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Abstract: Despite the importance of tidal ecosystems in the global carbon budget, the relationships
between environmental drivers and carbon dynamics in these wetlands remain poorly understood.
This limited understanding results from the challenges associated with in situ flux studies and
their correlation with satellite imagery which can be affected by periodic tidal flooding. Carbon
dioxide eddy covariance (EC) towers are installed in only a few wetlands worldwide, and the
longest eddy-covariance record from Georgia (GA) wetlands contains only two continuous years
of observations. The goals of the present study were to evaluate the performance of existing
MODIS Gross Primary Production (GPP) products (MOD17A2) against EC derived GPP and
develop a tide-robust Normalized Difference Moisture Index (NDMI) based model to predict GPP
within a Spartina alterniflora salt marsh on Sapelo Island, GA. These EC tower-based observations
represent a basis to associate CO2 fluxes with canopy reflectance and thus provide the means to
use satellite-based reflectance data for broader scale investigations. We demonstrate that Light Use
Efficiency (LUE)-based MOD17A2 does not accurately reflect tidal wetland GPP compared to a simple
empirical vegetation index-based model where tidal influence was accounted for. The NDMI-based
GPP model was capable of predicting changes in wetland CO2 fluxes and explained 46% of the
variation in flux-estimated GPP within the training data, and a root mean square error of 6.96 g C m−2

in the validation data. Our investigation is the first to create a MODIS-based wetland GPP estimation
procedure that demonstrates the importance of filtering tidal observations from satellite surface
reflectance data.

Keywords: MODIS GPP Calibration; MOD17A2; Normalized Distribution Moisture Index; Tide
Adjusted Wetland Index; flux GPP; salt marsh; tidal wetlands

1. Introduction

Estimates of Gross Primary Productivity (GPP) are useful for understanding local and global
carbon dynamics and are often scaled from sites to landscapes using satellite data [1–4]. A common
data source for this effort is the Moderate Resolution Imaging Spectroradiometer (MODIS), which has
a coarse spatial resolution but collects daily global observations. Information from MODIS has been
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packaged into the MOD17A2 GPP product, which is a cumulative composite of daily GPP estimates.
The MOD17 algorithm uses the radiation-use efficiency concept first proposed by Monteith [3] and
provides a method for estimating pixel-wise GPP and Net Primary Productivity (NPP) globally [5].
Satellite-derived GPP, such as from MODIS, is useful because it helps model terrestrial energy, carbon,
and water cycle processes. However, the algorithm for MOD17 was calibrated for upland biomes and
cannot be directly applied to wetlands with any accuracy. Consequently, there is a knowledge gap
concerning the spatial and temporal variability of wetland GPP.

Tidal marshes, the wetland type that is the focus of this study, are ecologically productive
ecosystems [6,7] and are at risk to loss from threats such as land-use change and sea level rise [6].
Estimations of tidal marsh GPP can improve our understanding of feedback mechanisms that regulate
carbon dynamics in the context of global change and facilitate climate policy-making that might
preserve coastal habitats.

Remote sensing techniques provide an efficient method for estimating GPP and MODIS is a useful
data source for this kind of monitoring. While MODIS is spatially coarse (pixel spatial resolution
of 250 m to 1 km), its daily return frequency is especially useful for estimating plant and ecosystem
properties within tidal marshes [8,9]. Daily observations allow sufficient data density after cloudy
and tidally influenced observations are removed. Further, MODIS products often are used to estimate
GPP in terrestrial systems [10,11] and parameterizing a similar product for carbon-rich productive
tidal marshes allows for landscape-scale comparisons among terrestrial and coastal systems through
MODIS data.

MODIS can only assist with monitoring spatiotemporal variability in wetlands if the influence
of tides on vegetation reflectance can be isolated. Water or saturated soil background in wetlands
reduce the intensity of the near-infrared (NIR) reflectance, change the slope and position of red-edge,
and alter the magnitude of vegetation indices such as Enhance and Normalized Vegetation Index (EVI
and NDVI) and other red-edge-type indices [12–14]. Consequently, GPP models used for terrestrial
ecosystems cannot be readily applied to wetlands without accounting for the effect of tides on surface
reflectance [2,4,15].

The MODIS GPP product, MOD17A2, while useful for upland monitoring, cannot be used
for tidal wetlands because it has not been parameterized for this habitat. The MOD17A2 product
employs a Production Efficiency Model (PEM) to estimate GPP. PEMs are based on the original logic
of Monteith [3], who suggested that GPP is linearly related to absorbed photosynthetically active
radiation (APAR), such that

GPP ∝ ε × Σ (fAPAR × PARin) (1)

where, PARin is the incident photosynthetically active radiation, fAPAR is the fraction of PARin

absorbed by the canopy, and ε is light use efficiency (LUE). The MOD17A2 product estimates GPP
by assuming a linear relationship between fAPAR and NDVI and substitutes LUE as a vegetation
biome-specific constant obtained from the lookup tables [16]. However, tidal marshes are not one
of the eleven biomes implemented within MOD17A2 [17], perhaps because, compared to terrestrial
systems, the processes that regulate ecosystem-atmosphere carbon dioxide (CO2) fluxes, including
GPP and LUE in wetlands are not well understood [18]. Furthermore, models which do not require
LUE maybe easier to implement across habitats and are worth exploring [16].

Vegetation indices (VIs) are frequently used in GPP models. Sims et al. [19] demonstrated that
a simple model based on the Enhanced Vegetation Index (EVI) alone, could provide estimates of
GPP. Their methods yielded results that were as good as or better than MOD17A2 for many sites.
Sims et al. [16] developed another model, the temperature and Greenness (TG) model, which was
based on MODIS EVI and the Land Surface Temperature (LST) products. Further, Wu et al. [20]
proposed a new vegetation index GPP model that demonstrated the usefulness of VIs as reliable
proxies of both LUE and fAPAR [19,21–23].

The vegetation index approach for estimating GPP might also be useful within coastal marshes,
provided that we can overcome the distortion of conventional vegetation indices by periodic tidal
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flooding. Such an approach needs to begin with daily surface reflectance information, because
composited MODIS products used for calculating MOD17A2, such as fAPAR and leaf area index
(LAI), are derived from multi-day composites of MODIS NDVI or EVI products. As such, observations
that make up multi-day composites may contain noise from observations collected during high tide
and cannot be removed post hoc [24]. Thus, we need a procedure for filtering daily MODIS surface
reflectance for tidal observations, calculating a vegetation index related to GPP, and then creating
tide-free composites from that filtered time series. This procedure should be a step forward for
estimating GPP from MODIS within tidal wetlands.

Others have studied productivity within coastal wetlands through remote sensing data [1,14,25,26].
However, these studies have either not accounted for tidal influence [14,25,26], focused on biomass or
net ecosystem exchange (NEE) rather than GPP [14,26], or evaluated canopies that are not submerged
by tides, (e.g., mangroves; Barr et al., 2013 [1]). Indeed Yan et al. (2010) [26] observed a loss of
phenological pattern in pixels that were most tidally influenced, which might be caused by the use of
composite MODIS products without tidal filtering [24]. Thus, additional work to solve the problem of
tidal influence on the spectral reflectance of coastal marshes, and particularly to apply this effort to
GPP estimation, is still needed.

In this paper, we present a method to calibrate MODIS GPP in tidal wetlands. The objective of
this study was to build a tide-robust model to predict GPP within a Spartina alterniflora salt marsh
on Sapelo Island, GA. The specific objectives of this research were to (1) evaluate and compare the
potential of using different MODIS vegetation indices to characterize flux tower GPP, (2) to establish
the statistical relationship between vegetation indices from MODIS 500 m surface reflectance products
and GPP flux, and (3) calibrate a MODIS GPP algorithm within a tidal wetland.

2. Materials and Methods

2.1. Study Site

Our study area was a salt marsh on Sapelo Island, Georgia, USA dominated by a monoculture
of S. alterniflora at lat 31.444◦, long −81.283◦ (Figure 1). This marsh is monitored as part of the
Georgia Coastal Ecosystems Long Term Ecological Research (GCE-LTER) program. The tides
here are semi-diurnal and have large amplitudes (>2 m). At this marsh site, there is also an in
situ eddy-covariance (EC) tower which measures CO2 fluxes between the marsh surface and the
atmosphere. The EC footprint varies, but typically covers an area larger than 500 m2. We selected
a focal MODIS pixel (500 m × 500 m) for our GPP model parameterization which is the one that is
most often within the footprint of the EC tower and contains only a salt marsh. This pixel should best
represent the information measured by the EC tower, whereas other marsh pixels nearby should be
less representative.

2.2. Data Sources

The data for this study included MODIS version 5 products, including surface reflectance data
and MODIS GPP products. The MODIS tile covering Sapelo Island is h11v05. Additionally, we used
the EC tower data of CO2 flux to calculate GPP data in conjunction with tidal data obtained from the
Georgia Coastal Ecosystems Long-Term Ecological Research (GCE-LTER) project. For each dataset,
we acquired information beginning 1 January 2014 and ending 31 December, 2015. All data processing
and analysis steps were conducted through the use of the R language for statistical analyses.
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Figure 1. The Sapelo Island, Georgia, USA. The top inset shows Sapelo Island’s location within the
state of Georgia. The bottom inset shows a zoomed-in view of the location of the EC flux tower,
white triangle, as well as the MODIS pixel used in this study.

2.2.1. MOD17A2

MOD17A2 is an 8 day composite GPP product at a 1 km spatial resolution. It provides a
measure of the growth of the terrestrial vegetation using daily MODIS land cover, fAPAR, LAI,
and surface meteorology for the global vegetated land surface [17]. MOD17A2 was acquired from the
National Aeronautics and Space Administration (NASA) website (http://modis--land.gsfc.nasa.gov)
and covered 2014–2015, representing 90 composited data points. While this pixel was at a coarser scale

http://modis--land.gsfc.nasa.gov
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than the focal 500 m surface reflectance pixel we used to build our salt marsh GPP model, the 1 km
scale was the only resolution available for the MOD17 product at the time of this study and still
samples S. alterniflora marsh close to our EC tower. In addition, the marshes surrounding the tower is
coved my multiple 500 m pixels and depending on the wind speed, the flux footprint varies in size
and direction, and may very well contain fluxes from adjacent areas beyond the pixel.

2.2.2. MOD09GA

The Terra MODIS surface reflectance atmospheric correction algorithm product (MOD09GA,
500 m) is daily data which includes bands 1, 2, 3, 4, 5, 6, and 7 centered at 0.648 µm, 0.858 µm, 0.470 µm,
0.555 µm, 1.24 µm, 1.64 µm, and 2.13 µm respectively. MOD09GA also provides important pixel
quality and viewing geometry information for MODIS products, including an accurate cloud mask
that can be used to flag cloudy pixels. MOD09GA was acquired from the National Aeronautics and
Space Administration (NASA) website (http://modis--land.gsfc.nasa.gov) and covered 2014–2015.

2.2.3. Flux GPP Data

GPP was calculated using an eddy covariance flux system installed in the study site and
maintained by the GCE-LTER. Two eddy-covariance systems were installed on a flux tower established
at the head of a small tidal creek on the Duplin River (lat: 31.441◦, long: −81.283◦) in July 2013,
Figure 1. The systems were mounted at 5 m above the ground facing South (180◦) and North (0◦),
respectively. Two EC systems were utilized to minimize the gaps in the data due to maintenance and
calibration, instrument malfunction, and changing wind direction. The south system covers the angle
from 90◦ to 270◦ and the rest of the area is covered by the north system. Each EC system consists of a
3D sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA) to measure the three-wind
components and virtual air temperature, and a closed-path CO2/H2O gas analyzer (Li-7200, Li-Cor
Biosciences, USA) to measure the concentration of CO2 in the air. These measurements were recorded
at 10 Hz with the control of data logger (CR3000, Campbell Scientific Inc., USA). Flux data collected by
these sensors were posted to the website of the GCE-LTER.

Flux Data Processing

Raw 10 Hz data from the infrared gas analyzer and sonic anemometer were processed for
30-minute runs using the EddyPro 6.1 software (Li-Cor Inc., Lincoln, NE, USA). The data was checked
for data spikes and they were removed, following the methods of Vickers and Mahrt [27]. A coordinate
rotation using the planar fit method [28] was applied to the sonic anemometer data to remove tilt
errors as well as linear trends. The Webb-Pearman-Leuning (WPL) correction for density effects due to
heat and water vapor transfer [29] was applied to correct the calculated CO2 fluxes.

Quality control was applied to each 30-min eddy-covariance data block and data from north and
south systems were combined. The processed NEE data for each sensor was filtered and combined
into one data set based on the prevailing wind direction and the sensor’s quality control parameters.
Data from the north facing tower was used for wind directions between 315 and 45 degrees, the south
facing tower datasets were used for wind directions between 135 and 225 degrees. For the remaining
wind directions, the average of both sensors was used.

The footprint model was then applied to the map with estimated fetch values and angle to screen
out measurements that did not originate from the study area. Finally, only measurements which had
footprints where at least 70% of the CO2 flux originated from within the marsh area surrounding the
flux tower were used in this study, which mostly occurred during daytime conditions. This combined
NEE was further filtered based on marsh inundation values. The filtered data was then used to
calculate the GPP.

The friction velocity threshold (u*) for nighttime fluxes at our study site was 0.10 ms−1

and determined per Papale et al. [30]. We used the median of the absolute deviation method
by Papale et al. [30] to detect outliers within each 30 min block of flux data. A total of 37%

http://modis--land.gsfc.nasa.gov
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of the observations were removed, with a greater percentage of removed observations from
nighttime conditions.

Flux Partitioning

Daytime NEE is usually modeled through nonlinear light response curves (i.e., Falge et al. [31]).
Nighttime fluxes which represent respiration are modeled by temperature dependent models such as
that proposed by Lloyd and Taylor [32]. Before applying these models, we first partitioned the flux
data into the daytime and nighttime NEE based on light level. These partitions equate to ecosystem
respiration (Reco) and GPP per Reichstein et al. [33]. The NEE for the system is derived as follows:

EE =

{
Reco Fornighttimeperiods

Reco − GPPFordaytimeperiods
(2)

The temperature dependence of Reco is described by Lloyd and Taylor’s (1994) [32] model
as follows:

Reco = Rre f .e
E0(

1
Tre f −T0

− 1
Tair−T0

)
(3)

where, Reco (µmol m−2 s−1) is the ecosystem respiration, Rref is the rate of respiration at a reference
temperature, Tref set at 10 ◦C, E0 (K) is the activation energy of Reco when T0, the base temperature is
set to −46.02 ◦C [32], Tair is the air temperature.

2.2.4. Marsh Inundation Data

Associated with the flux tower were additional instruments, including the Campbell Scientific
CS455 pressure transducer sensor, deployed in a creek adjacent to the study marsh. The pressure
transducer measures the mean water level relative to NVD88 datum every 5 min. The measurements
were calculated from water pressure in mH2O and sensor elevation of −0.23 m from RTK GPS
measurements. An automated weather station with 5-min average data output was also installed
to measure air temperature, relative humidity, solar radiation, precipitation, and wind speed
and direction.

Additionally, there was a PhenoCam mounted on the flux tower, a digital camera which
auto-collects oblique-angle images of the marsh every half-hour during daylight. We used a smart
classifier to extract the percent cover of water over the marsh from each PhenoCam image [34]. Then,
to estimate percent cover of marsh flooding for each 5 min period of the day, including nighttime,
we used a generalized linear model with binomial error to predict percent cover flooding from creek
water height, wind speed, and wind direction. This provided a better estimate of marsh flooding than
creek water height alone [24].

2.2.5. MODIS Data Preprocessing

The cloud state information from the “QC_500 m: 500 m Reflectance Band Quality” layer within
the MOD09GA product was used to filter cloudy pixels from the spectral reflectance dataset. Tidal
inundation information was generated from our new Tidal Marsh Inundation Index (TMII) [24].
This index creates a flag that can identify tidal flooding within vegetated marshes by accounting for
mixed pixels that reflect both vegetation and inundation. TMII also accounts for seasonal vegetation
development and maximizes the separation of vegetation and tides across the annual cycle.

2.3. Accounting for Tides in Flux and MODIS Data

2.3.1. Creating a Tide-Free GPP Time Series from Flux Data

The data preprocessing steps for the NEE collected at the flux tower included the following steps:
generating tide free NEE data, calculating tide free GPP, gap-filling, and finally, smoothing GPP over



Remote Sens. 2018, 10, 1831 7 of 16

five-day windows (Figure 2). The data flow produced NEE and respiration values (Re) measured
during tidal periods and a separate dataset where tidal influences were below a determined threshold
value based on the marsh inundation data. Both data sets allowed for the calculation of GPP using
tidally separated NEE and nighttime Re. We used the method developed by Reichstein et al. [33] to gap
fill GPP data, where the gap filling was based on radiation and temperature inputs gathered on site.
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Figure 2. The GPP Flux tower processing steps.

Half hour values of tide-free and gap-filled flux tower GPP (µmol C m−2 s−1) were summed
using Equation (4) to provide daily GPP in units of µmol C m−2 per day. The coefficient of 0.0216
in Equation (4) converts units of µmol CO2 m−2 s−1 to g C m−2 per each 30 min flux averaging
interval [1].

GPP = 0.0216
48

∑
i=1

GPP30min (4)

As a final step, we summed the daily values to create 8 day sums of GPP to match the temporal
scale in the MOD17A2 GPP product, allowing a comparison of these two datasets. We assumed that
all the carbon flux from the atmosphere into the marsh ecosystem was positive.

2.3.2. Creating Cloud-Free and Tide-Free MODIS VI Composites

The steps for creating high-quality MODIS data included filtering cloud and tide-influenced
observations, as well as filtering observations with view zenith angles >50◦ (Figure 3).
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Figure 3. The MODIS GPP processing steps.

The cloud mask from the MOD09GA QC layer was used to filter MODIS data products to produce
cloud-free images. Similarly, we used the TMII to identify and filter tidal inundation from the MODIS
dataset, following O’Connell et al. [20]. We indexed observations with TMII > 0.2 as flooded and
filtered these from the dataset.

The next step was to calculate VIs and composite those in order to match the temporal scale of
the MOD17A2 product, as well as the 8 day sums created from the flux GPP. To create these 8 day VI
composites, we followed the workflow we previously developed [24], which is based on the guidance
outlined in Huete et al. [35]. To summarize this procedure, we composited Vis by first ordering VI
observations by view zenith angle within each 8 day window. Up to five observations, in order of
lowest view zenith, were used to create the average VI value for the window, provided that these
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observations all had view zenith angles <35◦. If low view zenith observations were not available,
the function selected the single VI value corresponding to the lowest view zenith angle <50◦. If no low
view zenith values were available <50◦ within the window, then the window the VI value was set as
missing data. The entire processing tree is depicted in Figure 4.
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2.4. Select the Best Vegetation Index as a Proxy for GPP

Despite the usefulness of VIs in other habitats as proxies of both LUE, fAPAR [19,21–23],
and GPP [16,36,37], these methods need to be adapted for tidal marshes. To create the best MODIS GPP
model, it was important to test a variety of vegetation indexes, including the Normalized Difference
Vegetation Index (NDVI) [38], the Soil Adjusted Vegetation Index SAVI [39], the Normalized Difference
Moisture Index (NDMI) [40], the Visible Atmospherically Resistant Index (VARI) [41], the Enhanced
Vegetation Index (EVI) [35], and the Wide Dynamic Range Vegetation Index (WDRVI) [42]. Equations
for these indices are

NDVI =
ρNIR − ρR
ρNIR + ρR

(5)

where ρ is spectral reflectance at the wavelength indicated by the subscript, NIR is near-infrared as
indicated previously and R is the red wavelength.

SAVI =
ρNIR − ρR

ρNIR + ρR + L
(1 + L) (6)

where L is a constant and L = 0.5 is the default value and works well in most situations.

DMI =
ρ0.86µm − ρ1.24µm

ρ0.86µm + ρ1.24µm
(7)

where the MODIS bands involved are 2 (near infrared at 0.858 µm) and 5 (1.24 µm).

VARI =
ρG − ρR
ρG + ρR

(8)

EVI = G
ρNIR − ρR

ρNIR + C1 × ρR − C2 × ρB + L
(9)
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where L = 1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5.

WDRVI =
αρNIR − ρR
αρNIR + ρR

(10)

where α is between 0 and 1 and is a weighting parameter for NIR reflectance.
To select the best VI for estimating flux GPP, we divided the data into training (2015) and validation

(2014) data in order to build the model and then estimate its performance on the most novel data
available for our target pixel, e.g., that from the new year. For training data, we developed simple
linear regression models where each candidate VI (NDVI, SAVI, NDMI, VARI, EVI, WDRVI) was used,
in turn, to predict flux GPP data. We also estimated Root Mean Square Error (RMSE) of the model
prediction as

RMSE =

√
∑(ŷi − yi)

2

n
(11)

where ŷi was the predicted GPP for yi, the observed GPP value from the flux 8 day sum, and n was the
sample size. For validation, we used the best model from the training regressions as indicated by R2 to
predict GPP. We then compared that to the “true” 8 day flux GPP sums to get RMSE for the de novo
data without refitting the model. This RMSE for validation data provides an estimate of how well our
training model works to predict new observations at our study site. Finally, for the validation GPP
prediction, we compared this to the RMSE of a simple linear regression where the MODIS product
MOD17A2 was the predictor of the flux GPP.

3. Results

3.1. Creating a Tide-Free GPP Time Series from Flux Data

Flux GPP measurements during some periods were missing due to instrument malfunctions.
Windows with missing data were excluded from the final 8 day sums, resulting in 304 (2015 training) and
359 (2014 validation) daily GPP observations. These daily GPP sums ranged from −0.08 to 6.22 g C m−2

across both years. After processing to 8 day sums, the GPP ranged from −0.16 to 39.76 g C m−2,
while the maximum 8 day GPP was similar among both years, the minimum 8 day GPP was much
higher in 2014 than 2015 (4.35 vs. −0.16 g C m−2).

3.2. Creating Cloud-Free and Tide-Free MODIS VI Composites

From our focal pixel, we acquired daily surface reflectance. Some dates had missing data resulting
in 358–360 surface reflectance observations annually. Of these, 44–61 were estimated as tide and
cloud-free observations with view zenith <50◦. These were composited into regularly spaced 8 day
estimates (45 obs each year), but some composite windows contained no valid data, resulting in
20–27 observations with data (Table 1). The compositing process resulted in higher quality data
averages from low view zenith observations which could be used for GPP modeling.

Table 1. The MODIS samples used for GPP modeling and validation.

Modeling (2015) Validation (2014)

Daily surface reflectance 360 358
Cloud-free, low view zenith 52 67

Cloud and tide free 44 61
8 day composite 20 27

3.3. Selection of the Best Vegetation Index as a Proxy for GPP from the Training Data

Composited and smoothed vegetation indices varied in terms of their range and signal to noise
ratios (Figure 5). Of these, NDMI had the least noise across the phenological cycle. When related to
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GPP, NDMI also a higher R2 than other potential VI proxies and, thus, was selected as the best proxy
for modeling variation in GPP (Table 2).
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Figure 5. The composited cloud and tide-free candidate vegetation indexes for modeling GPP over the
years 2014 and 2015. Gaps represent windows where no suitable data were available to composite.

Table 2. The goodness of fit for the relationship between the Vegetation Indices and GPP for the
Training Data.

Index R2

NDVI 0.04
SAVI 0.38

NDMI 0.46
VARI 0.05
EVI 0.38

WDRVI 0.03

Therefore, the final equation for predicting GPP was based on an 8 day composited cloud and
tide-free NDMI (Equation (12)).

GPP = 207.5 × NDMI + 32.3 (12)

3.4. Modeling GPP from the Validation Data

When applied to the 2014 validation dataset, NDMI had a stronger relationship with GPP than
MOD17A2, such that RMSE decreased from 7.46 g C m−2 (training) to 6.96 g C m−2. This 6.96 g C m−2

validation RMSE represented 20% of the observed range in GPP 8 day sums (e.g., 5.29 g m−2–39.75 g m−2)
(Figure 6).

During 2014, the GPP modeled from the NDMI relationship had a well-resolved phenological
pattern and was more similar to flux GPP than the MOD17A2 product (Figure 7). The MOD17A2 GPP
product also lacked an obvious summer maximum. Our new GPP model exhibited a more reasonable
phenology than MOD17A2 in the observed year, especially during the growing season (from May to
October). MOD17A2 also overestimated GPP in the non-growing season. This demonstrates the ability
of the proposed model to improve the data quality of MODIS GPP products for wetlands.
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4. Discussion

Combining satellite data and EC tower data is a common approach to estimate ecosystem-scale
or regional-scale GPP. Remote sensing data are valuable when used with EC data because they allow
us to model and map GPP beyond the tower footprint. Even though the LUE-based GPP model is
considered a robust approach, simpler empirical approaches such as the correlation between GPP and
vegetation indices are often valuable [16], in part because they do not require many parameters and
often are geographically scalable [23]. O’Connell et al. [24] demonstrated the problems (i.e., dampened
phenology) with standard vegetation indices derived from MODIS surface reflectance data for wetlands
and proposed a tide flagging method as a solution. Based on that method, we developed several
cloud-free and tide-filtered vegetation composites to be correlated with tower derived GPP in a simple
empirical model. Our best model was able to explain 46% of the variation in tidal wetland GPP in the
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validation data and had a lower RMSE than MOD17. Therefore, this represents an improvement over
the existing method for tidal wetland GPP calculation.

Accounting for tidal effects in wetland remote sensing data is important. We found that 20–40% of
the MODIS daily surface reflectance data were affected by either clouds or tides or both in GA wetlands
(Table 1). Remote sensing derived vegetation indices in wetlands have several other problems, namely
reduced NIR reflectance due to saturated soil background and lack of a pronounced red-edge due to
scattering at the red-absorption band [14]. These problems often introduce significant errors in remote
sensing based biophysical or GPP models [1,14,17]. Moreover, the errors will increase sharply if we do
not filter out tide and cloud affected pixels [20]. The procedure presented in this paper overcomes these
problems by demonstrating how to tidally-filter daily surface reflectance information from MODIS,
and subsequently generate a higher quality MODIS GPP model within tidal wetlands than the existing
MODIS product.

The best vegetation index for estimating GPP in our study was the Normalized Difference
Moisture Index (NDMI). Compared to other indices, NDMI served as a reasonable spatial proxy
for wetland GPP but only after accounting for tidal conditions. We observed that NDMI, a NIR,
and shortwave-IR (SWIR) based index performed better than red-NIR based indices (Table 2). As noted
in O’Connell et al. (2017) [24], even though the tide affected pixels are removed, the red-NIR contrast
is lower compared to NIR-SWIR contrast. This is because of the perpetually moist soil background
in wetlands. Longer wavelength bands are attenuated by water and soil moisture more rapidly than
visible wavelengths. Therefore, indices composed of both visible and longer wavelengths are very
noisy within wetlands because the soil moisture and water depth vary over time. Further, as noted
above, NDMI is composed of bands related LAI (e.g., the NIR band) as well as bands related to plant
moisture content [43]. The amount of leaf area in the canopy and the water status of these leaves is
positively related to plant photosynthesis rates in S. alterniflora [44]. Perhaps consequently, NDMI has a
strong phenological signal and was high during summer when plant biomass was high and low during
the winter when plants were dormant (Figure 5). Therefore, NDMI showed a stronger correlation
with GPP compared to other indices, likely through its numerical robustness to tidal flooding and its
physical relationship to plant physiology.

We applied the NDMI based model to data from Sapelo Island, GA and demonstrated that the
GPP modeled from tide and cloud-free NDMI composites results in a more reliable product than
the coarser scaled existing MODIS MOD17A2. We can derive two important conclusions from this
observation. First, the MOD17A2 GPP product available at the time of this study is not suitable for
wetlands. This may be in part because of its coarser scale though we think this contributed only to
minor differences because the entire marsh area was an S. alterniflora monoculture. However, more
importantly, the MOD17A2 GPP product uses an LUE-based approach by incorporating ground-based
meteorological measurements, a grassland biome-properties look-up table (BPLUT), and fPAR and
LAI (from MOD 15) [17,45–50]. These variables need to be parametrized and recalibrated for coastal
marshes. The main improvement our modeling approach provided was to show that a tidally filtered
vegetation index can be more accurate than a complex modeling approach that is not parametrized for
local conditions or species. Second, although significant, NDMI only explained 46% of the variability
in observed GPP which is much lower than the LUE-based PEM models developed for mangroves
wetlands (e.g., Barr et al., 2013) [1]. These mangrove canopies stick above high tide and therefore do
not require spectral tidal filtering that salt marshes require. However, unlike LUE, vegetation indices
are often used as proxies for greenness and not carbon uptake.

In this study, we have shown that a simple vegetation index based GPP model can be more
accurate than a poorly calibrated complex LUE based model (MOD17A2). Ge et al. [25] also observed
that LUE-based models without tidal filtering can give a poor performance in tidal salt marshes.
Therefore, we conclude that existing MODIS-based PEM or VPM models for wetlands can be improved
significantly by filtering and re-compositing the vegetation index used in model parametrization.
While a well-parameterized LUE-based model may ultimately give better results, this study is a step
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forward because this simple VI MODIS models of GPP explains a large fraction of GPP variation
within the pixel best representing the flux tower footprint and is easy to calculate. The high temporal
resolution of MODIS coupled with the moderate spatial resolution of a 500 m algorithm can result in
an immense potential for studying and monitoring both long and short-term tidal wetland health and
physiological statuses, and for allowing GPP comparisons with the upland areas that MOD17A2 was
designed to estimate.

5. Conclusions

The present study represents a first attempt to design and calibrate simple MODIS GPP models for
salt marsh ecosystems through the integration of remotely sensed information, flux tower observations,
and tidal data. The study describes how to composite MODIS daily surface reflectance data or
derived products within tidal marshes, allowing us to model tidal wetland productivity. We certified
that LUE-based MOD17A2 does not accurately reflect tidal wetland GPP compared to a simple
empirical vegetation index-based model where tidal influence was accounted for. The results of
this study also point to the need for more robust calculations of the tidal effects on ecosystem gross
primary productivity.

Mapping such productivity data gives insight into ecosystem function and can establish sites as
sinks or sources of carbon in the environment. The MODIS-based models developed in this study
can serve as a baseline for developing satellite-based models of GPP of the tidal wetlands. This is
particularly important because these productive coastal ecosystems are vulnerable to climate change
induced sea level rise and perpetual developmental pressures.

One of the limitations of this study is that we used a single MODIS pixel to calibrate and validate
our model. Although a single pixel does not represent the Georgia wetlands, any study aimed
at developing a coast-wide GPP product needs to start at a pixel-level. The initial pixels used to
parameterize such a model need to be those in the footprints of EC towers so that the tower data
can serve as ground-truth data for parameterizing models and estimating model error. We used
the best such pixel in this study. The biggest factor that affects MODIS surface reflectance and,
hence, the GPP product is tide. Unless we have a robust tide flagging mechanism to filter the tide
affected pixels, the supposedly robust LUE models are always going to be noisy, no matter how much
re-parametrization is done. Again, the tide-flagging model needs to start at a pixel level where we
have tower-based and phenocam observations to serve as ground-truth data. Fortunately, MODIS
produces a dense temporal dataset and even if the tower pixel is affected by cloud and tide 20–40%
of the time, we will still be left with a good size dataset to calibrate and validate the GPP model.
With that in mind, our goal in this study was to examine the effect of tide on the performance of
a simple GPP model before investing time on a complex but more robust LUE based GPP model.
Our goal was not to develop a coast-wide tide-filtered GPP map with a simple empirical model which
may have other problems (site- or species-specific etc.). For that, we need more pixel-based marsh
inundation observations across multiple sites. Only then can we start re-parametrizing LUE based
model for the coast-wide application. This will allow us to produce a coast-wide GPP map for salt
marshes and revisit the vast MODIS archive to generate an 18+ year time-series composite. It also
would be valuable to extend these time series to investigate environmental drivers and patterns of
change in marsh GPP and the phenology of GPP at this site and across the broader GA coast.
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