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Abstract: The proliferation of remote sensing imagery motivates a surge of research interest in image
processing such as feature extraction and scene recognition, etc. Among them, scene recognition
(classification) is a typical learning task that focuses on exploiting annotated images to infer the
category of an unlabeled image. Existing scene classification algorithms predominantly focus on static
data and are designed to learn discriminant information from clean data. They, however, suffer from
two major shortcomings, i.e., the noisy label may negatively affect the learning procedure and learning
from scratch may lead to a huge computational burden. Thus, they are not able to handle large-scale
remote sensing images, in terms of both recognition accuracy and computational cost. To address
this problem, in the paper, we propose a noise-resilient online classification algorithm, which is
scalable and robust to noisy labels. Specifically, ramp loss is employed as loss function to alleviate
the negative affect of noisy labels, and we iteratively optimize the decision function in Reproducing
Kernel Hilbert Space under the framework of Online Gradient Descent (OGD). Experiments on both
synthetic and real-world data sets demonstrate that the proposed noise-resilient online classification
algorithm is more robust and sparser than state-of-the-art online classification algorithms.
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1. Introduction

Due to the rapid development of sensor and aerospace technology, more and more high-resolution
images are available [1–6]. Remote sensing images enable us to measure the Earth’s surface
with detailed structures that have been extensively used in many applications such as military
reconnaissance, agriculture, and environmental monitoring [7]. Hence, the remote sensing image
is one kind of important data source [8]. The proliferation of remote sensing imagery motivates
numerous image learning tasks such as representation learning [9–11] and further scene recognition
(classification) [1,12–16]. Thereinto, scene classification aims to automatically assign a semantic label
to each image in order to know which category it belongs to. As scene classification can provide a
relatively high-level interpretation of images, it has received growing attention and much exciting
progress has been extensively reported in recent years. However, there are two major challenges that
seriously limit the development of scene classification.

- Lacking Noise-Resilient Scene Classification Algorithm: since images’ categories are often annotated by
human beings, and it is natural for us to make some incorrect annotations especially when we are
provided with massive images. In addition, an image may cover several semantics. For example,
the images in Figure 1 can be annotated with the scene of river or forest, but, under the framework
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of multi-classification, only one category is assigned to each of the images. Thus, noisy labels are
often inevitable in scene classification. It is necessary to devise a scene classification algorithm
that is robust to noisy labels.

- Lacking Online Scene Classification Algorithm: a vast majority of existing scene classification
algorithms predominantly focus on the static setting and require the accessibility of the whole
image data set. However, with the constant improvement of satellite and aerospace technology,
a large number of images are available continuously in the streaming fashion. The requirement
to have all the training data in prior to training poses a serious constraint in the application of
traditional scene classification algorithms based on batch learning techniques. To this end, it is
necessary and of vital importance to perform online scene classification to adapt to the streaming
data accordingly.

Figure 1. Image may be associated with more than one semantic category. Three images listed here can
be annotated with the scene of rivers or forests.

To tackle the above challenges, in this paper, we propose a noise-resilient online multi-classification
algorithm to promote the scene classification problem for remote sensing images. Specifically,
we generalize the ramp loss designed for a batch learning algorithm, e.g., ramp-Support Vector Machine
(SVM), to the online learning setting and employ the Online Gradient Descent (OGD) algorithm to
optimize the decision function in the Reproducing Kernel Hilbert Space. To effectively reduce the
impact of noises, an adjust strategy to dynamically control the threshold parameter s in ramp loss
is given in the proposed algorithm. Large-scale examples are assumed to arrive consecutively one
by one without any initial pre-labeled training set for the initialization of classifier. In the online
learning procedure, as shown in Figure 2, the parameters of the predictor (classifier) are updated in an
iterative manner with sequential incorporated examples. The noise-resilient online multi-classification
algorithm we proposed in this paper has two major merits:

- Noise-Resilient: by the dynamical setting of threshold parameter s, the noise which would lead to a
large loss (larger than the threshold parameter) would be identified and won’t be incorporated
into the Support Vectors (SVs) set.

- Sparsity: as can be seen from Figure 3, only a fraction of examples (with the loss between s and 1)
would serve as Support Vectors (SVs). It is designed to reduce the computational cost and enjoy
the perfect scalability property.

The remainder of the paper is organized as follows: Section 2 reviews related work along scene
classification and online learning. Section 3 introduces the proposed noise-resilient online learning
algorithm for scene classification. Section 4 presents experimental results with discussions. Section 5
concludes the whole paper.



Remote Sens. 2018, 10, 1836 3 of 17

Internet

Unlabelled 
Images

Predictor

Image 
Crawler

Labels Learner

Dedicated Labelers

Annotated 
Images

Figure 2. Illustration of the online scene classification framework. As time goes by, unlabeled images
are assumed to arrive consecutively. A predictor is applied to annotate the images that have arrived.
When the true label is revealed, the online learner updates the predictor for the next prediction.
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Figure 3. Hinge loss is shown in the first panel and the second panel lists the ramp loss.

2. Related Work

In this section, we review the related work from two aspects: scene classification and online learning.
Scene classification is a fundamental task in the remote sensing image analysis field. The core

aim of scene classification is to identify the land-cover categories of remotely sensed image patches.
Numerous feature learning algorithms have been presented for scene classification. In the earlier years,
feature extraction algorithms including GIST (represents the dominant spatial structure of a scene by a
set of perceptual dimensions based on the spatial envelope model) [17], BoVW (bag-of-visual-words)
model [11] and VGGNet (based on deep convolutional neural network model) [18], focus on
hand-crafted features. Recently, data-driven features are developed via unsupervised feature learning
algorithms [1,12,19]. For example, Zhang et al. propose a saliency guided unsupervised feature
learning approach that is named as an auto-encoder. Romero et al. introduce the highly efficient
conforcing lifetime and population sparsity (EPLS) algorithm into the auto-encoder to improve the
classification performance [19]. A multiple feature-based remote sensing image retrieval approach
was proposed in [12] by combining hand-crated features and data-driven features via unsupervised
feature learning. In addition, an incremental Bayesian approach has also been presented to address the
problem in image processing to learn generative visual models from a few training examples [20].

Instead of training the classifier again from scratch on the combined training set, the online
learning algorithm incrementally updates the classifier to incorporate new examples into the learning
model [21]. In this way, online learning can significantly save on computation costs and be more
suitable to deal with large scale problems. In recent years, online learning has been extensively studied
in the machine learning community. For example, Song et al. propose an incremental online algorithm
to dynamically update the LS-SVM model when a new chunk of samples are incorporated into the SV
set [22]. Hu et al. use an incremental online variant of the nearest class mean classifier and update
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the class means incrementally [23]. A novel online universal classifier capable of performing the
multi-classification problem is proposed in [24]. In order to solve the cost-sensitive classification task
on the fly, some novel online learning algorithms are proposed [25] to directly optimize different
cost-sensitive metrics.

3. Method

In this section, we propose a noise-resilient online learning algorithm for scene classification of
remote sensing images. A vast majority of existing online classification algorithms are mainly designed
to learn discriminant information from clean data. However, in the scenario of scene classification,
labels of some images could be noisy and erroneous, mainly because of the imperfect human labeling
process and the inherent attribute of multiple label (as shown in Figure 1). To enable the online
classification on streaming remote sensing images and to alleviate the negative impacts from noisy
labels, we generalize the ramp loss designed for batch learning algorithm, i.e., ramp-SVM, to the online
learning setting. Next, we propose a novel strategy to dynamically adjust the ramp loss parameter s.

3.1. Ramp Loss

In the case of pattern recognition, one argument was that the misclassification rate is poorly
approximated by convex losses such as the hinge loss or the least square loss. Researchers proposed
non-convex alternatives, such as hard-margin loss, Laplace error penalty [26], normalized sigmoid
loss [27], ψ-learning loss [28], ramp loss [29], etc. Among the mentioned non-convex losses, ramp loss
which also called truncated hinge loss [30] is an attractive one. The merits of ramp loss proposed by
Collobert et al. lie in two folds, i.e., scalability and noise-resilient [29].

Steinwart shows that the number of SVs, i.e., n, increases in classical SVMs and its online version
Pegasos linearly with the number of training examples N [31]. More specifically, n/N → 2BΦ where
BΦ is the best possible error achievable in the chosen feature space Φ(·). Since the SVM training and
recognition times grow quickly with the number of SVs, it appears obviously that SVMs cannot deal
with large scale data. The curse can be exorcised by replacing the classical hinge loss by a non-convex
loss function, e.g., the ramp loss. Shown in Figure 3, replacing hinge loss h(w) by ramp loss `(w)

guarantees that examples with score w < s wont be selected as SVs. The increased sparsity leads to
better scaling properties for ramp-SVMs. Using the ramp loss, Collobert et al. obtained the ramp loss
support vector machine (ramp-SVM) [29].

In addition, in classification methodologies, robustness to noise is always an important issue.
The effect of noise samples can be significantly large since the penalty given to the outliers by the hinge
loss is quite huge. In fact, any convex loss is unbounded. In ramp loss, the loss of any example has an
upper bound, so it can control the effect of noisy sample and remove the effect of noise. Plots of hinge
loss and ramp loss in Figure 3 show the robustness (noise-resilient) of the ramp loss.

The sparsity and noise-resilient arguments provide the motivation for using ramp loss as the
loss function, and using it as a base to develop an online learning algorithm for large scale scene
classification problems.

3.2. Online Learning Algorithm

One of the most common and well-studied tasks in data mining and knowledge discovery is
classification. Over the past decades, a great deal of research has been performed on inductive
learning methods for classification such as decision trees, artificial neural networks, and support vector
machines. All of these techniques have been successfully applied to a great number of real-world
problems. However, their standard application requires the availability of all of the training data at
once, making their use for large-scale data mining applications and mining task on streaming data
problematic [32].

In recent years, a great deal of attention in the machine learning community has been directed
toward online learning methods (shown in Figure 4) such as Forgetron [33], online Passive Aggressive
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algorithm [34], Projectron [35], bounded online gradient descent algorithm [36], and online soft-margin
kernel learning algorithm [37], to name a few. However, these online learning algorithms are proposed
based on clean data. On the other hand, there are comparably few studies on online learning from
noisy examples, and, in particular, from noisy labels.

Learner

Predictor

ℓ 𝑓; 𝐱𝑡, 𝑦𝑡

Update

Feedback
𝑦𝑡

𝐱𝑡 𝑓 𝐱𝑡

Figure 4. An illustration schematic of the online learning algorithm. Online learning is performed in a
sequence of consecutive rounds. At each round t, the online learner picks a predictor f to make the
prediction f (xt). When the true label yt is revealed, the online learner suffers from an instantaneous
loss `( f ; xt, yt) and updates the predictor for the next prediction.

In this work, we investigate the extent to the scenario of examples with noise which are not
uncommon in scene categorization. Based on kernel trick and ramp loss, a sparsity and noise-resilient
multi-classification algorithm is proposed for scene categorization problem.

3.3. Noise-Resilient Online Multi-Classification Algorithm

In this subsection, we introduce a sparse and robust online learning algorithm to perform a scene
classification task when images’ labels are noisy or even erroneous. Specifically, we first introduce the
proposed online learning algorithm for binary classification problem, and then present the general
formulation to tackle multi-classification problems.

For similarity, we begin with the binary classification problem. In this scenario, the goal is to learn
a series of nonlinear mapping function f (t): Rd 7→ R based on a sequence of examples {(xi, yi)}t

i=1,
where t is the current time stamp, d stands for the number of features, xi ∈ Rd denotes the feature
vector of remote sensing image and yi ∈ {+1,−1} is the scene category of an image. Suppose that
images arrive continuously in a streaming fashion, and the online classification algorithm makes the
prediction in a sequential way. Specifically, each time when an image arrives, we first apply feature
representation algorithm, e.g., Vector of Locally Aggregated Descriptors (VLAD) [38], Visual Geometry
Group Descriptors (VGG) [18], Scale Invariant Feature Transform (SIFT) [39], or Spatial Envelope Model
(GIST) [17] to obtain its representation vector xt, and then predicts its label as ŷt = sign( f (t−1)(xt))

by the latest decision function f (t−1). After the true label yt is revealed, the algorithm suffers an
instantaneous loss

`( f ; xt, yt) , `t( f ) = min{1− s, max{0, 1− yt f (xt)}} (1)

with the specification of loss function as ramp loss. In addition, the online classification algorithm
updates the classifier by incorporating the new sample (xt, yt) for the next round. Here, we assume that
the nonlinear mapping f belongs to a Reproducing Kernel Hilbert Space (RKHS) (Given a nonempty
set X and a Hilbert spaceH of functions f : X 7→ R,H is an RKHS [40] endowed with kernel function
k : X ×X 7→ R if k has the reproducing property:

〈 f (·), k(x, ·)〉H = f (x), ∀ f ∈ H, ∀x ∈ X ,
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in particular, 〈k(x, ·), k(z, ·)〉H = k(x, z), ∀x, z ∈ X , and k is called the reproducing kernel forH).
Similar to the standard SVMs, our algorithm tries to find the optimal decision function f (t) by

optimizing the regularized loss function of examples {(xi, yi)}t
i=1, i.e.,

f (t) = arg min
t

∑
i=1

`i( f ) +
1
2
‖ f ‖2

H. (2)

Note that Equation (2) is not a convex optimization problem, but it can be formulated as a
Difference of Convex (DC) programming. The Concave-Convex Procedure (CCCP) [41] may be
applied to get the optimal solution. However, it falls into the category of batch learning algorithms
and cannot meet the real-time requirement when dealing with streaming data. In the current work,
we employ the well known online gradient descent (OGD) [42] framework Equation (3) to find the
near-optimal solution. It is a trade-off between the accuracy and scalability:

f (t) = f (t−1) − zt. (3)

Here, zt = ∇`t( f )| f= f (t−1) stands for the Gâteaus derivative of ramp loss `t. We can deduce zt

as the following:

zt =


0, if yt f (t−1)(xt) ≤ s,
−ytk(xt, ·), if s < yt f (t−1)(xt) < 1,
0, if yt f (t−1)(xt) ≥ 1.

(4)

Substituting the gradient Equation (4) into Equation (3), we deduce the update rule for f (t) as

f (t) =

{
f (t−1) + ytk(xt, ·), if s < yt f (t−1)(xt) < 1,
f (t−1), otherwise.

(5)

Now, we extend the sparse and noise-resilient online classification algorithm to the case of the
multi-classification problem. Assume that there is a sequence of examples {(xi, yi)}t

i=1, where xi ∈ Rd

is the feature representation of the ith image and yi is the corresponding label that belongs to a label
set Y = {1, · · · , c}. Similar to the multi-class SVM formulation proposed by Crammer and Singer [43],
the multi-class model is defined as:

ŷ(x) = arg max
k∈Y
{ fk(x)}, (6)

where fk is the predictor associated with the kth class. Assume that f is a c-dimensional vector with
fk as its kth component, i.e., f = [ f1; · · · ; fc]. Similar to the aforementioned binary classification
problem, the multi-class online learning algorithm receives examples in a sequential order and
updates f continuously. In particular, when we receive the new image xt, our algorithm predicts
the label ŷt according to Equation (6). After the prediction, our algorithm receives the true label yt.
The instantaneous loss specified by the ramp loss in the case of multi-class scenario is defined as:

`(f; xt, yt) , `t(f) = min{1− s, max{0, 1− ( fyt(xt)− fr(xt))}}, (7)

with the notation of r = arg maxk∈Y ,k 6=yt fk(xt). Given f(t−1) and (xt, yt), we list the update rule for
decision function f according to the deduced OGD framework Equation (5) as:

f(t) = f(t−1) −∇f`t(f)|f=f(t−1) , (8)

where ∇f`t|f=f(t−1) = [∇ f1`t; · · · ;∇ fc`t]|f=f(t−1) . In the case of f (t−1)
yt (xt) − f (t−1)

r (xt) ≥ 1 or

f (t−1)
yt (xt) − f (t−1)

r (xt) ≤ s, the instantaneous loss `t is constant, and the gradient is zero. Thus,
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we don’t update the decision function. Otherwise, if s < f (t−1)
yt (xt) − f (t−1)

r (xt) < 1, we get the
formula:

∇ fk
`t =


−k(xt, ·), if k = yt,
k(xt, ·), if k = r,
0, otherwise.

(9)

Substituting the gradient Equation (9) into Equation (8), we get the update rule for f(t) as

f (t)k =


f (t−1)
k + k(xt, ·), if k = yt,

f (t−1)
k − k(xt, ·), if k = r,

f (t−1)
k , otherwise.

(10)

One should note that the update rule in the case of binary classification can also be formulated
into the framework of multi-classification by the replacement of f by f1 − f2.

As shown in Equation (4), there is a noise-resilient parameter s ranging from (−∞, 1] in the
proposed noise-resilient online learning algorithm. The smaller the parameter s, the closer the proposed
algorithm is to the classical Pegasos algorithm proposed in [44]. Meanwhile, when the parameter is
set as 1, the proposed algorithm won’t learn from any example and never update the classifier. It is
an urgent issue to give a parameter setting strategy to assist the proposed noise-resilient algorithm
with adjusting the ramp loss parameter s adaptively. In the current work, we set the parameter as
Equation (11) and show it in Figure 5. In Equation (11), c stands for the number of categories and n is
an estimate number of examples:

s(t) =


− c

2 + c
4 logn(

n
2 − t), 1 ≤ t < n

2 ,
− c

2 , t = n
2 ,

− c
2 −

c
4 logn(t−

n
2 ),

n
2 < t.

(11)

Figure 5. An illustration of the adaptive parameter setting for s.

We summarize the proposed noise-resilient online multi-classification algorithm (Algorithm 1)
as follows.

4. Experiments

In this section, we conduct experiments to evaluate the performance of the proposed noise-resilient
online multi-classification algorithm. All experiments are performed in a MATLAB 7.14 environment
on a PC with 3.4 GHz Intel Core i5 processors and 8G RAM running under the Windows 10 operating
system. The source code of the proposed algorithm will be available upon the acceptance of the
manuscript. First, we perform the parameter sensitivity study to show how the ramp loss parameter
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Algorithm 1 Noise-Resilient Online Multi-classification Algorithm

Input: Initial the decision function f(0) = 0, number of classes c, estimate number of examples n and

instance sequences xt (t = 1, . . .)

Output: Predict label ŷt (t = 1, . . .)

1: for t = 1, . . . do
2: Receive instance xt

3: Predict ŷt = arg maxk f (t−1)
k (xt)

4: Receive true label yt

5: Update ramp loss parameter s according to Equation (11)

6: Compute loss `t according to Equation (7)

7: if 0 < `t < 1− s
8: Update f (t)yt = f (t−1)

yt + k(xt, ·)
9: Update f (t)r = f (t−1)

r − k(xt, ·), according to Equation (10)

10: else
11: f(t) = f(t−1)

12: end if
13: end for

s affects the classification results. Then, we present an experiment on synthetic data sets to show
the efficacy and efficiency of the proposed method for noisy labels. Finally, we conduct extensive
experiments to evaluate the performance of the proposed algorithm on different remote sensing image
classification tasks.

4.1. Parameter Sensitivity Study

There is an important hyper parameter in the proposed online classification algorithm: ramp loss
parameter s. The parameter s controls the sparsity and noise-resilient level of the proposed model.
The bigger the parameter s, the sparser the proposed algorithm is, and the less noisy examples will be
incorporated into the learning model. However, bigger parameter s will decrease more informative
examples and further influence the classification efficacy. To study how this parameter affects the
classification result, we conduct an experiment on synthetic data sets. Specifically, we derive a set of
synthetic data sets from a real-world data set, i.e., Adult (http://archive.ics.uci.edu/ml/datasets/
Adult), which consists of 7579 negative samples and 2372 positive samples, by adding some random
noise to the labels. To simulate the case of noisy labels, we randomly change some entries in the
label vector y. The percentage of changed labels is varied among {5%, 10%, 15%, 20%}. In this way,
we generate synthetic data sets with signal-to-noise ratio (SNR) as 95:5, 90:10, 85:15, 80:20, respectively.
In this study, we tune the parameter s from {−0.5,−1,−1.5,−2,−2.5,−3} and draw a 2D performance
variation (Average Classification Accuracy, ACA %) figure w.r.t. the different parameter setting of s in
Figure 6.

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
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Figure 6. Average classification accuracy with respect to the parameter s on different synthetic data
sets: (a) SNR 95:5; (b) SNR 90:10; (c) SNR 85:15 and (d) SNR 80:20.

We make the following observations from Figure 6:

- At the beginning of the online learning process, the bigger s always outperforms small ones.
- On the whole, the higher the noise level is, the worse the performance of the algorithm will be.

On a fixed noise level, e.g., SNR 90:10, a smaller s will incorporate more SVs into the classifier.
Among them some are useful examples and the other are noisy examples. Thus, a proper setting
for s is the key problem for the proposed noise-resilient online classification algorithm.

- The proposed algorithm is sensitive to ramp loss parameter s. In this study, s = −1.5 gives the
overall best performance, and s = −3 is the worst one. Any fixed setting of s can not outperform
others in all four of the situations.

Regarding this, we propose an adaptive parameter setting strategy in Equation (11) to adjust s
dynamically and investigate its performance in the next subsection.

4.2. Synthesis Data Sets

We investigate the proposed noise-resilient online classification algorithm on synthetic data sets
when label information is noisy. Specifically, we attempt to answer the following two questions:

- Sparsity: How sparse is the proposed online classification algorithm for streaming data?
- Noise-Resilient: How effective is the proposed online classification algorithm for data with

noisy labels?

Our algorithm incorporated with adaptive parameter s is denoted as Rampadaptive; meanwhile,
the algorithm with fixed parameter settings is denoted as Ramp. We compare the proposed
Rampadaptive and Ramp with the following widely used online learning algorithms:

1. OSELM: Online Sequential ELM (OSELM) is an online version ELM algorithm [45]. Using the
Sherman–Morrison–Woodbury (SMW) formula, the OSELM can update the predict model
extremely fast [46].
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2. Pegasos: It is an online multi-class SVM algorithm based on stochastic gradient descent (SGD) [44].
3. Perceptron: It is a typical online learning algorithm that belongs to the Perceptron algorithm

family [47].

For OSELM, we specify the sigmoid function G(a, b, x) = 1/(1 + exp(−(aTx + b))) as the active
function and set the number of hidden neurons as 50. We use the default setting for parameters in
Pegasos and Perceptron: the regularization parameter λ is set as 10−4 for Pegasos and the learning
rate parameter η is set as 1 for Perceptron. In Ramp, the parameter s is set to be −1. In the
current experiments, the RBF kernel k(x, z) = exp(−γ‖x − z‖2) is selected as the kernel function
for kernel based learning algorithms. Kernel parameter γ is set as 1

d , where d is the number of features.
To simulate a large scale scenario, in the current experiment, we repeat the data of Adults five times.
In addition, we randomly change some entries in the label vector with the percentage of {5%, 10%,
15%, 20%}. The classification performances of different algorithms are listed in Figure 7.
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Figure 7. Comparison of online learning algorithms w.r.t. average classification accuracy on synthetic
data sets: (a) SNR 95:5; (b) SNR 90:10; (c) SNR 85:15 and (d) SNR 80:20.

Figure 7a,b show that the average classification performance of Rampadaptive is comparable to
OSELM, and they outperform other algorithms. In Figure 7c,d, Rampadaptive outperforms the other
algorithms. It indicates that Rampadaptive is indeed a noise-resilient algorithm that is able to mine
discriminative information when the labels contain explicit noise.

To further investigate the superiority of the proposed algorithm on sparsity and efficiency,
we compare the number of SVs and speedup rate of the proposed online learning algorithm w.r.t.
the state-of-art online learning algorithms, i.e., Pegasos and Perceptron. One should note that the
OSELM incrementally incorporates examples to update the learning model. As all of the learning
examples serve as the SVs, the OSELM does not belong to the family of sparse learning algorithm.
Thus, we did not investigate its sparsity and efficiency here. In Table 1, we show the number of support
vectors (SVs) and running time that each method needs to perform online classification. Among the
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two proposed noise-resilient online classification algorithms, Rampadaptive uses less SVs than Ramp
and only costs half of the running time of Ramp on the four data sets. The proposed Rampadaptive
achieves about 2.7×, 3.3×, 3.8×, and 5.7× sparsity in the case of SNR 95:5, SNR 90:10, SNR 85:15 and
SNR 80:20, respectively. As for running time, Rampadaptive achieves about 3.5×, 5.2×, 5.8×, and 7.5×
speedup in the case of SNR 95:5, SNR 90:10, SNR 85:15 and SNR 80:20, respectively. In a nutshell,
the proposed online classification algorithm Rampadaptive is more suitable to scale up among the online
kernel learning algorithms.

Table 1. The #Support Vectors (SVs) and running time of kernel based online learning algorithms.

SNR
Pegasos Perceptron Ramp Rampadaptive

#SVs Time (s) #SVs Time (s) #SVs Time (s) #SVs Time (s)

95:5 13097 232.44 13210 280.59 6264 169.91 4970 65.78
90:10 15651 331.68 15761 351.32 6047 157.93 4853 61.54
85:15 17795 354.82 17759 397.43 5611 129.35 4692 56.52
80:20 19980 387.33 19849 447.82 5492 117.69 3934 53.76

4.3. Benchmark Data Sets

In this section, we will conduct extensive experiments to evaluate the performance of the proposed
algorithm on different remote sensing image analysis tasks, including Outdoor Scene categories
data set (http://people.csail.mit.edu/torralba/code/spatialenvelope/), UC Merced Landuse data
set (http://weegee.vision.ucmerced.edu/datasets/landuse.html), and Aerial Image Data (AID) set
(www.lmars.whu.edu.cn/xia/AID-project.html).

- AID7 data set: AID is a large-scale aerial image data set, by collecting sample images from Google
Earth imagery. AID7 is made up of the following seven aerial scene types: grass, field, industry,
river lake, forest, resident, and parking. The AID7 data set has a number of 2800 images within
seven classes and each class contains 400 samples of size 600×600 pixels.

- Outdoor Scene categories data set: this data set contains eight outdoor scene categories, i.e., coast,
mountain, forest, open country, street, inside city, tall buildings and highways. There are 2600 color
images of 256×256 pixels. All of the objects and regions in this data set have been fully labeled.
There are more than 29,000 objects.

- UC Merced Landuse data set: the images in the UC Merced Landuse data set were manually
extracted from large images from the USGS (United States Geological Survey) National Map
Urban Area Imagery collection for various urban areas around the country. The pixel resolution
of this public domain imagery is one foot. The UC Merced data set contains 2100 images in
total and each image measures 256×256 pixels. There are 100 images for each of the following
21 classes: agricultural, airplane, baseball diamond, beach, buildings, chaparral, dense residential,
forest, freeway, golf course, harbor, intersection, medium residential, mobile home park, overpass,
parking lot, river, runway, sparse residential, storage tanks, and tennis court. Some sample images
from this data set are shown in Figure 8.

- AID30 data set: similar to the AID7 data set, this data set is made up of the following 30 aerial scene
types: airport, bareland, baseballfield, beach, bridge, center, church, commercial, dense residential,
desert, farmland, forest, industrial, meadow, medium residential, mountain, park, parking,
playground, pond, port, railway station, resort, river, school, sparse residential, square, stadium,
storage tanks and viaduct. In total, the AID30 data set has a number of 10,000 images within
30 classes and each class contains about 200 to 400 samples of size 600×600 pixels.

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://weegee.vision.ucmerced.edu/datasets/landuse.html
www.lmars.whu.edu.cn/xia/AID-project.html
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                      agricultural                                         airplane                                baseball diamond 

                         
                          beach                                              buildings                                          chaparral 

                         
               dense residential                                      forest                                              freeway 

                         
                     golf course                                           harbor                                         intersection 

                         
              medium residential                     mobile home park                                overpass 

                         
                      parking lot                                              river                                                runway 

                         
               sparse residential                              storage tanks                                  tennis court 
       

Figure 8. Some sample images from the UC Merced Landuse data set.

In this experiment, we randomly select 50% of the images from each class to form the training
set and the remaining 50% images are used for testing. This procedure is repeated five times and
the average performance is finally reported. We use the GIST Descriptor (http://people.csail.mit.
edu/torralba/code/spatialenvelope/) to transform an image into a feature vector of 512 dimensions.
For OSELM, we conduct comparison experiments on dataset AID7 and Outdoor Scene to check if
different settings for OSELM can change the results significantly. We specify the activation function to
be sigmoid, sin, rbf, and hardlim, respectively. Meanwhile, set the number of hidden nodes as 50, 100,
200, and 300, respectively. Comparison experiments show that the sigmoid function with the number
of hidden neurons as 200 is a good candidate for OSELM without prior knowledge. Without loss of
generality, we specify the sigmoid function as active function and set the number of hidden neurons as
200. For kernel based learning algorithms, polynomial kernel k(x, z) = (γxTz + c0)

p is selected as the
kernel function for it is extensively used for image processing. Here, we set γ to be 1

d , where d is the
number of features, c0 to be 0 and polynomial order p to be 1.

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
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First of all, we show the behavior of the algorithms over time. Figure 9 shows the average online
classification accuracy. The average online classification accuracy is the total number of correctly
classified samples seen as a function of the number of all samples. From Figure 9, we can draw
the following conclusions: (1) kernel based online learning algorithms consistently outperform the
OSELM, which validates that polynomial kernel is a good candidate for the image classification
problem; (2) Rampadaptive always beats other kernel based online learning algorithms, i.e., Pegasos and
Perceptron; (3) in Figure 9c, the proposed Rampadaptive clearly shows a big advantage over the
state-of-the art online learning methods.
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Figure 9. Average classification accuracy for different algorithms on (a) AID7; (b) Outdoor Scene;
(c) UC Merced and (d) AID30 as a function of the number of learning samples.

For a comprehensive comparison, Table 2 summarizes the frequently used criteria: Overall Accuracy
(%), Average Accuracy (%), Kappa and running time of different online learning algorithms. It can be
observed from Table 2 that kernel based online learning algorithms significantly improve the performance
(Overall Accuracy (%), Average Accuracy (%) and Kappa) compared with OSELM. The three kernel
based online learning algorithms achieve similar performance and the proposed Rampadaptive slightly
outperforms others in four data sets. The column of Time (s) shows that OSELM is extremely efficient.
The proposed Rampadaptive costs significantly more running time on small scale data sets AID7, Outdoor
Scene, and UC Merced (around 1000 testing samples), which conflicts with the observation in Table 1.
The reason lies in the extra computation of the ramp loss parameter s in Equation (11) per iteration
in Rampadaptive. On small scale data sets, the number of SVs in different online learning algorithms is
comparable and so is the iteration number. In this case, the proposed Rampadaptive costs more running
time than Pegasos and Perceptron. As time goes by, more and more learning samples will be misclassified.
All of the misclassified samples are selected as SVs and will further be used to update the learning model
of Pegasos and Perceptron. In contrast, only a small fraction of misclassified samples will be selected as
SVs for the model updating of Rampadaptive. Thus, the efficiency and sparsity advantages of Rampadaptive
will be fully demonstrated when dealing with large-scale problems.
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Table 2. Performance comparison of different algorithms.

Data Sets Algorithms Overall Accuracy (%) Average Accuracy (%) Kappa Time (s)

AID7

OSELM 56.00 56.00 0.4867 3.05
Pegasos 98.50 98.50 0.9825 5.01

Perceptron 98.36 98.36 0.9808 6.55
Rampadaptive 98.93 98.93 0.9875 8.29

Outdoor Scene

OSELM 78.94 79.25 0.7588 2.92
Pegasos 98.07 98.04 0.9778 3.83

Perceptron 98.14 98.08 0.9787 4.91
Rampadaptive 98.59 98.50 0.9838 6.11

UC Merced

OSELM 47.14 47.14 0.4450 2.40
Pegasos 94.57 94.57 0.9430 3.72

Perceptron 94.38 94.38 0.9410 4.59
Rampadaptive 97.33 97.33 0.9720 6.17

AID30

OSELM 35.44 35.32 0.3307 11.21
Pegasos 98.14 98.11 0.9807 90.82

Perceptron 98.08 98.05 0.9801 101.23
Rampadaptive 99.16 99.12 0.9913 103.96

Figure 10 shows the confusion matrix of online learning algorithms OSELM, Pegasos,
Perceptron and the proposed Rampadaptive on the AID7 data set. From the figure, we observe that
accuracies above 97% are obtained for all seven of the classes with kernel based online learning
approaches. As for the three kernel based online learning algorithms, our proposed Rampadaptive
outperforms Pegasos and Perceptron on the classes “Grass”, “Field”, “Industry”, “RiverLake”,
“Parking” and Rampadaptive’s performance is slightly lower than Pegasos and Perceptron upon “Forest”
and “Resident”.

(a) (b)

Figure 10. Cont.
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(c) (d)

Figure 10. Confusion matrix of (a) OSELM; (b) Pegasos; (c) Perceptron and (d) Rampadaptive on AID7
data set.

5. Conclusions

For a variety of reasons such as multiple label, human errors, etc., noisy labels are inevitable in
the scenario of large scale scene classification problems. In this paper, we studied a novel problem
on performing online scene classification of remote sensing images and providing a noise-resilient
online classification algorithm to incrementally predict the scene category of new images. Due to the
fact that less examples are incorporated into the SV set during the learning procedure, the proposed
method leads to better sparsity and hence much faster learning speed. The aforementioned merits
make it a good candidate for large scale scene classification of remote sensing images. We conduct
extensive experiments on both synthetic and real-world data sets to validate the efficiency and efficacy
of the proposed algorithm. Though experimental studies shows the potential of the proposed online
learning algorithm, relevant theoretical analysis has not been carried out deeply and will be our future
investigation focus. In addition, with the increasing number of SVs, the computational efficiency of
updating the learning model will decrease gradually. Incorporating the budget strategy can further
improve the efficiency of the proposed online learning algorithm and will be another focus of our
investigation.
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