67 4.56
V −168.279 + 253.243d1 + 6.371HOMEµ − 24.130PCA2 0.81 ** 21.34 16.37 5.66

AGB −113.778 + 11.946h50 + 58.117VDRµ + 124.417NDVI 0.84 ** 13.48 15.14 5.59

Note: See Tables 1, 3 and 4 for code of forest structural parameters, FWF LiDAR metrics and hyperspectral metrics,
respectively. a Level of significance: ** p < 0.01.
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3.6. Assessment of the Predictive Models

Cross validation of the combo models demonstrated that the relationship between field
surveyed and predicted forest structural parameters were close to the 1:1 line (Figure 7). The mean
differences between field surveyed and cross-validated models predicted forest structural parameters
were not significant statistically (Table 8). The Lorey’s mean height model had the highest
accuracy (CV-R2 = 0.85, CV-rRMSE = 11.50%), followed by the above ground biomass (CV-R2 = 0.80,
CV-rRMSE = 17.82%), volume (CV-R2 = 0.77, CV-rRMSE = 17.95%), stem number (CV-R2 = 0.70,
CV-rRMSE = 22.90%) and DBH (CV-R2 = 0.65, CV-rRMSE = 23.80%); the basal area model had
the lowest accuracy (CV-R2 = 0.63, CV-rRMSE = 29.04%). This means that the point cloud,
full-waveform and hyperspectral metrics had desirable synergetic effects in the prediction of forest
structural parameters.
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Table 8. The results of cross validation for the forest structural parameters predictive combo models.

Parameters CV-R2 CV-rRMSE (%)
Differences in Cross-Validation

a Mean Std. dev. Range

DBH 0.65 23.80 0.33 NS 3.56 −6.08–6.22
HL 0.85 11.50 −0.18 NS 1.26 −2.66–2.63
N 0.70 22.90 44.87 NS 317.19 −504.61–554.17
G 0.63 29.04 0.37 NS 7.36 −12.21–12.48
V 0.77 17.95 4.68 NS 23.10 −38.39–45.96

AGB 0.80 17.82 2.05 NS 15.85 −22.92–26.91

Note: See Table 1 for code of forest structural parameters. CV-R2: R2 of the result of cross-validation; CV-rRMSE:
relative RMSE of the result of cross-validation; a Level of significance: NS represents the mean of differences is not
significant (p > 0.05).

Figure 8 shows the residuals of six forest structural parameters predicted by models fitted
using point cloud metrics, full-waveform LiDAR metrics, and combined full-waveform LiDAR and
hyperspectral metrics. It shows that the combo models, which fitted using full-waveform LiDAR and
hyperspectral metrics have the smallest variation, followed by the models fitted using full-waveform
LiDAR metrics, while the models fitted using point cloud metrics have the largest variation.
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Figure 8. The residuals of six forest structural parameters predicted by DPC based models (DPC), DPC
and FW based models (FW), and combo models (CO) which including both LiDAR and hyperspectral
metrics, i.e., forest structural parameters: (a) DBH; (b) HL; (c) N; (d) G; (e) V; and (f) AGB.
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4. Discussion

4.1. Synergetic Effects of the Full-Waveform LiDAR and Hyperspectral Data

In this study, the forest structural parameters in subtropical forests were predicted using
simultaneously acquired airborne FWF LiDAR and hyperspectral data. The airborne LiDAR data
turned out to be the most applicable remote sensing data in forest structural parameters prediction due
to its ability to measure the three dimensional structures of forest canopy [16,88]. The hyperspectral
data recorded large amounts of continuous narrow bands from VIS to NIR which can provide
continuous and detailed spectral signatures of forest biophysical attributes [89,90]. Previous studies
have demonstrated that the integration of these two complementary datasets can improve the
prediction of forest structural parameters [52,57]. It was also proved in this study, although the FWF
LiDAR metrics (only DPC or the integration of DPC and FW) can predict forest structural parameters
with relatively high accuracy (Adj-R2 = 0.52–0.81, rRMSE = 15.70–40.87%; Adj-R2 = 0.62–0.87, rRMSE
= 11.01–31.30%), the integration of FWF LiDAR metrics and hyperspectral metrics performs better
(Adj-R2 = 0.68–0.88, rRMSE = 10.68–28.67%). Zhang et al. [91] predicted six forest structural parameters
using only small footprint point cloud LiDAR data in 51 square plots (30 × 30 m2) in the same study
site of subtropical forest. Compared with the results in this study, less variabilities in forest structural
parameters were explained (45–77%). Dalponte et al. [42] predicted stem diameter and volume using
integrated small footprint point cloud LiDAR and hyperspectral data in 52 plots in a temperate forest.
The results indicated that the improvements in the prediction of stem diameter and volume using
integrated LiDAR and hyperspectral data were 0.4% and 0.5% (rRMSE), respectively. Luo et al. [57]
predicted AGB using integrated airborne small footprint point cloud LiDAR and hyperspectral data in
33 plots in a northern temperate deciduous forest. It reported that 2.2% more of the variability in AGB
was explained, and 7.9% less predicted error occurred by using integrated point cloud LiDAR and
hyperspectral data. The improvement from using integrated point cloud LiDAR and hyperspectral
data was slightly higher than this study. This may be caused by the complex structure of subtropical
forest, which is multilayered and has greater variability in DBH and tree height, which reduce the
ability of the hyperspectral data to predict forest structural parameters.

In the combo models, the five metrics selected from point cloud, full-waveform and hyperspectral
metrics had improved synergetic effects for forest structural parameters prediction. Compared with
the DPC based models and FWF LiDAR metrics models, the combo models of six forest structural
parameters all performed better, explaining large amounts of variability in forest structural parameters
(Table 7). Moreover, in Figure 8 the residuals of the combo models were smaller than FWF LiDAR
metrics models, and the residuals of DPC-based models were maximal. The distribution of residuals in
the combo models were more convergent and the mean of residuals were closer to zero. Consequently,
the combo models were more accurate and robust, which indicated that the integration of FWF
LiDAR and hyperspectral data has great potential in the prediction of forest structural parameters in
subtropical forest.

4.2. Implications of Predictive Models

The parametric regression modeling approach (i.e., backward stepwise regression), which is
easy to transplant and can help to understand the relationships between metrics and forest structural
parameters, was used to fit predictive models in this study. In Tables 5–7, the final models fitted by
backward stepwise regression approach are shown. In these tables, the forest structural parameter of
HL had the highest accuracy, and this indicated that full-waveform LiDAR data has unique advantages
in the prediction of tree height. Previous studies have demonstrated that the tree height predicted by
LiDAR data was similar to field-based measurements [92], and the forest structural parameters related
to vegetation height were predicted accurately [93,94]. In this study, it was also confirmed that the
outcomes for volume and AGB had a relatively high accuracy.
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The full-waveform LiDAR data can provide more information compared with point cloud LiDAR
data. The full-waveform metrics, such as HOME and WD, were found to be sensitive to the vertical
arrangement of canopy elements and canopy height [95,96]. With the addition of full-waveform
metrics, the improvement in the accuracy of predictive models was significant (Tables 5 and 6).
In particular, for G, V and AGB, the improvement of rRMSE is over 10%. Although the hyperspectral
data has limitations in quantifying the vertical structure of forest, the hyperspectral metrics (e.g., NDVI,
CRI1 and RVSI, etc.) still have the capability to improve the accuracy of forest structural parameters
prediction (∆rRMSE = 0.27–2.63%). This indicates that hyperspectral metrics have great potential in
the prediction of forest structural parameters.

4.3. Availability of Full-Waveform LiDAR and Hyperspectral Metrics

Point cloud metrics are significantly related to the three-dimensional structural properties of
forest canopy, which allow the prediction of the forest structural parameters. Five point cloud metrics,
i.e., the 50th percentile height (h50), 75th percentile height (h75), 10th canopy return density (d1),
euphotic zones of CVM (E), and the oligophotic zones of CVM (O) were selected to fit the combo
models (Table 7). h50 and h75 were respectively defined as the heights above ground that are 50% and
75% of the LiDAR returns below the height. h50 likely provides the height of the over-story and h75

presents the spatial variability of the canopy height [25]. Thomas et al. [97] reported that the point
cloud metrics of h50 and h75 were strongly related to mean dominated height, basal area, crown closure
and AGB. Tsui et al. [25] found that h50 and h75 were the main metrics to explain the majority of the
variation in AGB. In the combo models, the h50 and h75 were selected in the predictive models of AGB
and HL, respectively, and the rRMSE of AGB and HL were 15.14% and 10.68%, respectively. The d1

was the percentage of points above the 10th quantile to total quantity of points in the plot. This can be
used to represent the structure of tree canopy. Previous studies have shown that the d1 performed well
in the prediction of mean dominated tree height and volume [18,53]. In this study, d1 was selected
in the prediction of volume and the rRMSE was 16.37%. E and O were the metrics related to the
light extinction in the tree canopy, and are thought to be a three-dimensional analog of cover [69].
They perform well in the prediction of forest structural parameters (e.g., DBH, height, basal area and
biomass etc.) [98]. Here, the point cloud metrics of E and O were selected in the prediction of stem
number and the predictive model of stem number performed well (rRMSE = 20.16%).

The returned waveforms of the laser system record the specific reflections within the footprint, and
are influenced by the materials and vertical structures of canopy. The shape of the returned waveforms
can be used to predict forest structural parameters appropriately [7,33]. Sumnall et al. [34] extracted
full-waveform metrics (amplitude and echo width variables) from full-waveform data and reported
that the full-waveform metrics performed well in the prediction of forest structural parameters (the
NRMSE values for the best fit models were in the range of 16–48%). In this study, five waveform
metrics, i.e., mean of height of median energy (HOMEµ), mean of vertical distribution ratio (VDRµ),
mean of number of peaks (NPµ), mean of returned waveform energy (RWEµ), and the standard
deviation of waveform distance (WDσ), were selected to fit the combo models (Table 7). HOMEµ

describes the arrangement of canopy materials in the vertical direction and VDRµ depicts the change
of HOMEµ relative to the height of canopy. These two metrics help to enhance the interpretation
of intermediate tree canopies in the mid-story and suppress the trees in the understory. Therefore,
the two full-waveform metrics potentially improved the prediction of forest structural parameters.
In the combo models, HOMEµ and VDRµ were selected to predict V, DBH and AGB, and the rRMSE
were 16.37%, 23.11% and 15.14%, respectively. NPµ and RWEµ were the full-waveform metrics used
to describe the number of peak and energy of composited waveform, respectively. NPµ and RWEµ

were likely related to the arrangement and density of forest materials, which can be used to represent
the forest structure. Thus, NPµ and RWEµ were selected in the combo predictive models of DBH
and G, and the rRMSE were 23.11% and 28.67%, respectively. WDσ was the full-waveform metric
defined as the standard deviation of distances of waveform, which is related to the variation of crown
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height to some extent. It potentially helped in the prediction of forest structure variables related to
tree height. In this study, WDσ was selected in the combo prediction of HL and it performed well
(rRMSE = 10.68%).

Previous studies have demonstrated that hyperspectral metrics have unique effects in the
prediction of forest structural parameters. In this study, the integrated usage of FWF LiDAR and
hyperspectral metrics improved the accuracies of forest structural parameters. Compared with
the prediction using point cloud metrics only, the improvements in prediction were significant
(∆Adj-R2 = 0.07–0.16, ∆rRMSE = 5.02–13.91%). Compared with the prediction using point cloud
and full-waveform metrics, the improvements in prediction were distinct (∆Adj-R2=0.01–0.07,
∆rRMSE = 0.27–2.63%). In this study, five hyperspectral metrics, i.e., normalized difference vegetation
index (NDVI), red-edge vegetation stress index (RVSI), atmospherically resistant vegetation index
(ARVI), carotenoid reflectance index 1 (CRI1) and the second component of PCA transformation (PCA2),
were selected to fit the combo models (Table 7). Many studies have indicated that the NDVI and ARVI
are correlated with forest structures such as the leaf area index (LAI) and forest AGB [58,99,100].
Latifi et al. [23] reported that the ARVI was also correlated with mean height. Wang et al. [101]
extracted NDVI and ARVI from hyperspectral data and reported that the biomass predictive models
performed well using the two metrics (rRMSE = 13.9% and 15.8%). In the combo models, NDVI
and ARVI were selected to predict HL, AGB and G, and the rRMSE was 10.68%, 15.14% and 28.67%,
respectively. RVSI was the hyperspectral metric used to identify vegetation stress trends based on the
spectral shifting of red-edge. CRI1 is a metric representing reflectance of carotenoid, which was directly
correlated with the content of carotenoid. The RVSI and CRI1 potentially improved the prediction of
forest structural parameters due to the profound influences of stress and photosynthetic pigments in
the forest structure formation. The RVSI and CRI1 were selected in the combo models of N and DBH,
and the rRMSE were 20.16% and 23.11%, respectively. PCA analysis was widely used to reduce the
dimensions of the dataset. In general, the first several components contain the most of variance in the
dataset. In this study, PCA2 contained much more variances of hyperspectral reflectance channels and
might d perform well in the prediction of forest structural parameters. In the combo models, PCA2
was selected to predict V and the rRMSE of prediction was 16.37%.

The full-waveform LiDAR metrics (including point cloud and full-waveform metrics) have the
ability to record the forest structure in detail. In Figure 4, the vertical distribution of point cloud and
pulse energy indicate the distribution of forest materials and the transmission of energy in the canopy.
The hyperspectral metrics are associated with the biophysical and biochemical attributes of forest,
which can be used to reflect the health conditions and growth stage of forest vegetation (e.g., Figure 4
(III)). Therefore, the full-waveform LiDAR metrics, hyperspectral metrics and the forest structural
parameters predicted in this study can be used to assess the structural, compositional and functional
properties of forest ecosystems. Moreover, the forest nutritional status, wildlife habitat, and ecosystem
service value can also be evaluated using the full-waveform LiDAR and hyperspectral data.

4.4. Potential Improvements and Indications for Future Research

This study combined full-waveform LiDAR and hyperspectral data in the feature level, and the
addition of hyperspectral metrics in full-waveform LiDAR metrics improved the accuracy of forest
structural parameters. In the future, more advanced approaches associated with physical theory or
the mechanisms of sensors will be used to explore the better integration of full-waveform LiDAR and
hyperspectral data. Moreover, the non-parametric modeling approach can be used to enhance the
capability of prediction of forest structural parameters in subtropical forests.

5. Conclusions

Simultaneously acquired airborne full-waveform (FWF) LiDAR and hyperspectral data were used
to predict forest structural parameters in subtropical forests of southeast China. The pulse amplitude
and waveform shape of airborne full-waveform LiDAR data (FWF) were calibrated using a physical
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process-driven and a voxel-based approach, respectively. Different suites of LiDAR and hyperspectral
metrics were calculated and selected using correlation analysis and principal component analysis
(PCA). The selected point cloud, full-waveform and hyperspectral metrics were used to fit regression
models individually and in integration to predict six forest structural parameters, and the capability of
predictive models and synergetic effects of metrics were assessed using leave-one-out cross validation.
The results showed that: most of the metrics selected from three groups divided by the PCA analysis,
which were highly correlated with the first and second principal component, had a weak relationship
with each other (r < 0.7); the prediction of HL using the metrics of h75, WDσ and NDVI had a
relatively higher accuracy (Adjusted-R2 = 0.88, relative RMSE = 10.68%) than the other forest structural
parameters; and the usage of DPC and FW resulted in higher accuracies (Adjusted-R2 = 0.62–0.87,
relative RMSE = 11.01–31.30%) than the models only including DPC (Adjusted-R2 = 0.52–0.81, relative
RMSE = 15.70–40.87%). Moreover, the integration of DPC, FW and HS had a positive synergetic effect
for forest structural parameters prediction (Adjusted-R2 = 0.68–0.88, relative RMSE = 10.68–28.67%).
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Appendix A

Table A1. Allometric equations used in this study for aboveground biomass calculation.

Tree Species Component a b R2 References

Masson pine
Stem wood (Ws) 0.141 1.092 0.9970

[102]Live branches (Wb) 0.065 0.991 0.9871
Foliage (Wf) 0.132 0.745 0.9827

Chinese fir
Stem wood (Ws) 0.124 0.680 0.9704

[103]Live branches (Wb) 0.203 0.385 0.7223
Foliage (Wf) 0.850 0.189 0.6567

Slash pine
Stem wood (Ws) 0.235 0.900 0.9523

[104]Live branches (Wb) 0.080 1.064 0.8520
Foliage (Wf) 0.456 0.610 0.8802

Sawtooth oak
Stem wood (Ws) 0.018 1.034 0.9864

[105]Live branches (Wb) 0.00008 1.468 0.9745
Foliage (Wf) 0.004 0.769 0.8662

Sweet gum
Stem wood (Ws) 0.093 0.801 0.9310

[106]Live branches (Wb) 0.083 0.649 0.9890
Foliage (Wf) 1.084 0.217 0.6940

Other broadleaves
Stem wood (Ws) 0.023 0.985 0.9903

[107]Live branches (Wb) 0.00004 3.785 0.9623
Foliage (Wf) 0.00003 1.378 0.9456

Note: Each biomass component was calculated using the equation of W = a(D2H)b, where H is the tree height (m),
D is the DBH (cm) and a, b are the parameters.
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Table A2. Equations used in this study for volume calculation.

Tree Species a b c R2 References

Masson pine 0.000056 1.9980 0.8470 0.9649 [108]
Chinese fir 0.000062 1.8520 1.0080 0.9956 [109]
Slash pine 0.000067 1.9952 0.7908 0.9523 [110]
Sawtooth oak 0.000033 2.0000 1.0000 0.9930 [111]
Sweet gum 0.000053 1.8822 1.0093 0.9810 [112]
Other broadleaves 0.000067 1.9600 0.8144 0.9900 [111]

Note: Tree volume was calculated using the equation of V = aDbHc, where H is the tree height (m), D is the DBH
(cm) and a, b, c are the parameters.
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