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Abstract: Recent developments in remote sensing (RS) technology have made several sources of
auxiliary data available to support forest inventories. Thus, a pertinent question is how different
sources of RS data should be combined with field data to make inventories cost-efficient. Hierarchical
model-based estimation has been proposed as a promising way of combining: (i) wall-to-wall optical
data that are only weakly correlated with forest structure; (ii) a discontinuous sample of active RS
data that are more strongly correlated with structure; and (iii) a sparse sample of field data. Model
predictions based on the strongly correlated RS data source are used for estimating a model linking the
target quantity with weakly correlated wall-to-wall RS data. Basing the inference on the latter model,
uncertainties due to both modeling steps must be accounted for to obtain reliable variance estimates
of estimated population parameters, such as totals or means. Here, we generalize previously existing
estimators for hierarchical model-based estimation to cases with non-homogeneous error variance
and cases with correlated errors, for example due to clustered sample data. This is an important
generalization to take into account data from practical surveys. We apply the new estimation
framework to case studies that mimic the data that will be available from the Global Ecosystem
Dynamics Investigation (GEDI) mission and compare the proposed estimation framework with
alternative methods. Aboveground biomass was the variable of interest, Landsat data were available
wall-to-wall, and sample RS data were obtained from an airborne LiDAR campaign that produced
simulated GEDI waveforms. The results show that generalized hierarchical model-based estimation
has potential to yield more precise estimates than approaches utilizing only one source of RS data,
such as conventional model-based and hybrid inferential approaches.

Keywords: Carbon monitoring; GEDI; Landsat 7 ETM+; Model-based inference; Superpopulation
models; Variance estimation.

1. Introduction

For several reasons society’s interest in forests and forestry is increasing. Forests play a key role
in ambitions to mitigate climate change through moving from fossil-based economies to bio-based
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economies. They provide a long list of ecosystem services, including human recreational and economic
uses. As a result, there is an increasing worldwide need for information about the state and change of
forest resources and forest environmental conditions. One important example is the United Nations’
Framework Convention on Climate Change (UNFCCC), which has become an important driver of
forest inventory development since it highlights that forests are potentially huge sources or sinks of
carbon dioxide and, thus, the agreements under UNFCCC require recurrent reporting of forest carbon
pool changes [1]. Another example is the Forest Europe process, which relies on forest information for
promoting sustainable management of European forests [2].

A major challenge is to develop methods to collect forest information cost-efficiently, without
sacrificing information quality. Typically, National Forest Inventories (NFIs) based on field sample
plots provide forest information at regional and national level. However, the ongoing development of
earth observation technologies is rapidly improving, and the scope, quality and availability of the data
provided offer substantial new possibilities for forest inventories [e.g., 3]. Over the last few decades
several studies have been conducted where remote sensing (RS) and field data have been combined in
order to enhance the precision of large-scale field based inventories, or to make forest surveys feasible
in remote areas where field sampling is very costly.

When conducting a forest inventory, RS data can be incorporated at either the design stage or
the estimation stage. At the design stage, RS data can be used for stratification [e.g., 4], unequal
probability sampling [e.g., 5], or balanced sampling [e.g., 6]. To utilize RS data in the estimation stage,
either model-based inference [7–9], or model-assisted estimation including post-stratification [10], i.e.
design-based inference, can be applied.

The vast availability of RS data also opens new possibilities for improving estimation efficiency
by using combinations of several sources of RS data. While this can be achieved straightforwardly in
the case of model-assisted estimation following established sampling theory [e.g., 5,11–13], this issue
has been less explored for model-based inference for the case when auxiliary data are not available
for the entire population. An important case is when wall-to-wall RS data (or a large sample) are
complemented by a (sparse) sample of RS data that are strongly correlated with the forest attribute
variable of interest. While several studies have utilized this type of combination of RS data for
model-based inference [e.g., 14–16], first steps towards a rigid statistical framework for this type of
surveys were taken by Saarela et al. [17] and Holm et al. [18]. The current study is a generalization
and expansion of those studies. The proposed technique has been termed hierarchical model-based
estimation (ibid.) since in a typical case the data sources are nested. Commonly, the ambition is to
utilize wall-to-wall (or a large sample of) RS data for the inference about population characteristics
within a large study area. Since field data are expensive or may not be possible to obtain from all parts
of the area, a sample of RS data is selected, and a model linking the study variable (from field plots)
with sampled RS data is established. A key issue in hierarchical model-based estimation is that this
model must provide precise predictions of the variable of interest. Thus, the sampled RS data should
provide more accurate model predictions than the RS data available wall-to-wall. For example, in a
biomass survey the wall-to-wall RS data might be obtained from the Landsat satellite and the sampled
RS data from airborne laser scanning [cf. 19]. Model predictions across the sampled set of RS data are
used for estimating a second model, linking the variable of interest with wall-to-wall RS data. The
latter model is used for the model-based inference, but in the uncertainty assessment both modeling
steps must be accounted for [17,18,20].

Hierarchical model-based estimation can be used also in cases where data are not nested, as
an approach to make use of a sparse network of existing field data. In this case a small (possibly
purposive) sample of RS data is selected to link field data with a large sample of RS data, or RS data
available wall-to-wall. This approach was pioneered by Boudreau et al. [14] and Nelson et al. [15],
who used a combination of the Portable Airborne Laser System (PALS) and data from ICESat/GLAS
for estimating aboveground biomass (AGB) in Québec, Canada. A similar approach was applied
in a study by Neigh et al. [16] for assessment of forest carbon stock across the entire boreal forest
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region. However, these studies ignore parts of the models’ contribution to the overall uncertainty of
the biomass estimators. In Saarela et al. [17] it was shown that the studies might have underestimated
the variance by up to 70%. However, the study by Saarela et al. [17] was conducted under simplifying
assumptions, such as assuming all samples being conducted through simple random sampling and
assuming that all models involved had homogeneous residual variance.

The main objective of this study is to generalize the existing estimators for hierarchical
model-based estimation so that this estimation method can be applied also in cases when the model
errors have non-homogeneous variance and cases where the errors are correlated, for example due
to clustered sampled data. A further objective is to compare the proposed estimation method with
existing methods, using data from study sites in the USA that mimic the type of data that will be
available from the Global Ecosystem Dynamics Investigation (GEDI) mission [21]. The proposed
generalization of existing theory in Saarela et al. [17] is important, since both field and intermediate RS
data in most practical cases are clustered [e.g., 22] and many models between RS data and biophysical
features, such as biomass, have non-homogeneous variance [e.g., 18,23].

2. Methods

2.1. Overview

In this section we first derive and present the theory for generalised hierarchical model-based
(GHMB) estimation. In the next section, we then present the data from six study sites in the USA,
which were used for assessing the performance of the new estimators. A key issue was to assess what
precision can be expected if this estimation framework is used with a combination of field, GEDI and
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. Because GEDI data are not available yet, we
used GEDI-like waveforms simulated from airborne small-footprint LiDAR (see Section 3.1.1 for GEDI
data description).

We compared the performance of GHMB estimation with: (i) two-stage model-based estimation
described in Holm et al. [18], based on GEDI, Landsat 7 ETM+ and field data; (ii) hybrid estimation
[24], which utilizes only the sampled GEDI data and field data; and (iii) conventional model-based
estimation [e.g., 25], which utilizes only wall-to-wall Landsat 7 ETM+ data and field data.

2.2. Generalized Hierarchical Model-Based estimation (GHMB)

In model-based inference, the vector of N population values is seen as a realization from a vector
random variable y = (y1, ..., yN) with a given joint probability distribution [26]. The expected value of
yi is µi and ∑N

i=1
µi
N = µ. If the size N of the target population, U, is large, we can assume that µ ≈ ȳ

(where ȳ is the population mean of the given realization) is a good approximation, and instead of
predicting the target population mean ȳ, we estimate its expectation µ [e.g., 27].

The joint distribution G of the vector random variable y = (y1, ..., yN) is denoted a superpopulation
model [cf. 26]. The GHMB estimation approach relies on two superpopulation models of the class of
multiple regression models. The first superpopulation model links target population element values
y with predictor variables X (including a column of units) assumed to be strongly correlated with y.
The second superpopulation model links y with predictor variables Z (including a column of units)
assumed to be weakly correlated with y. In our example the variable of interest, y, is AGB, and X and
Z are GEDI and Landsat 7 ETM+ data, respectively (see Section 3.1 for the data description). On this
basis we denote the first superpopulation model GX and the second GZ. Since, GX and GZ describe
the same joint distribution of y = (y1, ..., yN), they relate as µ|GX = µ|GZ, which is an essential basis
for GHMB estimation.

In our study, GX and GZ are assumed to have a similar form and follow similar distributional
properties, and thus, for our target population U we have:

y = Xβ + ε, E [ε] = 0, E [εεᵀ] = ω2Ω, (1)
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and
y = Zα + υ, E [υ] = 0, E [υυᵀ] = θ2∆; (2)

here, β and α are vectors of model parameters to be estimated, ε and υ are random error vectors, and
ω2Ω and θ2∆ are the variance-covariance matrices with diagonal elements corresponding to individual
error variances and off-diagonal elements to covariances between individual errors.

Three dataset are required for GHMB estimations.

• The first dataset, denoted S, contains a sample of field data for which sampled RS data are also
available. The dataset is used for estimating the model parameters β. Each estimator based on
this set is given the subscript S; the data S comprise n field observations.
• The second dataset, denoted Sa, contains the enlarged sample of RS data and the corresponding

RS data from the wall-to-wall dataset. It is used for estimating the model parameters α, and any
estimator based on this set has the subscript Sa; the data Sa comprise M sampled RS observations.
• The third dataset contains the wall-to-wall RS data for the entire target population, U. The target

population U comprises N population elements.

With a nested structure of data, Sa is a sample of U, and S is a sample of Sa. However, as we
stated in the introduction, the datasets do not have to be nested, and the sample S may be selected
independently from Sa. Figure 1 provides an overview of GHMB estimation.

Figure 1. Overview of Generalized Hierarchical Model-Based estimation.

We estimated β by generalized least squares (GLS) estimators usinf dataset S [e.g., 28]:

β̂S =
(
Xᵀ

SΩ̂
−1
S XS

)−1Xᵀ
SΩ̂
−1
S yS, (3)

Conditions E [ε] = 0 and E [υ] = 0 in GX and GZ, respectively, imply that for the superpopulation
model GX, E [y|X] = Xβ and for the superpopulation model GZ, E [y|Z] = Zα. This does not imply
that E [y|X] equals E [y|Z] for a given realization of X and Z. For example, assume tree biomass is
modeled based on either tree diameter (X) or tree height (Z) these two models will be very different,
and in formal terms this is because the models provide the expected values conditional on the different
predictor variables. This difference between the two models may be more subtle when the models
are based on different types of RS data, but the principle remains the same: the two models will be
different. Thus, for a given realization of X and Z, y|X = y|Z, but E [y|X] 6= E [y|Z]. Using the models
(1) and (2) we obtain Xβ + ε = Zα + υ, and thus,
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Xβ =Zα + u, E [u] = 0, E [uuᵀ] = σ2Σ, (4)

where u = υ− ε is a random variable. It can be seen that x̄β = z̄α (x̄ and z̄ are vectors of average
values) and thus, the relationship agrees with µ|GX = µ|GZ. The relationship (4) is employed to
estimate the model parameters α using the dataset Sa and ŷSa = XSa β̂S, i.e.

α̂Sa =
(
Zᵀ

SaΣ̂
−1
Sa ZSa

)−1Zᵀ
SaΣ̂
−1
Sa ŷSa

=
(
Zᵀ

SaΣ̂
−1
Sa ZSa

)−1Zᵀ
SaΣ̂
−1
Sa XSa β̂S

=
(
Zᵀ

SaΣ̂
−1
Sa ZSa

)−1Zᵀ
SaΣ̂
−1
Sa XSa

(
Xᵀ

SΩ̂
−1
S XS

)−1Xᵀ
SΩ̂
−1
S yS.

(5)

The variance-covariance matrices ω2Ω and σ2Σ are among the essential parameters to be
estimated. Under assumptions of homoskedasticity and independence, ω2Ω and σ2Σ become ω2I and
σ2I.

However, under heteroskedasticity and dependent observations the form of ω2Ω and σ2Σ is
different. Under heteroskedasticity, the matrices’ diagonal elements, corresponding to individual error
variances, are unequal. Dependent errors may arise due to several reasons, important examples are
clustered sample data, spatially autocorrelated errors and nested samples:

• with clustered data structure, Ω and Σ are block-diagonal matrices, where the blocks correspond
to the clusters;
• under spatial autocorrelation, the matrices’ off-diagonal elements, corresponding to covariances

between errors, are non-zero;
• with nested samples, the dependency between datasets S and Sa results in a non-zero covariance

between errors of model (1) and relationship (4).

In the present study we didn’t account for the uncertainty due to the estimation of ω2Ω and σ2Σ,

and assumed that they are known to a constant, i.e. ω̂2ΩS = ω̂2ΩS and σ̂2ΣSa = σ̂2ΣSa. This is a
common practice when GLS estimators are applied [cf. 28,29]. Therefore, since the ω̂2 and σ̂2 terms
will cancel, estimators (3) and (5) can be rewritten as

β̂S =
(
Xᵀ

SΩ−1
S XS

)−1Xᵀ
SΩ−1

S yS, (6)

and

α̂Sa =
(
Zᵀ

SaΣ−1
Sa ZSa

)−1Zᵀ
SaΣ−1

Sa XSa
(
Xᵀ

SΩ−1
S XS

)−1Xᵀ
SΩ−1

S yS. (7)

The difference between (3) and (6), and (5) and (7) is that the covariance matrices are not estimated in
(6) and(7) but assumed known [cf. 28,29].

The expected value of the finite population mean is then estimated as

µ̂GHMB = ιᵀUZU α̂Sa, (8)

where the subscript GHMB denotes “Generalized Hierarchical Model-Based” and ιU is an N-length
vector, each element of which is 1/N.

The variance of µ̂GHMB is

V (µ̂)GHMB = ιᵀUZU Cov (α̂Sa)Zᵀ
UιU , (9)

where Cov (α̂Sa) (see Appendix A for details) is the core expression for the GHMB estimator variance.
As shown in the Appendix A the covariance composed of four terms.

Cov (α̂Sa) = E [bbᵀ] + E [ccᵀ] + E [bcᵀ] + E [cbᵀ] , (10)
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where
E [bbᵀ] = ω2

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa

[
XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

Sa

]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
,

E [ccᵀ] = σ2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
,

E [bcᵀ] = E [cbᵀ]ᵀ =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S Cov (εS, uSa)Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
.

In the general case all these terms would be non-zero and contribute to the variance of the GHMB
estimator. However, in case the S and Sa datasets are independent, then E [bcᵀ] = E [cbᵀ]ᵀ = 0. By
replacing ω2 and σ2 with the corresponding estimators ω̂2 and σ̂2 we obtain the covariance estimator
Ĉov (α̂Sa), i.e.

Ĉov (α̂Sa) = σ̂2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1

+ ω̂2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa

[
XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

Sa

]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
.

(11)

where ω2 in model (1) is estimated as [e.g., 28]

ω̂2 =
SSR(β|ΩS)

d fS
=

(yS − XS β̂S)
ᵀΩ−1

S (yS − XS β̂S)

n− (p + 1)
, (12)

whereas σ2 due to relationship (4), was estimated as

σ̂2 =
SSR(β, α|ΣSa)− Tr

[
XSaĈov

(
β̂S

)
Xᵀ

SaΣ−1
Sa (IM −H)

]
M− (q + 1)

, (13)

where SSR(β, α|ΣSa) = (XSa β̂S−ZSaα̂Sa)
ᵀΣ−1(XSa β̂S−ZSaα̂Sa), IM is an identity matrix of dimension

M × M and H = ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa . The correction

Tr[XSaĈov(β̂S)Xᵀ
SaΣ−1

Sa (IM−H)]
M−(q+1) is needed

because the response variable in relationship (4) is not measured but estimated using estimator (6).
It can be seen that the estimated covariance of β̂S is a part of Ĉov (α̂Sa) by substituting in

estimator (11) ω̂2
(
Xᵀ

SΩSXS
)−1 to Ĉov

(
β̂S

)
[e.g., 28]. The derivation of estimators (11) and (13)

are presented in Appendix A. Our GHMB variance estimator V̂ (µ̂) is

V̂ (µ̂)GHMB = ιᵀUZUĈov (α̂Sa)Zᵀ
UιU . (14)

The R package “HMB” by Saarela et al. [30] has function ghmb(), which provides estimates based on
estimators (8) and (14). The package is based on a C++ library for linear algebra developed by [31].

2.3. Reference methods for comparison

We compared the performance of the GHMB estimator with the two-stage model-based estimation
procedure presented in [18], which utilizes the same datasets. Additionally, we compared the GHMB
estimator with estimators utilizing only a single source of RS data, i.e. an estimator for hybrid inference
[24], and an estimator for conventional model-based inference [e.g., 17]. Some details of these reference
methods are provided below.

2.3.1. Generalized Two-Stage Model-Based estimation (GTSMB)

In this estimation procedure, the regressors X in the model GX , are regressands and dependent on
Z, i.e.

xk =Zγk + dk, E [dk] = 0, E
[
dkdᵀ

l
]
= δklΦkl , in case l=k: δkkΦkk = δ2

k Φk (15)
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for the kth variable out of (p + 1) variables in X. The same set of Z is used to predict each variable
in X. Model parameters γk are estimated using information from the Sa dataset employing the GLS

estimator, i.e. γ̂k =
(

Zᵀ
SaΦ̂

−1
k ZSa

)−1
Zᵀ

SaΦ̂
−1
k xSak

[cf. 28]. Similarly to GHMB estimation, we do not

account for the uncertainty due to the Φk estimation, and, thus, assume δ2
k Φk to be known to a constant

δ2
k , i.e. δ̂2

k Φk = δ̂2
k Φk. Thus,

γ̂k =
(

Zᵀ
SaΦ−1

k ZSa

)−1
Zᵀ

SaΦ−1
k xSak

. (16)

In this approach the expected value of the finite population mean, µ, is estimated as

µ̂GTSMB = ιᵀUX̂U β̂S, (17)

where x̂Uk = ZU γ̂k and the subscript GTSMB denotes “Generalized Two-Stage Model-Based”. The
variance of µ̂GTSMB is estimated as

V̂ (µ̂)GTSMB = ιᵀU X̂UĈov
(

β̂S

)
X̂ᵀ

UιU

+ β̂
ᵀ
SĈov

(
ιᵀU X̂U

)
β̂S

− ∑
(p+1)
k=1 ∑

(p+1)
l=1 Ĉov

(
β̂Sk , β̂Sl

)
Ĉov

(
ιᵀU x̂Uk , ιᵀU x̂Ul

)
,

(18)

where Ĉov
(
ιᵀU x̂Uk , ιᵀU x̂Ul

)
= δ̂klι

ᵀ
UZU

(
Zᵀ

SaΦ−1
k ZSa

)−1
Zᵀ

SaΦ−1
k ΦklΦ

−1
l ZSa

(
Zᵀ

SaΦ−1
l ZSa

)−1
Zᵀ

UιU and

δ̂kl =
(xSak

−ZSaγ̂k)
ᵀΦ−1

kl (xSal
−ZSaγ̂l)

M−(q+1) .
Details of the estimator (18) are presented in [18]. The R package “HMB” by Saarela et al. [30] was

used to obtain estimates based on (17) and (18).
The correspondence between GHMB and GTSMB estimators were further evaluated as a part of

this study. In Appendix B we show that under certain rather general conditions the estimators and
variance estimators will provide approximately the same results for given datasets.

2.3.2. Hybrid estimation

We employed the hybrid estimators for clustered data described in [24]. The estimator utilizes
sampled X data from the Sa dataset, and accounts for sampling uncertainty due to the Sa sample and
modelling uncertainty due to the model (1) (i.e., y = Xβ + ε) using the dataset S [24].

Within hybrid inference, the population mean estimator is [24, Equation 11, p. 101]

µ̂Hybrid =
∑m

i=1 F̂i

∑m
i=1 Ai

, (19)

where m is the number of clusters in Sa, F̂i = ∑Ai
t=1 ŷt = ∑Ai

t=1 xit β̂S is the ith cluster total, and Ai is the
number of population elements in the ith cluster.

The corresponding variance estimator is [24, Equation 15, p. 101]

V̂ (µ̂)Hybrid =
1

Ā2

(∑m
i=1(F̂i − µ̂Hybrid Ai)

2

m(m− 1)

)
+ ιᵀSaXSaĈov

(
β̂S

)
Xᵀ

SaιSa, (20)

where Ā = 1
m ∑m

i=1 Ai.

2.3.3. Conventional model-based inference (MB)

This estimation procedure uses only one source of auxiliary information available wall-to-wall, in
our case the Landsat 7 ETM+ data. The population mean estimator is [e.g., 17, Equation 3, p. 899]

µ̂MB = ιᵀUZU α̂S, (21)
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where α̂S =
(

Zᵀ
S∆−1

S ZS

)−1
Zᵀ

S∆−1
S yS is a vector of estimated model parameters using the dataset S

following superpopulation model GZ in equation (2). As in the previous approaches, in this case we
also assume that the covariance θ2∆S is known to a constant θ2, i.e. θ̂2∆S = θ̂2∆S.

The model-based variance estimator is

V̂ (µ̂)MB = ιᵀUZUĈov (α̂S)Zᵀ
UιU , (22)

where Ĉov (α̂S) = θ̂2
(
Zᵀ

S∆−1
S ZS

)−1 and θ̂2 = SSR(α|∆S)
dfS

=
(yS−ZS α̂S)

ᵀ∆−1
S (yS−ZS α̂S)

n−(q+1) [cf. 28].

3. Material

For this study we simulated six populations mimicking forest conditions in study areas across the
USA (Figure 2). For each site reference data were available from field measurements, Landsat 7 ETM+,
and laser scanning using a method that mimics future measurements with the GEDI space LiDAR.
In this section we first describe the datasets and, secondly, how these reference data were used for
simulating AGB and RS data for each study site.

Figure 2. Study sites across the USA.

3.1. Reference data

3.1.1. Simulated GEDI data

GEDI’s nominal footprint diameter will be approximately 25 meters, with approximately 60-meter
along-track spacing [21]. After two years of operation aboard the International Space Station (ISS),
the cross-track spacing of GEDI’s sample is expected to be 500 meters, producing a semi-regular
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lattice of sample lines from 51◦ South to 51◦ North (the area of the Earth traversed by the ISS orbit).
Waveform properties used in the modeling process were quantified by relative heights (rh) from below
which different amounts of energy were reflected. So, ‘rh90’ was the height below which 90% of the
waveform energy returned, which was higher by an amount dictated by the vertical distribution of
canopy material than ‘rh30’.

The LiDAR data used in this study were derived by the GEDI Science Team from airborne
discrete-return LiDAR (DRL) acquisitions, transformed to resemble the return waveforms to be
collected by the GEDI mission. Further details related to LiDAR and field data acquisition are
given in Appendix C. The transformation process is one where individual photon returns from
across a given surface area are grouped into height quantiles, which are then integrated to derive a
waveform describing the return height function for that area [32]. The GEDI Waveform Simulator
realistically accounts for topographic and canopy penetration issues, while effecting the above physical
transformation of return energy information from discrete to continuous functions.

The DRL acquisitions forming the basis of this study were collected with a RIEGL LMS-Q680i
airborne laser scanner across the six study sites (Maine, Pennsylvania, South Carolina, Colorado,
Minnesota) between June and August, 2014, the Oregon site was scanned in June, 2015. Data were
collected in North-South lines that were 300-1000 meters in width and spaced 5 km apart. Pulse density
was at least 4 pulses per square meter. The DRL sample lines were transformed to simulate a surface
of contiguous GEDI footprints along the sample lines. Ten strips of GEDI data, each about 510 m long,
were available from each site [33].

3.1.2. Landsat 7 ETM+ data

Landsat values were derived for each field plot from surface reflectance values (multiplied by 104)
generated from the LEDAPS algorithm [34]. Pre-collection surface reflectance imagery from June to
September, 2015 for band 3 (red; B3) and band 4 (near-infrared; B4) were composited using a medoid
method (multi-dimensional median; [35]), screening out clouds and cloud shadows using the F-mask
algorithm [36]. This processing was conducted on the Google Earth Engine platform [37].

3.1.3. Field data

Between 46 and 50 field plots were established in each of the six study sites from June-August,
2014 (Maine, Pennsylvania, South Carolina, Colorado, Minnesota) and from June - August 2015
(Oregon, see Appendix C for more details). The sample was designed to cover the range of vegetation
conditions in each area, making use of 15 strata covering the bivariate distribution of LiDAR-based
estimates of height (broken into 5 classes) and vegetation cover (3 classes). The sampled distribution
excluded locations with less than 10% canopy cover (according to LiDAR metrics) and areas of
non-forest according to the National Land Cover Dataset [38]. Approximately 25 random locations
were chosen within each stratum, from which an approximately equal number (3-4) were chosen for
field measurement based upon accessibility.

Standard field protocols used by the US National Forest Inventory (managed by the US Forest
Service Forest Inventory and Analysis program) were used in measuring trees on 16.15 m radius plots
(yielding approximately the same area plot as a Landsat pixel) [39]. For details see Appendix C. AGB
was calculated from the tree list for each plot as described in [39]. Plot numbers, forest types according
to [40,41] and statistics are summarized in Table 1.
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Table 1. Overview of field data.

Study site Forest type
Number of AGB,

[
Mg/ha

]
field plots min mean max sd

OR – Oregon
Douglas Fir (24%), Ponderosa Pine (33%),

49 4.7 227.5 775.1 205.7Fir Spruce/Mountain Hemlock (22%),

Lodgepole Pine (20%)

ME – Maine
Spruce/Fir (49%),

48 0.2 64.1 264.8 69.7
Maple/Beech/Birch (50%)

PANJ — Pennsylvanian / Loblolly/Shortleaf Pine (25%),
49 0.0 89.1 378.8 106.7New Jersey border Oak/Hickory (62%),

Maple/Beech/Birch (6%)

SC — South Carolina
Loblolly/Shortleaf Pine (66%),

50 0.0 72.7 373.3 80.1
Oak/Gum/Cypress (28%)

CO – Colorado
Pinyon/Juniper (17%),

46 0.0 133.8 353.5 96.2Fir/Spruce/Mountain Hemlock (27%),

Aspen/Birch (36%), Western Oak (12%)

MN – Minnesota Spruce/Fir (28%), Aspen/Birch (68%) 47 0.0 48.1 202.0 48.5

3.2. Simulated populations

Each of the six areas depicted in Figure 2 were simulated independently; each contained
approximately 50 field plots, with corresponding Landsat 7 ETM+ and GEDI data (simulated from
DRL). In general, the target for the GEDI mission is to report AGB estimates by 1-km squares. Thus,
the setup will be according to Figure 3a, i.e. the area is tessellated into 1-km grid-cells, each of which
will have a certain number of GEDI footprints (the points) and potentially a wall-to-wall cover of
Landsat data.

a) GEDI footprint simulated b) Case A c) Case B
spatial pattern

Figure 3. a) Simulated spatial pattern of GEDI footprints and the 1-km grid delineation; b) Case A:
data for a single 1-km grid-cell were used; c) Case B: data from neighboring grid-cells were used as

well, for the GHMB and GTSMB estimators.
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Our case study examples are of two kinds. In Case A, only data (GEDI and Landsat 7 ETM+)
from within a given 1-km grid-cell are used. In Case B, data from eight neighboring grid-cells were
used in addition to the center (target) grid, since model development data from a larger similar area
may improve GHMB estimation. Note, that only the GHMB and GTSMB approaches can benefit from
data from surrounding grid-cells, since such data can be used to improve the model used in the final
step of the GHMB (and GTSMB) procedure, that is, developing a model linking predicted biomass
values (based on GEDI data) with wall-to-wall Landsat data, and in the case of GTSMB procedure
developing a multivariate model linking GEDI variables with Landsat data. The conventional MB
and the hybrid methods cannot benefit from including a support area of this kind. The two cases are
shown in Figure 3b,c.

Simulation were made to provide the data needed for Case B; Case A data were obtained as the
corresponding data from the center 1-km grid-cell. Each 1-km grid-cell was tessellated into 2500 square
plots of a size corresponding to the future GEDI LiDAR footprint size.

3.2.1. Correlated multinomial random variables

To create our simulated populations mimicking forest conditions in the study sites we need
correlation matrices between the AGB, GEDI and Landsat 7 ETM+ variables. The matrices were
calculated using reference data and are given in Table 2.

Table 2. Correlations between the study variables for each study site.

Study site AGB GEDI rh60 GEDI rh90 Landsat B3 Landsat B4

OR

1 0.79 0.85 -0.49 -0.19 AGB
– 1 0.78 -0.55 -0.03 GEDI rh60
– – 1 -0.43 -0.12 GEDI rh90
– – – 1 -0.17 Landsat B3
– – – – 1 Landsat B4

ME

1 0.90 0.87 -0.26 -0.44 AGB
– 1 0.83 -0.41 -0.35 GEDI rh60
– – 1 -0.28 -0.41 GEDI rh90
– – – 1 0.14 Landsat B3
– – – – 1 Landsat B4

PANJ

1 0.82 0.70 -0.54 0.06 AGB
– 1 0.87 -0.62 0.24 GEDI rh60
– – 1 -0.63 0.45 GEDI rh90
– – – 1 -0.37 Landsat B3
– – – – 1 Landsat B4

SC

1 0.89 0.83 -0.36 0.07 AGB
– 1 0.85 -0.37 0.03 GEDI rh60
– – 1 -0.34 0.05 GEDI rh90
– – – 1 -0.26 Landsat B3
– – – – 1 Landsat B4

CO

1 0.82 0.78 -0.38 -0.36 AGB
– 1 0.82 -0.42 -0.22 GEDI rh60
– – 1 -0.46 -0.35 GEDI rh90
– – – 1 0.02 Landsat B3
– – – – 1 Landsat B4

MN

1 0.83 0.89 -0.24 0.04 AGB
– 1 0.80 -0.33 0.06 GEDI rh60
– – 1 -0.27 0.12 GEDI rh90
– – – 1 -0.14 Landsat B3
– – – – 1 Landsat B4
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We applied a classical method for generating correlated multivariate normal random variables
for a given covariance matrix, i.e.

aᵀ = Lfᵀ + µᵀ (23)

where, a = (a1, ..., at) is the desired multivariate normal vector of t variables (in our case study the
variables are AGB, rh60, rh90, B3 and B4), f = ( f1, ..., ft) is a row vector of independent standard
normals, µ = (µ1, ..., µt) is the vector of corresponding means, and L is a triangular matrix such that
LLᵀ = Cov (ak, al). We applied Cholesky decomposition to derive the matrix L. The covariance matrix
Cov (ak, al) = Corr (ak, al) sd (ak) sd (al) and the expected values µ were estimated using reference
data for each study site. Table 3 provides sd (ak) and expected values µ for each study site.

Table 3. Mean values and standard deviations of the study variables for each site.

Study site AGB GEDI rh60 GEDI rh90 Landsat B3 Landsat B4

OR 227.5 10.3 22.1 378.3 1990.3 µ
205.7 11.1 13.7 205.5 540.7 sd

ME 64.1 5.2 10.2 278.2 3074.5 µ
69.7 4.6 5.4 94.5 562.7 sd

PANJ 89.1 8.2 14.1 279.6 3505.6 µ
106.7 9.2 9.7 89.4 93.6 sd

SC 72.7 7.5 13.2 289.3 2825.7 µ
80.1 7.9 8.3 128.8 417.4 sd

CO 133.8 5.9 12.8 388.6 2369.6 µ
96.2 4.9 6.4 155.0 834.4 sd

MN 48.1 4.9 10.2 280.0 3243.0 µ
48.5 4.7 6.4 89.0 761.3 sd

The independent vector of standard normal random variables f was generated randomly for a
given simulated spatial autocorrelation of exponential form as a function of spatial distances between
square plots, i.e. ρi,j = e−a(distancei,j). The spatial autocorrelation values are presented in Table 4.

Table 4. Simulated spatial autocorrelation between two square plots center-points at 20 m distance for
AGB variable for each study site.

Study site ρi,j a Study site ρi,j a Study site ρi,j a

OR 0.72 1.64×10−2 PANL 0.82 0.99×10−2 CO 0.44 4.10×10−2

ME 0.59 2.64×10−2 SC 0.59 1.64×10−2 MN 0.77 1.31×10−2

We emphasis that for purposes of this study we assumed AGB autocorrelation as an average of
GEDI rh60 and rh90 autocorrelation values (estimated using GEDI simulated strip data), given strong
correlation between AGB and GEDI variables. This is an important point that the AGB autocorrelation
assessment was not a part of the computation process.

3.3. Regression modeling

For each study site five regression models were fitted. Table 5 gives the model description and
Table 6 provides information on the degrees of freedom, which were employed in the regression models
involved for the different estimation methods. Dataset S was randomly selected from the square plots
belonging to the target population U (1-km grid-cell) and its support area (eight neighboring 1-km
grid-cells) corresponding to Case B, i.e. from the 3× 3 km area (see Figure 3c).
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Table 5. The regression models employed in the case study sites.

Notation Description Application Dataset

AGB-GEDI A model is linking AGB as a response variable
with GEDI variables as predictor variables

GHMB (first level of
modeling hierarchy),
GTSMB and Hybrid

S

AGB-Landsat (Sa) A model linking predicted AGB as a response
variable with Landsat predictor variables

GHMB (second level of
modeling hierarchy)

Sa

GEDIrh60-Landsat Models linking GEDI response variables with
GTSMB Sa

GEDIrh90-Landsat Landsat predictor variables

AGB-Landsat (S) A model linking AGB as a response variable with
Landsat predictor variables MB S

Table 6. Degree of freedom (df ) for the models involved.

Case Model df

A, B AGB-GEDI and AGB-Landsat (S) 47

A
AGB-Landsat (Sa),

91
GEDI(rh60)-Landsat and GEDI(rh90)-Landsat

B
AGB-Landsat (Sa),

724
GEDI(rh60)-Landsat and GEDI(rh90)-Landsat

3.4. Evaluation criteria

We used the relative standard error (rSE) to assess the precision of the estimators

r̂SE = 100

√
V̂(µ̂)

µ
(24)

where µ is the expected value of population mean and in our study cases is the mean value of AGB
over field plots (see Table 3).

We also analyzed the uncertainty contribution of different sources in GHMB and hybrid estimation,
i.e. for GHMB uncertainty contribution (i) due to the AGB-GEDI model, and (ii) due to the
AGB-Landsat (Sa) model; for hybrid uncertainty contribution (i) due to the modeling, and (ii) due to
the sampling. We estimated proportions of each uncertainty contribution, i.e. for GHMB estimation
the proportions are estimated as (estimator (11) with substituting ω̂2

(
Xᵀ

SΩSXS
)−1 to Ĉov

(
β̂S

)
, and

estimator (14)):

PropAGB-GEDI =
ιᵀUZU

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa

[
XSaĈov

(
β̂S

)
Xᵀ

Sa

]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

UιU

V̂ (µ̂)GHMB
,

(25)

PropAGB-Landsat(Sa) =
σ̂2ιᵀUZU

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

UιU

V̂ (µ̂)GHMB
. (26)

for hybrid estimation the proportions are estimated as (estimator (20)):
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PropModelling =
ιᵀSaXSaĈov

(
β̂S

)
Xᵀ

SaιSa

V̂ (µ̂)Hybrid
, (27)

PropSampling =

(
∑m

i=1(F̂i−µ̂Hybrid Ai)
2

m(m−1)

)
A2V̂ (µ̂)Hybrid

. (28)

Ideally the performance of estimators and variance estimators should have been evaluated
through Monte Carlo simulations with repeated simulation of both the populations and selection of
datasets S and Sa, and the estimations. However, as seen from the formulas (11) and (14) the variance
estimator is conditional on the sample outcomes XS and ZSa. Thus different simulated samples will
result in different variances. It is the random deviations ε and u that causes uncertainty according
to the formulas. Therefor simulations that result in different XS and ZSa cannot strictly be used to
compare the empirical variance with the mean estimated. The simulated variances should be seen as
examples of the size. For this reason we have chosen a restricted number of simulations. Simulations
of only ε and u could be used for empirical studies, but then (for a given set of simulations) only for a
single fixed sample XS and ZSa.

4. Results

In Table 7, the expected population mean AGB values, µ, the corresponding simulated mean
values, yU , and the estimates for the GHMB and GTSMB (Cases A and B), hybrid, and MB methods
are presented. It can be seen that the AGB varied quite substantially between the different sites with
the highest value in Oregon and the lowest in Minnesota. The average of estimated values over 250
repetitions were always fairly close to the average of simulated true means, yU .

Table 7. Estimated expected value of population mean, µ̂, [Mg/ha].

Study site µ yU

Two sources of RS data One source of RS data

Case A Case B
Hybrid MB

GHMB GTSMB GHMB GTSMB

OR 227.5 226.8 227.4 227.4 226.5 226.5 226.3 225.6

ME 64.1 64.4 64.6 64.6 64.0 64.0 64.5 64.5

PANJ 89.1 88.1 88.0 88.0 88.3 88.3 88.0 88.2

SC 72.7 72.6 73.4 73.4 72.7 72.7 73.3 73.6

CO 133.8 133.1 133.7 133.7 133.6 133.6 133.7 133.2

MN 48.1 48.9 49.0 49.0 48.7 48.7 48.9 49.2

Our assessment of the performance of the different methods is based on estimated variances,
recalculated and expressed as relative standard errors, for each method in each of the study areas as
well as on average across the different study areas.

In Figure 4, the average relative standard error for the different methods across the study sites
is presented. In this case a relative variance was first estimated for each site; then an average for the
sites was calculated from which the square root was computed. On average, the GHMB and GTSMB
methods performed about equally well (Appendix B), and they were superior to the other methods in
case data from neighboring grid cells were used for improving the models (case B). When data from
the target grid cell, only, were used for the model building (case A), the GHMB and GTSMB methods
were outperformed by the hybrid and conventional MB estimation methods.
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Figure 4. The average relative standard error for the different methods, [%].

Relative standard error for each of the methods in each site is detailed in Table 8. It can be seen that
the performance of the methods, in terms of relative standard error, varied substantially between the
sites. The hybrid estimation method showed fairly consistent results, in terms of precision, across the
different sites with the smallest relative standard error in Colorado and the largest in Pennsylvanian
and New Jersey border. In this simulation study we were not able to indicate any specific relation
between estimators’ performance and forest types. To conduct such analysis, real life data would
be required rather than simulated. The MB method performed almost as well as hybrid estimation
with similar patterns across study sites, and GHMB and GTSMB Case A estimations. The GHMB
and GTSMB methods typically decreased their relative standard errors by about 40% when data from
surrounding grid-cells were applied in the model building.

Table 8. Relative standard error in the study sites, r̂SE, [%]

Study site
Two sources of RS data One source of RS data

Case A Case B
Hybrid MB

GHMB GTSMB GHMB GTSMB

OR 14.8 14.8 9.4 9.4 13.1 13.3

ME 14.0 14.0 8.0 8.0 13.8 15.2

PANJ 25.4 25.4 17.5 17.5 20.3 21.2

SC 15.2 15.2 9.0 9.0 14.2 16.3

CO 8.6 8.6 6.3 6.3 8.8 9.1

MN 19.5 19.5 10.8 10.8 15.7 18.4

4.1. Sources of uncertainty for the GHMB and hybrid estimation methods

Table 9 shows the contribution of different sources of uncertainty to the variance GHMB and
hybrid estimation methods. It can be seen that the contribution of the AGB-GEDI estimated model
uncertainty is substantial for both estimation methods; for GHMB Case A it varies between 19% (MN)
and 47% (CO), in Case B between 54% (CO) and 81% (MN), and in hybrid estimation between 24% (ME)
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and 60% (PANJ). Comparing Cases A and B in GHMB estimation, we can see that with an increased
number of GEDI footprints (from 94 to 727), the uncertainty contribution of the AGB-Landsat (Sa)
estimated model decreased.

Table 9. Proportion (percentage) of the variance due to different sources for the GHMB and hybrid
estimation methods, [%]

Study site
GHMB Hybrid

Due to AGB-GEDI Due to AGB-Landsat (Sa)
Due to Modeling Due to Sampling

Case A Case B Case A Case B

OR 30.4 76.1 69.6 23.9 39.3 60.7

ME 22.7 69.0 77.3 31.0 23.5 76.5

PANJ 37.9 80.3 62.1 19.7 60.5 39.5

SC 26.2 73.1 73.8 26.9 30.2 69.8

CO 46.5 87.0 53.5 13.0 44.8 55.2

MN 19.1 62.6 80.9 37.4 29.7 70.3

5. Discussion

In this article the hierarchical model-based estimation method presented by Saarela et al. [17] has
been extended to cases when the model errors have non-homogeneous variance and cases where the
errors are correlated, for example due to clustered sample data and/or spatial autocorrelation. A main
component of this development is that generalized least squares theory is applied for the parameter
estimation in the regression analysis, in which case the parameter estimation and the corresponding
estimation of the covariance matrix for the parameter estimates accommodate such data structures.
Also, the similarities between the GHMB and the GTSMB methods [18] are further explored and a
proof is given (Appendix B) that the two methods will provide identical estimates and variances,
and almost identical variance estimates, under certain conditions. However, with the expansion of
the GHMB theory presented in this article, the GHMB method has a potential to be applied under a
wider range of conditions than the GTSMB method, which among other things assumes independence
between the two datasets used for the model building. The GHMB method might also be considered
more intuitive to apply since it directly predicts the reference data (AGB values) that are used for the
model building in the final step. The GTSMB method, on the other hand, uses the wall-to-wall RS data
for predicting the metrics that would have been obtained from the sampled RS data source.

The results from the case studies indicate that the GHMB and GTSMB methods lead to more
precise results, when a large support area is used for developing the model linking the wall-to-wall
dataset (simulated Landsat data in our case) with the model predictions from the sample RS data
(simulated GEDI data in our case). Restricting the data for the model building to a smaller area
decreases the precision of the two methods. The hybrid estimation method and the conventional
MB method were superior to the GHMB and GTSMB methods when only a 1-km support area was
used. With the hybrid method, the AGB predictions from the GEDI sample, only, are used for the
inference in our case. The conventional MB method makes predictions for all units in the wall-to-wall
dataset (simulated Landsat data). Note, that Case B is only relevant for GHMB and GTSMB, since
the dataset S (the field sample plots) was assumed to have a fixed size regardless of the size of the
target area, and thus, the models used for the MB estimation would be the same in Case A and Case B.
Thus “borrowing strength” for the model development from surrounding grid-cells does not change
anything in the cases of conventional MB estimation. This holds true also for hybrid estimation, based
on the same argument.

Overall, the performance of the different methods depends on many factors. A first requirement
is that the study area is large enough, so that the assumption that the superpopulation mean value
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is approximately the same as the study area mean holds. Further, the goodness-of-fit of the models
involved is another core issue. With a very good model linking wall-to-wall data with AGB values,
there is no need for complicating the estimation with hybrid, GHMB or GTSMB methods. However,
most wall-to-wall RS datasets are weakly correlated with AGB which is the reason why samples of RS
data that are strongly correlated with AGB are of interest as additional sources of auxiliary data in
more advanced estimation procedures. Lastly, the sample sizes of the S and Sa datasets are important
for the precision of the estimators. In general, increasing the sample sizes will increase their precision.
Table 9 supports this statement, as it shows that 47 degree of freedom for fitting the AGB-GEDI model
resulted in low precision of estimated β and, hence, the uncertainty contribution to the estimated
variance in GHMB estimation for Case A was between 38% and 19%, and for Case B between 62% and
87%. The low precision of estimated β lead to the situation that the conventional MB method with
only one source of weakly correlated wall-to-wall RS data (simulated Landsat data in our example)
slightly outperformed GHMB (and GTSMB) in Case A, where only 94 GEDI footprints were available
(see Figure 4).

The niche for GHMB and GTSMB estimation appears to be the important cases where the following
requirements are fulfilled: (i) field data are sparse and expensive to acquire, (ii) wall-to-wall RS data (or
a large sample of RS data) are available, which can be fairly well fit to the target variable, and (iii) RS
data which can be very well fit to the target variable are available, but only samples of such data can
be acquired. Since AGB models based on laser data can be expected to be more generally applicable
across large regions than AGB models from Landsat data, it should make sense to train local models
of the latter kind using pseudo-field data from predictions with the former kind of models, and thus
apply GHMB or GTSMB estimation.

Several methodological issues may be brought up in relation to this study:

• One important issue is that all the case study data were simulated, based on sparse samples of
reference data. The simulations are simplified generalizations of the real world, that leave out
many important issues that must be handled in practical surveys, such as delineating forests
from non-forest land [42]. In practical applications, land-use maps need to be applied to delineate
forests before the GHMB method is employed.
• Another important restriction of the present study is that the results are based on estimates

from a small number of iterations. A future expanded study should be based on Monte Carlo
simulations of both the populations and the sampling from these populations, as a basis for
empirical evaluation of the proposed estimators. Another method for simulating the multivariate
variable a in equation (23) might be applied to demonstrate explicitly abilities of the proposed
estimators.
• Further, future studies on this subject should also deal with the details of how to estimate the

correlation matrices of model errors that are required for the GLS regression; in this article
these details are only briefly addressed. One of the solutions to this problem could be iterative
re-weighted least squares regression methods, such methods are often applied in geostatistical
approaches.
• The current GHMB estimator is derived under the assumption that the target population is

large, i.e. so that the population mean is at least approximately equal to the superpopulation
mean. Modifications of the GHMB estimators for small-area estimation should be addressed in a
potential future study.
• In the current study we assumed that the regression models involved in the AGB assessment by

means of GEDI and Landsat data are linear. However, in reality the relationship between AGB
(or growing stock volume) and height-like measures tends to be nonlinear [e.g., 23]. A further
elaboration of the GHMB method for nonlinear models would be needed to handle such cases.
• Lastly, the performance of GHMB method in comparison to other methods should be analyzed as

a basis for making recommendations on what method is appropriate under different conditions.
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The above issues identify areas of needed research in the context of our findings. Including those
issues into the current study would have increased the scope and length of the article considerably,
and, thus, we chose to put those issues on hold for future studies.

6. Conclusions

Design-based inventory methods based on field sampling are limited by the availability of plot
data. GHMB (and GTSMB) allows estimation of biomass in areas where there may be none or very
limited field data, such as the 1-km grid-cells of interest to the GEDI mission, by taking advantage of
multiple levels of RS data. Specifically, field data and high-quality RS data from similar areas outside
the domain of interest can be used to calibrate wall-to-wall predictions within the domain of interest
using synoptically collected RS data more weakly related to biomass. This paper augments previous
hierarchical estimation methods by presenting methods that can be applied in cases where model
errors have non-homogenous variance and where the model errors are correlated. Both cases are
relevant for use of data from the upcoming GEDI LiDAR mission.
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Appendix A. Generalized hierarchical model-based estimators

For a realization, i.e. our target population, we have superpopulation models:

y =Xβ + ε, E [ε] = 0, E [εεᵀ] = ω2Ω, (A.1)

y =Zα + υ, E [υ] = 0, E [υυᵀ] = θ2∆. (A.2)

We also defined the following relationship between the two models for the given realization:

Xβ = Zα + u, E [u] = 0, E [uuᵀ] = σ2Σ. (A.3)
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For given datasets S, Sa, and U, and matrices ΣSa and ΩS:

α̂Sa =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa ŷSa. (A.4)

Knowing that ŷSa = XSa β̂S and β̂S =
(

Xᵀ
SΩ−1

S XS

)−1
Xᵀ

SΩ−1
S yS, we have

α̂Sa =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa β̂S,

=
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S yS.

Due to yS = XSβ + εS:

α̂Sa =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S (XSβ + εS),

=
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSaβ +

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S εS.

Due to XSaβ = ZSaα + uSa:

α̂Sa =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa (ZSaα + uSa) +

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S εS.

α̂Sa − α =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa uSa +

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S εS.

Denoting

b =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S εS, c =

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa uSa and given

that E [α̂] = α, we have

α̂− E [α̂] = b + c. (A.5)

This gives (α̂− E [α̂]) (α̂− E [α̂])ᵀ = bbᵀ + ccᵀ + bcᵀ + cbᵀ.
Thus, covariance is

Cov (α̂) = E [(α̂− E [α̂]) (α̂− E [α̂])ᵀ]

= E [bbᵀ] + E [ccᵀ] + E [bcᵀ] + E [cbᵀ],
(A.6)

where
E [bbᵀ] = ω2

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa

[
XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

Sa

]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
,

E [ccᵀ] = σ2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
,

E [bcᵀ] = E [cbᵀ]ᵀ =
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S Cov (εS, uSa)Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
.

Under the S⊥Sa assumption, E [bcᵀ] = E [cbᵀ]ᵀ = 0:

Cov (α̂) = E [bbᵀ] + E [ccᵀ]

= σ2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
+ ω2

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa
[
XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

Sa
]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1

(A.7)

Knowing that Cov
(

β̂S

)
= ω2

(
Xᵀ

SΩ−1
S XS

)−1
[e.g., 28] we can rewrite

Cov (α̂) = σ2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
+
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa
[
XSa Cov

(
β̂S

)
Xᵀ

Sa
]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1

(A.8)
Here we show that the trivial estimator for σ2 through the sum of squared residuals divided by

the degree of freedom, leads to a biased estimation. We also derive an unbiased σ̂2 estimator.
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We denote SSR(β,α|ΣSa)
dfSa

= σ̃2. The expected value of σ̃2 is:

E
[
σ̃2
]
=E

[
SSR(β, α|ΣSa)

dfSa

]

=
E
[
(XSa β̂S − ZSaα̂Sa)

ᵀΣ−1(XSa β̂S − ZSaα̂Sa)
]

M− (q + 1)
.

Denoting H = ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa and A =

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S we have

XSa β̂S − ZSaα̂Sa =XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S yS

−ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SΩ−1
S yS

=XSaAyS −HXSaAyS

=(IM −H)XSaAyS

=(IM −H)XSaA(XSβ + εS)

=(IM −H)(XSaβ + XSaAεS).

Due to XSaβ = ZSaα + uSa (for the given realization of XSa and ZSa):

XSa β̂S − ZSaα̂Sa =(IM −H)(ZSaα + uSa + XSaAεS)

=(IM −H)(uSa + XSaAεS).

Therefore,

SSR(β, α|ΣSa) =(XSa β̂S − ZSaα̂Sa)
ᵀΣ−1(XSa β̂S − ZSaα̂Sa)

=(uSa + XSaAεS)
ᵀ(IM −H)ᵀΣ−1

Sa (IM −H)(uSa + XSaAεS).

Given (IM −H)ᵀΣ−1
Sa (IM −H) = Σ−1

Sa (IM −H) we have

SSR(β, α|ΣSa) = (uSa + XSaAεS)
ᵀΣ−1

Sa (IM −H)(uSa + XSaAεS)

= uᵀ
SaΣ−1

Sa (IM −H)uSa + εᵀSAᵀXᵀ
SaΣ−1

Sa (IM −H)XSaAεS
+ uᵀ

SaΣ−1
Sa (IM −H)XSaAεS + εᵀSAᵀXᵀ

SaΣ−1
Sa (IM −H)uSa.

(A.9)

And thus, the expected value of the sum of squared residuals is (note: here we used that the quadratic
form tᵀJt = Tr [ttᵀJ] = Tr [Jttᵀ] for any column vector t and matrix J),

E [SSR(β, α|ΣSa)] =Tr
[
E
[
uSauᵀ

Sa
]

Σ−1
Sa (IM −H)

]
+ Tr

[
XSaA E

[
εSεᵀS

]
AᵀXᵀ

SaΣ−1
Sa (IM −H)

]
+Tr

[
E
[
uSaεᵀS

]
AᵀXᵀ

SaΣ−1
Sa (IM −H)

]
+ Tr

[
XSaA E

[
εSuᵀ

Sa
]

Σ−1
Sa (IM −H)

]
.

Knowing that E
[
uSauᵀ

Sa
]
= σ2ΣSa, E

[
εSεᵀS

]
= ω2ΩS and E

[
εSuᵀ

S
]
= E

[
uSaεᵀS

]ᵀ
= Cov (εS, uSa), we

have
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E [SSR(β, α|ΣSa)] =σ2 Tr [(IM −H)] + ω2 Tr
[
XSaAΩSAᵀXᵀ

SaΣ−1
Sa (IM −H)

]
+2 Tr

[
XSaA Cov (εS, uSa)Σ−1

Sa (IM −H)
]

.

Given Tr [(IM −H)] = M− (q + 1) and XSaAΩSAᵀXᵀ
Sa = XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

Sa we have

E [SSR(β, α|ΣSa)] =σ2(M− (q + 1)) + ω2 Tr
[

XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SaΣ−1
Sa (IM −H)

]
+2 Tr

[
XSaA Cov (εS, uSa)Σ−1

Sa (IM −H)
]

.

Thus,

E
[
σ̃2
]

= E
[

SSR(β,α|ΣSa)
d fSa

]
= σ2 + ω2

M−(q+1) Tr
[

XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SaΣ−1
Sa (IM −H)

]
+ 2

M−(q+1) Tr
[
XSaA Cov (εS, uSa)Σ−1

Sa (IM −H)
] (A.10)

It can be seen that σ̃2 estimator is biased, and thus, to derive an unbiased estimator σ̂2 we have to
correct σ̃2 for the estimated BIAS, i.e.

B̂IAS = ω̂2

M−(q+1) Tr
[

XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SaΣ−1
Sa (IM −H)

]
+ 2

M−(q+1) Tr
[
XSaAĈov (εS, uSa)Σ−1

Sa (IM −H)
]
.

(A.11)

And thus,

σ̂2 = σ̃2 − B̂IAS.

Under the independence assumption between datasets S and Sa, Cov (εS, uSa) = 0, we have

σ̂2 = 1
M−(q+1) (XSa β̂S − ZSaα̂Sa)

ᵀΣ−1(XSa β̂S − ZSaα̂Sa)

− ω̂2

M−(q+1) Tr
[

XSa

(
Xᵀ

SΩ−1
S XS

)−1
Xᵀ

SaΣ−1
Sa (IM −H)

]
.

(A.12)

Knowing that Ĉov
(

β̂S

)
= ω̂2

(
Xᵀ

SΩ−1
S XS

)−1
we can rewrite estimator σ̂2 as

σ̂2 = 1
M−(q+1)

(
(XSa β̂S − ZSaα̂Sa)

ᵀΣ−1(XSa β̂S − ZSaα̂Sa)− Tr
[
XSaĈov

(
β̂S

)
Xᵀ

SaΣ−1
Sa (IM −H)

])
= 1

dfSa

(
SSR(β, α|ΣSa)− Tr

[
XSaĈov

(
β̂S

)
Xᵀ

SaΣ−1
Sa (IM −H)

])
.

(A.13)

Appendix B. A comparison between expectations and variance estimators of the two methods:
GHMB and GTSMB

Below it is shown that the two methods GHMB and GTSMB lead to identical results under
certain conditions. Throughout below we neglect the effects of estimating covariance matrices and use
notations as if the matrices were known to a constant.

We start with the estimators: for GHMB we have,

µ̂GHMB = ιᵀUZU α̂Sa, (B.1)

where, according to estimator (7)
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α̂Sa =
(
Zᵀ

SaΣ−1
Sa ZSa

)−1Zᵀ
SaΣ−1

Sa XSa β̂S,

=
(
Zᵀ

SaΣ−1
Sa ZSa

)−1Zᵀ
SaΣ−1

Sa XSa
(
Xᵀ

SΩ−1
S XS

)−1Xᵀ
SΩ−1

S yS.
(B.2)

For GTSMB we have the same β̂S = (Xᵀ
SΩ−1

S XS)
−1Xᵀ

SΩ−1
S yS. The link between GEDI and Landsat

data is given by

xk = Zγk +dk, E [dk] = 0, E
[
dkdᵀ

l
]
= δklΦkl , in case l=k: δkkΦkk = δ2

k Φk, for k, l = 2, ..., (p+ 1). (B.3)

The parameters γk are estimated from the Sa sample and we have the GLS estimators

γ̂k = (Zᵀ
SaΦ−1

k ZSa)
−1Zᵀ

SaΦ−1
k xSa,k, (B.4)

where Φ−1
k should be understood as Φ−1

k,Sa. From (B.4) we obtain the vector of estimated GEDI values,

given the Landsat Z ones as the columns of X̂ = ZΓ̂Sa, where Γ̂Sa is the matrix with the vectors γ̂k as
columns.

Thus, for GTSMB estimation we have the estimator

µ̂GTSMB = ιᵀUZU Γ̂Sa β̂S. (B.5)

Comparing (B.1) and (B.5), we can see that µ̂GHMB = µ̂GTSMB, if

Φk,Sa = λkΣSa for some constants λk, for k = 2, ..., (p + 1) (B.6)

and thus
Γ̂Sa = (Zᵀ

SaΣ−1
Sa ZSa)

−1Zᵀ
SaΣ−1

Sa XSa. (B.7)

This is so because the λk cancel in (B.4), and (B.7) multiplied by β̂S is equal to α̂Sa.
The relation (B.6) seems very restrictive. It means that the correlation matrices for the k error terms

dk vectors are identical. However, this is not unrealistic as the GEDI variables xk are strongly correlated.
Also, this common correlation matrix is assumed to be equal to the correlation matrix of the error
terms of the GHMB model. This is not unrealistic either, since the GEDI variables should show a high
correlation with field data y and so should the GHMB predictions ŷ. At least, the assumption (B.6) is an
acceptable approximation. In the homoskedastic GEDI-Landsat case (when Σ and the Φk are normed
unit matrices) the relation (B.6) holds automatically, whether the Field-GEDI relation is homoskedastic
or not.

Thus, µ̂GHMB = µ̂GTSMB under certain conditions, exactly or approximately. Hence, the variances
are so too. Still, it remains to see whether or not the two variance estimators are (almost) identical
under some conditions. We restrict this study to the case where the S and Sa samples are selected
independently. The GHMB variance estimator is then (estimators (11) and (14))

V̂ (µ̂)GHMB = ιᵀUZUĈov (α̂Sa)Zᵀ
UιU , (B.8)

where

Ĉov (α̂) = σ̂2
(

Zᵀ
SaΣ−1

Sa ZSa

)−1

+
(

Zᵀ
SaΣ−1

Sa ZSa

)−1
Zᵀ

SaΣ−1
Sa

[
XSaĈov

(
β̂S

)
Xᵀ

Sa

]
Σ−1

Sa ZSa

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
.

(B.9)

The GTSMB variance estimator is (estimator (18))
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V̂ (µ̂)GTSMB = ιᵀU X̂UĈov
(

β̂S

)
X̂ᵀ

UιU

+ β̂
ᵀ
SĈov

(
ιᵀU X̂U

)
β̂S

− ∑
(p+1)
k=1 ∑

(p+1)
l=1 Ĉov

(
β̂Sk , β̂Sl

)
Ĉov

(
ιᵀU x̂Uk , ιᵀU x̂Ul

)
.

(B.10)

We introduce the matrix P that is the same for all k and that, in accordance with the condition (B.6) is
assumed to fulfill

Φk = ϕkP, (B.11)

for some constants ϕk, k, l = 1, ..., (p+ 1) (P = PSa throughout). Then γ̂k = (Zᵀ
SaP−1ZSa)

−1Zᵀ
SaP−1xSa,k

since ϕk cancels (see (B.4)), and

ιᵀUX̂U = ιᵀUZU(Z
ᵀ
SaP−1ZSa)

−1Zᵀ
SaP−1XSa. (B.12)

Thus, the first term in the (B.10) equals

ιᵀUX̂UĈov
(

β̂S

)
X̂ᵀ

UιU = ιᵀUZU(Z
ᵀ
SaP−1ZSa)

−1Zᵀ
SaP−1

[
XSaĈov

(
β̂S

)
Xᵀ

Sa

]
P−1ZSa(Z

ᵀ
SaP−1ZSa)

−1Zᵀ
UιU .

(B.13)
Due to the assumptions (B.6) and (B.11) we also have ΣSa = h2P for some constant h2. Since h2 cancels
in the second term of estimator (B.9), we see that the contribution of this term to V̂ (µ̂)GHMB equals the
first term in V̂ (µ̂)GTSMB.

Next, we will show that he first term of V̂ (µ̂)GHMB equals to the second one in V̂ (µ̂)GTSMB. For
this we need to add that condition (B.11) also holds for the cross-covariances, i.e., that

Φkl = ϕklP (B.14)

We have, since ϕk cancels,

ιᵀU X̂U,k = ιᵀUZU(Zᵀ
SaΦ−1

kk ZSa)
−1Zᵀ

SaΦ−1
kk XSa,k

= ιᵀUZU(Zᵀ
SaP−1ZSa)

−1Zᵀ
SaP−1XSa,k

and from this and (B.14) we obtain

Ĉov
(
ιᵀU x̂U,k, ιᵀU x̂U,l

)
= δ̂kl ϕklι

ᵀ
UZU(Z

ᵀ
SaP−1ZSa)

−1Zᵀ
UιU . (B.15)

Hence, by summation, we obtain for the second term of V̂ (µ̂)GTSMB

β̂
ᵀ
SĈov

(
ιᵀU X̂U

)
β̂S = ∑

(p+1)
k=1 ∑

(p+1)
l=1 β̂k β̂lĈov

(
ιᵀU x̂U,k, ιᵀU x̂U,l

)
= ∑

(p+1)
k=1 ∑

(p+1)
l=1 β̂k β̂l δ̂kl ϕklι

ᵀ
UZU(Zᵀ

SaP−1ZSa)
−1Zᵀ

UιU .
(B.16)

Next we will show that ∑
(p+1)
k=1 ∑

(p+1)
l=1 β̂k β̂l δ̂kl ϕkl = σ̂2h2 (where ΣSa = h2P), exactly or approximately,

and then

β̂
ᵀ
SĈov

(
ιᵀU X̂U

)
β̂S = σ2ιᵀUZU(Zᵀ

SaΣ−1
Sa ZSa)

−1Zᵀ
UιU

= σ2h2ιᵀUZU(Zᵀ
SaP−1ZSa)

−1Zᵀ
UιU .

(B.17)

In the hierarchical approach for the given realization of XSa and ZSa we have

XSaβ = ZSaα + uSa. (B.18)

We insert the second stage model (B.3) of the two-stage approach,

XSa = ZSaΓ + DSa (B.19)
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to get

XSaβ = ZSaΓβ + DSaβ. (B.20)

We identify the fixed and random parts of expression (B.20) and see that

DSaβ = uSa. (B.21)

Written in a clear way, we have (omitting the index Sa)

β1d1 + β2d2 + ... + β(p+1)d(p+1) = uSa. (B.22)

By taking the expectation of the product of the two sides of (B.22) with their transposes we obtain

(p+1)

∑
k=1

(p+1)

∑
l=1

βkβl Cov (dk, dl) =E
[
uSauᵀ

Sa
]

(p+1)

∑
k=1

(p+1)

∑
l=1

βkβlδklΦkl =σ2ΣSa

Recalling that ΣSa = h2P and Φkl = ϕklP, we have

(p+1)

∑
k=1

(p+1)

∑
l=1

βkβlδkl ϕklP =σ2h2P.

and, thus, by replacing expected values with their estimators,

β̂
ᵀ
SĈov

(
ιᵀU X̂U

)
β̂S = σ̂2h2ZU

(
Zᵀ

SaP−1ZSa
)−1 Zᵀ

UιU

= σ̂2ZU

(
Zᵀ

SaΣ−1
Sa ZSa

)−1
Zᵀ

UιU

(B.23)

what is exactly the first term of the V̂ (µ̂)GHMB.
Numerical examples (with simulated data) have shown that the two first terms of the variances

give identical sums. Further, the size of the third term of V̂ (µ̂)GTSMB has been shown to be much
smaller that the other two (it contributed with about 0.5% of the variance). The third term could be
seen as a second order correction of the first two.

Appendix C. Field and LiDAR Data Collection Methods

LiDAR data were collected using a Riegl LMS-Q680i system at five sites (SC, PANJ, ME, MN,
CO) in the summer of 2014 and a sixth site (OR) in the summer of 2015 (see Figure 2 for locations and
Table 1 for site descriptions). All data were collected during snow-free time periods when vegetation
was fully leaf-on and non-senescent. The data was collected in north-south oriented flight lines spaced
5 km apart. Some crossing flights were flown for calibration purposes. Technical specifications for
the LiDAR acquisition included: point density of 4 pulses per square meter; altitude of 732 m; field
of view of 60 degrees; pulse rate of 330 kHz; nominal swath width of 812 m; horizontal and vertical
accuracy (root mean square error in z) of 50 cm [33]. The LiDAR data were processed in Fusion [43]
to produce rasters of various metrics with a 30 meter cell size to support the plot selection process
described below.

Approximately fifty field inventory plots were established at each area in the summer of 2015 [44].
To ensure that field plots represented the full range of biomass levels within forested areas of each
scene, the LiDAR data was used to inform the selection of field plot locations via a stratified sampling
procedure. After masking out non-forest areas within the LiDAR coverage using a LiDAR-based
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percent cover threshold (10%) and the National Land Cover Dataset [38], fifteen strata were delineated
based upon three vegetation cover and five height classes within the random cells. A minimum of
23-24 candidate plot locations were generated for each of the 15 identified strata. Final field plots were
selected from these candidate plots on the basis of accessibility and valid forest land cover status. Once
in the field, crews aimed to visit 50 sample plots at each study area, with 3-4 plots in each stratum.

At each plot location, live and dead trees with dbh > 12.7 cm were measured on a 16.2-meter
radius plot, and trees with 2.54 cm < dbh < 12.7 cm were measured on a 4.57-m radius circular plot.
Field protocols consistent with those used by the US Forest Service were used in measuring trees [39].
In addition, survey-grade GPS coordinates (< 1 meter error) were acquired for each plot center.

Large-footprint LiDAR waveforms similar to those expected from GEDI were simulated from the
acquired lidar data using the method presented in [32], in which waveforms are modeled as the sum
of individual returns from surfaces at different heights, accounting for instrument-specific properties.
Realistic noise was added to the simulated waveforms following [45] and [46]. The expected signal
to noise ratio (SNR) of GEDI signals has been predicted through link margin analysis. For a given
SNR, the probability of the ground elevation being correctly identified can be calculated and used to
quantify the expected measurement accuracy. The simulator has been validated against real LVIS data
(airborne large-footprint, full-waveform liDAR similar to GEDI; [47]) in terms of waveform metrics
and metric accuracy in the presence of noise.

References

1. UNFCCC. United Nations Framework Convention on Climate Change. Available online: http://unfccc.
int/resource/convkp/kpeng.html (accessed on 16 November 2018).

2. Europe, F.; Unece, F. State of Europe’s forests 2011. Available online: https://library.wmo.int/index.php?
lvl=notice_display&id=5268#.W-6ixehKiUl (accessed on 16 November 2018).

3. Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.;
Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment
2012, 121, 196–209. doi:10.1016/j.rse.2012.02.001.

4. McRoberts, R.E.; Wendt, D.G.; Nelson, M.D.; Hansen, M.H. Using a land cover classification based on
satellite imagery to improve the precision of forest inventory area estimates. Remote Sensing of Environment
2002, 81, 36–44. doi:10.1016/S0034-4257(01)00330-3.

5. Saarela, S.; Grafström, A.; Ståhl, G.; Kangas, A.; Holopainen, M.; Tuominen, S.; Nordkvist, K.;
Hyyppä, J. Model-assisted estimation of growing stock volume using different combinations of
LiDAR and Landsat data as auxiliary information. Remote Sensing of Environment 2015, 158, 431–440.
doi:10.1016/j.rse.2014.11.020.

6. Grafström, A.; Schnell, S.; Saarela, S.; Hubbell, S.; Condit, R. The continuous population approach to forest
inventories and use of information in the design. Environmetrics 2017, 28. doi:10.1002/env.2480.

7. Matérn, B. Spatial Variation: Stochastic models and their applictation to some problems in forest surveys
and other sampling investiagtions. Meddelanden från Statens skogsforskningsinstitut 1960, 49, 144.

8. Gregoire, T.G. Design-based and model-based inference in survey sampling: appreciating the difference.
Canadian Journal of Forest Research 1998, 28, 1429–1447. doi:10.1139/x98-166.

9. McRoberts, R.E.; Magnussen, S.; Tomppo, E.O.; Chirici, G. Parametric, bootstrap, and jackknife variance
estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite
image data. Remote Sensing of Environment 2011, 115, 3165–3174. doi:10.1016/j.rse.2011.07.002.

10. Särndal, C.E.; Swensson, B.; Wretman, J.H. Model Assisted Survey Sampling; Springer, New York, NY, USA,
1992; p. 716.

11. Gregoire, T.G.; Ståhl, G.; Næsset, E.; Gobakken, T.; Nelson, R.; Holm, S. Model-assisted estimation of
biomass in a LiDAR sample survey in Hedmark County, Norway. Canadian Journal of Forest Research 2011,
41, 83–95. doi:10.1139/X10-195.

12. Massey, A.; Mandallaz, D.; Lanz, A. Integrating remote sensing and past inventory data under the new
annual design of the Swiss National Forest Inventory using three-phase design-based regression estimation.
Canadian Journal of Forest Research 2014, 44, 1177–1186. doi:10.1139/cjfr-2014-0152.

http://unfccc.int/resource/convkp/kpeng. html
http://unfccc.int/resource/convkp/kpeng. html
https://library.wmo.int/index.php?lvl=notice_display&id=5268#.W-6ixehKiUl
https://library.wmo.int/index.php?lvl=notice_display&id=5268#.W-6ixehKiUl
https://doi.org/10.1016/j.rse.2012.02.001
https://doi.org/10.1016/S0034-4257(01)00330-3
https://doi.org/10.1016/j.rse.2014.11.020
https://doi.org/10.1002/env.2480
https://doi.org/10.1139/x98-166
https://doi.org/10.1016/j.rse.2011.07.002
https://doi.org/10.1139/X10-195
https://doi.org/10.1139/cjfr-2014-0152


Remote Sens. 2018, 10, 1832 26 of 27

13. Chirici, G.; McRoberts, R.E.; Fattorini, L.; Mura, M.; Marchetti, M. Comparing echo-based and canopy
height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted
framework. Remote Sensing of Environment 2016, 174, 1–9. doi:10.1016/j.rse.2015.11.010.

14. Boudreau, J.; Nelson, R.F.; Margolis, H.A.; Beaudoin, A.; Guindon, L.; Kimes, D.S. Regional aboveground
forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sensing of Environment 2008,
112, 3876–3890. doi:10.1016/j.rse.2008.06.003.

15. Nelson, R.; Boudreau, J.; Gregoire, T.G.; Margolis, H.; Næsset, E.; Gobakken, T.; Ståhl, G. Estimating
Quebec provincial forest resources using ICESat/GLAS. Canadian Journal of Forest Research 2009, 39, 862–881.
doi:10.1139/X09-002.

16. Neigh, C.S.; Nelson, R.F.; Ranson, K.J.; Margolis, H.A.; Montesano, P.M.; Sun, G.; Kharuk, V.;
Næsset, E.; Wulder, M.A.; Andersen, H.E. Taking stock of circumboreal forest carbon with ground
measurements, airborne and spaceborne LiDAR. Remote Sensing of Environment 2013, 137, 274–287.
doi:10.1016/j.rse.2013.06.019.

17. Saarela, S.; Holm, S.; Grafström, A.; Schnell, S.; Næsset, E.; Gregoire, T.G.; Nelson, R.F.; Ståhl, G.
Hierarchical model-based inference for forest inventory utilizing three sources of information. Annals of
Forest Science 2016, 73, 895–910. doi:10.1007/s13595-016-0590-1.

18. Holm, S.; Nelson, R.; Ståhl, G. Hybrid three-phase estimators for large-area forest inventory using
ground plots, airborne lidar, and space lidar. Remote Sensing of Environment 2017, 197, 85–97.
doi:10.1016/j.rse.2017.04.004.

19. Gobakken, T.; Næsset, E.; Nelson, R.; Bollandsås, O.M.; Gregoire, T.G.; Ståhl, G.; Holm, S.; Ørka, H.O.;
Astrup, R. Estimating biomass in Hedmark County, Norway using national forest inventory field plots and
airborne laser scanning. Remote Sensing of Environment 2012, 123, 443 – 456. doi:10.1016/j.rse.2012.01.025.

20. Puliti, S.; Saarela, S.; Gobakken, T.; Ståhl, G.; Næsset, E. Combining UAV and Sentinel-2 auxiliary data for
forest growing stock volume estimation through hierarchical model-based inference. Remote Sensing of
Environment 2018, 204, 485–497. doi:10.1016/j.rse.2017.10.007.

21. Dubayah, R.; Goetz, S.; Blair, J.B.; Fatoyinbo, T.; Hansen, M.; Healey, S.P.; Hofton, M.; Hurtt, G.; Kellner,
J.; Luthcke, S.; others. The Global Ecosystem Dynamics Investigation. http://adsabs.harvard.edu/abs/
2014AGUFM.U14A..07D, 2014.

22. Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.; Gabler, K.; Schadauer, K.; Vidal, C.; Lanz,
A.; Ståhl, G.; Cienciala, E.; others. National Forest Inventories. Pathways for Common Reporting; Springer,
Berlin/Heidelberg, Germany. 2010; p. 614.

23. Saarela, S.; Schnell, S.; Grafström, A.; Tuominen, S.; Nordkvist, K.; Hyyppä, J.; Kangas, A.; Ståhl, G. Effects
of sample size and model form on the accuracy of model-based estimators of growing stock volume.
Canadian Journal of Forest Research 2015, 45, 1524–1534. doi:10.1139/cjfr-2015-0077.

24. Ståhl, G.; Holm, S.; Gregoire, T.G.; Gobakken, T.; Næsset, E.; Nelson, R. Model-based inference for biomass
estimation in a LiDAR sample survey in Hedmark County, Norway. Canadian Journal of Forest Research
2011, 41, 96–107. doi:10.1139/X10-161.

25. McRoberts, R.E. A model-based approach to estimating forest area. Remote Sensing of Environment 2006,
103, 56–66. doi:10.1016/j.rse.2006.03.005.

26. Cassel, C.M.; Särndal, C.E.; Wretman, J.H. Foundations of inference in survey sampling; Wiley: Hoboken, NJ,
USA. 1977; p. 192.

27. Ståhl, G.; Saarela, S.; Schnell, S.; Holm, S.; Breidenbach, J.; Healey, S.P.; Patterson, P.L.; Magnussen, S.;
Næsset, E.; McRoberts, R.E.; Gregoire, T.G. Use of models for improved estimation in sample-based
large-area forest surveys: a review. Forest Ecosystems 2016, 3(5), 1–11. doi:10.1186/s40663-016-0064-9.

28. Davidson, R.; MacKinnon, J.G. Estimation and inference in econometrics; Oxford University Press: Oxford,
UK. 1993; p. 896.

29. Melville, G.; Welsh, A.; Stone, C. Improving the efficiency and precision of tree counts in pine plantations
using airborne LiDAR data and flexible-radius plots: model-based and design-based approaches. Journal
of Agricultural, Biological, and Environmental Statistics 2015, 20, 229–257. doi:10.1007/s13253-015-0205-6.

30. Saarela, S.; Holm, S.; Yang, Z. HMB: Hierarchical Model-Based estimation approach. Available online:
https://CRAN.R-project.org/package=HMB (accessed on 16 November 2018). R package version 1.0.

31. Sanderson, C.; Curtin, R. Armadillo: a template-based C++ library for linear algebra. Journal of Open Source
Software 2016, 1, 1–26.

https://doi.org/10.1016/j.rse.2015.11.010
https://doi.org/10.1016/j.rse.2008.06.003
https://doi.org/10.1139/X09-002
https://doi.org/10.1016/j.rse.2013.06.019
https://doi.org/10.1007/s13595-016-0590-1
https://doi.org/10.1016/j.rse.2017.04.004
https://doi.org/10.1016/j.rse.2012.01.025
https://doi.org/10.1016/j.rse.2017.10.007
http://adsabs.harvard.edu/abs/2014AGUFM.U14A..07D
http://adsabs.harvard.edu/abs/2014AGUFM.U14A..07D
https://doi.org/10.1139/cjfr-2015-0077
https://doi.org/10.1139/X10-161
https://doi.org/10.1016/j.rse.2006.03.005
https://doi.org/10.1186/s40663-016-0064-9
https://doi.org/10.1007/s13253-015-0205-6
https://CRAN.R-project.org/package=HMB


Remote Sens. 2018, 10, 1832 27 of 27

32. Blair, J.B.; Hofton, M.A. Modeling laser altimeter return waveforms over complex vegetation using
high-resolution elevation data. Geophysical research letters 1999, 26, 2509–2512. doi:10.1029/1999GL010484.

33. Andersen, H.E.; Cohen, W.B.; Yang, Z.; Healey, S.P.; others. Model-assisted estimation of carbon using
Landsat and a designed sample of lidar data. Environmental Research Letters 2018, In Press.

34. Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K.
A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geoscience and Remote Sensing
Letters 2006, 3, 68–72. doi:10.1109/LGRS.2005.857030.

35. Flood, N. Seasonal composite Landsat TM/ETM+ images using the medoid (a multi-dimensional median).
Remote Sensing 2013, 5, 6481–6500. doi:10.3390/rs5126481.

36. Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud
shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment
2015, 159, 269–277. doi:10.1016/j.rse.2014.12.014.

37. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine:
Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 2017, 202, 18–27.
doi:10.1016/j.rse.2017.06.031.

38. Homer, C.; Dewitz, J.; Yang, L.; Jin, S.; Danielson, P.; Xian, G.; Coulston, J.; Herold, N.; Wickham, J.;
Megown, K. Completion of the 2011 National Land Cover Database for the conterminous United States –
representing a decade of land cover change information. Photogrammetric Engineering & Remote Sensing
2015, 81, 345–354.

39. CMS. Carbon Monitoring System (CMS) Field Guide 2015. Pacific Northwest Research Station, USDA Forest
Service, Portland, OR, USA. 2015, p. 82.

40. Ruefenacht, B.; Finco, M.; Nelson, M.; Czaplewski, R.; Helmer, E.; Blackard, J.; Holden, G.; Lister,
A.; Salajanu, D.; Weyermann, D.; others. Conterminous US and Alaska forest type mapping using
forest inventory and analysis data. Photogrammetric Engineering & Remote Sensing 2008, 74, 1379–1388.
doi:10.14358/PERS.74.11.1379.

41. Cohen, W.B.; Healey, S.P.; Yang, Z.; Stehman, S.V.; Brewer, C.K.; Brooks, E.B.; Gorelick, N.; Huang, C.;
Hughes, M.J.; Kennedy, R.E.; others. How similar are forest disturbance maps derived from different
Landsat time series algorithms? Forests 2017, 8, 98. doi:10.3390/f8040098.

42. McRoberts, R.E. Probability- and model-based approaches to inference for proportion forest using satellite
imagery as ancillary data. Remote Sensing of Environment 2010, 114, 1017–1025. doi:10.1016/j.rse.2009.12.013.

43. McGaughey, R. FUSION/LDV: Software for LIDAR Data Analysis and Visualization, Version 3.01.
Available online: http://forsys.cfr.washington.edu/fusion/fusionlatest.html (accessed on 24 August
2012).

44. Legner, K.; Andersen, H.E.; Dobelbower, K.; Cooke, A.; Cohen, W.; Healey, S.P. A cost-effective field
measurement protocol to support carbon monitoring – Implementing a prototype design at six different
US sites (SC, NJ/PA, ME, MN, CO, OR) . Gen. Tech. Rep. PNW-GTR-XXX. Portland, OR 2018, In Press.

45. Davidson, F.M.; Sun, X. Gaussian approximation versus nearly exact performance analysis of optical
communication systems with PPM signaling and APD receivers. IEEE Transactions on Communications
1988, 36, 1185–1192. doi:10.1109/26.8924.

46. Hancock, S.; Disney, M.; Muller, J.P.; Lewis, P.; Foster, M. A threshold insensitive method for locating
the forest canopy top with waveform lidar. Remote Sensing of Environment 2011, 115, 3286–3297.
doi:10.1016/j.rse.2011.07.012.

47. Blair, J.B.; Rabine, D.L.; Hofton, M.A. The Laser Vegetation Imaging Sensor: a medium-altitude,
digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of
Photogrammetry and Remote Sensing 1999, 54, 115–122. doi:10.1016/S0924-2716(99)00002-7.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1029/1999GL010484
https://doi.org/10.1109/LGRS.2005.857030
https://doi.org/10.3390/rs5126481
https://doi.org/10.1016/j.rse.2014.12.014
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.14358/PERS.74.11.1379
https://doi.org/10.3390/f8040098
https://doi.org/10.1016/j.rse.2009.12.013
http://forsys. cfr. washington. edu/fusion/fusionlatest. html
https://doi.org/10.1109/26.8924
https://doi.org/10.1016/j.rse.2011.07.012
https://doi.org/10.1016/S0924-2716(99)00002-7
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Overview
	Generalized Hierarchical Model-Based estimation (GHMB)
	Reference methods for comparison
	Generalized Two-Stage Model-Based estimation (GTSMB)
	Hybrid estimation
	Conventional model-based inference (MB)


	Material
	Reference data
	Simulated GEDI data
	Landsat 7 ETM+ data
	Field data

	Simulated populations
	Correlated multinomial random variables

	Regression modeling
	Evaluation criteria

	Results
	Sources of uncertainty for the GHMB and hybrid estimation methods

	Discussion
	Conclusions
	Generalized hierarchical model-based estimators
	A comparison between expectations and variance estimators of the two methods: GHMB and GTSMB
	Field and LiDAR Data Collection Methods
	References

