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Abstract: This work presents an overview of the potential of microwave indices obtained from
multi-frequency/polarization radiometry in detecting the characteristics of land surfaces, in particular
soil covered by vegetation or snow and agricultural bare soils. Experimental results obtained with
ground-based radiometers on different types of natural surfaces by the Microwave Remote Sensing
Group of IFAC-CNR starting from ‘80s, are summarized and interpreted by means of theoretical
models. It has been pointed out that, with respect to single frequency/polarization observations,
microwave indices revealed a higher sensitivity to some significant parameters, which characterize
the hydrological cycle, namely: soil moisture, vegetation biomass and snow depth or snow water
equivalent. Electromagnetic models have then been used for simulating brightness temperature and
microwave indices from land surfaces. As per vegetation covered soils, the well-known tau-omega
(τ-ω) model based on the radiative transfer theory has been used, whereas terrestrial snow cover has
been simulated using a multi-layer dense-medium radiative transfer model (DMRT). On the basis of
these results, operational inversion algorithms for the retrieval of those hydrological quantities have
been successfully implemented using multi-channel data from the microwave radiometric sensors
operating from satellite.

Keywords: microwave radiometry; microwave indices; soil moisture content; vegetation biomass;
snow cover characteristics

1. Introduction

Microwave radiometry has been used since the first space Earth’s observations to investigate
some important surface phenomena over the oceans and land at global scale. The early experiments
demonstrated that parameters such as ice concentration, wind speed and precipitations over the ocean,
as well as some physical characteristics of soil, snow and vegetation can be retrieved at different levels
of accuracy and reliability with more or less sophisticated instruments and algorithms developed in
several times since the ‘80s. (e.g., [1]).

Further studies have shown that, as expected, combining data collected at different frequencies
and polarizations in appropriate indices made it possible to significantly improve the accuracy of
the measured quantities, with respect to the one achievable with single frequency/polarization
observations. In particular, some Microwave Indices have been successfully related to the main
geophysical parameters associated to land hydrological cycle, such as soil moisture (SMC), Plant Water
Content (PWC), and Snow Depth (SD) or Snow Water Equivalent (SWE). These indices have therefore
been used for implementing operational retrieval algorithms based on data from different channels of
satellite radiometric sensors (e.g., SMMR, SSM/I, AMSR-E, AMSR2).

Presently, most of the operational algorithms for monitoring land surfaces are based on visible
and infrared indices, such as the Normalized Difference Vegetation Index (NDVI) [2] and Enhanced
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Vegetation Index (EVI) [3], which is sensitive to vegetation “greenness” and consequently related to its
biomass, or the MODIS Snow Cover Fraction. However, observations in optical bands, besides being
bound to the light diurnal cycle, are significantly influenced by the presence of clouds and can give
information of the observed surface layer only. On the other hand, microwaves are slightly affected
by atmospheric perturbations and, depending on the observation frequency and incidence angle, can
penetrate in vegetation cover, snow and even the underlying soil. Moreover, the high sensitivity of
microwaves to the water content of the observed bodies allows a direct estimate of the SMC, PWC and
SWE (e.g., [4,5]).

Investigations on the use of the difference between two linear polarizations for monitoring land
surfaces have been carried out since ‘80s by several groups of scientists analyzing passive microwave
data from both ground-based and satellite sensors. In particular, a Polarization Index (PI) was defined
as the difference between the two linear polarizations (Tbv − Tbh) normalized to their average value
[(Tbv + Tbh)/2] [6,7].

As it is well known, the microwave radiation emitted from a specular surface at an angle different
from the zenith is partially polarized. The degree of polarization depends on the soil dielectric constant
and can be estimated by means of the Fresnel coefficients. When the soil is characterized by a random
rough surface the degree of polarization depends on the roughness parameters as well, and decreases
as the roughness increases [8]. Moreover, experimental and theoretical investigations have shown that
the radiation from a canopy is much less polarized than that from bare soil. The different polarization
characteristics of a smooth bare soil and vegetation suggest the possibility of using a polarization
measurement, such as PI, as an indicator of vegetation cover.

First studies focused on estimating the sensitivity of the microwave brightness temperature (Tb)
to vegetation biomass were carried out since late ‘70s on the basis of ground based experiments and
model simulations (e.g., [9,10]) .

The reason for using polarization indices to estimate vegetation biomass was that the measurement
at single polarization is influenced by the geometry of plants, providing different results according to
the crop type. On the other hand, polarization indices were found to be mostly related to plant water
content (PWC) without being significantly influenced by plant structure and surface temperature.

Ref [11], in 1990, identified different combinations of the Special Sensor Microwave Instrument
(SSM/I) brightness temperature channels by statistically analyzing satellite data on a global scale, thus
allowing the classification of several land classes, such as dense vegetation, rangeland and agricultural
soils, deserts, snow, precipitation, and soil surface moisture.

In addition to those based on the polarization difference, other approaches for retrieving PWC
from multi-frequency satellite data have been examined combining data at two or more frequencies
(e.g., [12]). More recently, [13] noted that the brightness temperatures measured at a given polarization
with two adjacent AMSR-E frequency channels can be described by a linear function, which includes
two coefficients, both independent of the underlying soil/surface signals and dependent only on
vegetation properties. One is positively correlated to NDVI and is affected by the vegetation properties
and the surface physical temperature, the other is negatively correlated to NDVI and is only affected
by the vegetation properties.

A field of investigations where microwave indices are really useful for implementing retrieval
algorithms is the one of snow cover. First investigations on the capability of satellite microwave
sensors for snow monitoring took place in early ‘80s by using Nimbus-7 SMMR data over Finland
(e.g., [14,15]). Many operative algorithms for the retrieval of the main parameters of snow cover have
been implemented since then and are mostly based on multiple combinations of polarizations and
frequencies. [16] and [17] developed an operational algorithm for the retrieval of snow depth from
SSM/I and AMSR-E data basically using the difference in brightness temperature between Ku and
Ka bands in horizontal or vertical polarizations. The Ka band channel is sensitive to scattering by the
snowpack while the Ku band channel is relatively unaffected by the snow and is responsive to the
surface under the snow [18,19].
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Refs [16,20] provided operational algorithms based on microwave indices for their spatial agencies
(NASA and JAXA, respectively) focused on the distribution of snow products. In general, the retrieval
algorithms are supported by direct theoretical or semi-empirical models, which simulate microwave
emission and related indices of land surfaces in different conditions of vegetation, soil moisture, and
snow cover. These models are subsequently inverted with greater or lesser success by using different
approaches in order to retrieve the main surface parameters.

In this paper, the main results obtained by the Microwave Remote Sensing Group since early
1980s on the retrieval of soil, vegetation and snow parameters using passive microwave data have
been reviewed.

2. Experimental Relationships between Microwave Emission and Land Surface Parameters

Data presented in this paper were collected on different times and sites from ground-based and
airborne platforms by using microwave radiometers, operating at L, C, Ku, and Ka bands in both
vertical and horizontal (V&H) polarizations, over bare, vegetated, and snow-covered soils since early
‘80s. Examples of installations of microwave radiometers are shown in Figure 1.
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Figure 1. Installations of IROE microwave radiometers on several platforms: in a shelter on snow,
on hydraulic booms on forest and agricultural fields, and on helicopter and ultra-light aircraft.

The IFAC microwave instruments were total-power, self-calibrating, dual-polarized radiometers
with an internal calibrator based on two loads at different temperatures (cold, 250 K ± 0.2 K, and
hot, 370 K ± 0.2 K). The beamwidth of the corrugated conical horns was 20◦ at −3 dB and 56◦ at
−20 dB for all frequencies and polarizations. Calibration checks were performed during the field
experiments by means of absorbing panels of known emissivity and temperature and an internal noise
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source. Moreover, frequent observations of clear sky were performed. The measurement accuracy
(repeatability) was better than ±1 K, with an integration time of 1 s [21].

During the experiments, in-situ measurements of the parameters of soil (moisture, SMC, and
surface roughness, denoted by the Height Standard Deviation, Hstd, and correlation length, Lc),
vegetation (plant geometry, vegetation water content, PWC), and snow (Depth, SD, Water Equivalent,
SWE, density, Dn, Water Liquid Content, WLC, and grain size, GS) were collected to be compared with
microwave data acquired simultaneously.

2.1. Non Vegetated Land Surfaces

Microwave emission from non-vegetated soils is primarily sensitive to soil moisture due to the
high contrast between the permittivity of dry matter and water. Besides, soil emission is influenced
by surface roughness too, whose importance depends on the relative dimensions of the roughness
parameters of the surface profile (i.e., Hstd, and Lc), and the observation wavelength, λ. Hence, the
same surface can be “seen” as more or less rough depending on the observation frequency, as stated
by the Rayleigh criterion. As predicted by theoretical models and confirmed by experiments, the
effect of surface roughness is to increase emissivity and reduce the sensitivity to soil moisture. As an
example, measurements carried out with ground based radiometer at L (λ = 21 cm), X (λ = 3.2 cm) and
Ka (λ = 0.8 cm) bands on a sandy soil sample with a very smooth surface (Hstd < 1cm) are represented
in Figure 2, which shows the normalized temperature (Tn), i.e., the brightness temperature (Tb)
normalized to the thermometric surface temperature, as a function of soil moisture (SMC, in %) of
the first soil layers. Due to the different penetration depths of the three frequency signals, data at
L, X, and Ka bands have been correlated to the first 5.0, 2.5 and 1.0 cm layers, respectively. We can
see that, for this very smooth surface, the sensitivity of Tn to SMC is almost the same at L and X
bands (slope ∼= −0.0085), whereas it is significantly smaller at Ka band (−0.002), with rather low
determination coefficient (R2 = 0.47) [21].
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Figure 2. The normalized Temperature (Tn, i.e., the ratio between brightness temperature, and thermal
surface temperature, at Ka, X, and L as a function of SMC% of a bare smooth sandy soil.

Also polarization is influenced by the moisture content. The behavior of the Polarization Index
(the difference between the vertical, V, and horizontal, H, components of Tb normalized to their
average value), PI = (Tbv − Tbh)/(1/2) (Tbv + Tbh) at L and X bands vs. SMC is represented in the
diagrams of Figure 3a (X band) and Figure 3b (L band). PI at X band is significantly sensitive to SMC
for smooth soils only (Hstd < 0.5cm), with R2 = 0.87 and slope 0.016, whereas, when Hstd is higher than
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0.5 cm, the sensitivity to SMC becomes very low (R2 = 0.34 and slope 0.002). At L band the relationship
between PI and SMC is similar for both types of surfaces (R2 = 0.46 and slope 0.004), confirming the
scarce influence of surface roughness in this range of Hstd to the emission at this frequency.
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Figure 3. (a) PI at X band (PIX) vs. SMC for 2 surface types; (b) PI at L band (PIL) vs. SMC.

These results confirm that emission from natural terrains is influenced not only by SMC, but by
the surface roughness too, which in general, increases the value of brightness temperature and reduces
the sensitivity to SMC [22]. As an example, Figure 4 shows the Tn at L band as a function of SMC for
three classes of roughness (Hstd < 0.4 cm, 0.7–1.2 cm, and 1.2–3.0 cm). We can note that even L band
emission, in spite of the long wavelength, is influenced by surface roughness, especially when Hstd is
higher than 1.2 cm. Although R2 remains almost the same for the 3 roughness classes (between 0.7
and 0.8), the slope significantly decreases (from −0.009 for smooth soils, to −0.0024 for the rougher
surface), confirming that, as said, the same surface appears rougher at the smaller wavelengths.
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Hence, a refinement of the measurements of SMC would require some knowledge of the surface
roughness. A simple parametric model, which approximates fairly well the emissivity of a rough
surface with Hsdt between 0 and 2.5 cm, in a frequency range between L and Ka bands, was developed
by [23] by correcting the reflection coefficient with an exponential factor function of the square root
of the wavelength. Other interesting approaches to account for the roughness effect were suggested
by [24] and [25].

If dual or multi-frequency measurements are available, the effect of roughness on the measurement
of SMC can be more easily evaluated. As an example, the index δTb (i.e., the difference TbKa − TbX),
measured on surfaces with similar SMC but different roughness, shows a gradual decrease as the
roughness increases, as it is shown in Figure 5.
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Figure 5. δTb = TbKa − TbX at θ = 40◦ and H pol. as a function of Hstd (After [21]).

In [21], this frequency index was related to the Hstd with an exponential function as: δTn = 114.7
exp(−1.36 Hstd), which approximates experimental data with R2 = 0.83. This approach allowed the
identification of almost three ranges of roughness from Hstd < 1 cm to 2.5 cm and can provide a
correction of the relationship between Tn at L band and SMC by separating measurements on surfaces
characterized by different roughness.

Another approach to evaluate the surface roughness is based on the measurements of the PI.
Emission from a smooth flat surface at an incidence angle far from zenith is different for the two
polarization V&H components as predicted by the Fresnel reflection coefficients. The presence of
surface roughness tends to reduce or destroy this polarization difference, so that the measurement
of PI can give a direct estimate of the surface Hstd. A direct relationship between PI, at both X and
Ka bands, and Hstd is shown in Figure 6. We can see that in the range of Hstd between 0 and 3 cm,
typical of most agricultural fields, PI at X band gradually decreases as Hstd increases (R2 = 0.65),
although the experimental points are largely spread, whereas it quickly saturates at Ka band, as soon
as Hstd becomes slightly > 0 cm (R2 = 0.55). From this diagram, it can be concluded that, the most
appropriate frequency to perform this estimate of the surface Hstd in the range of roughness usually
encountered in the agricultural fields is close to X band, which can allow the identification of 2–3 levels
of roughness.
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In summary, a combination of dual frequency/polarization data at Ka and X bands makes it
possible to improve the accuracy of the SMC measurements based on L band data.

2.2. Vegetation

On vegetated surfaces, vegetation can be at the same time a disturbing factor for the estimate of
soil moisture and a target for the measurements of vegetation biomass. In remote sensing, the latter is
usually expressed by Plant Water Content (PWC, in Kg/m2), i.e., the total amount of water in plant
elements per unit area. It should be noted that instead of our original notation PWC, most authors are
now using the term Vegetation Water Content (VWC) (e.g., [10]).

Emission from vegetated surfaces is a combination of soil emission attenuated by the canopy
with the emission from plant elements. In general, the contribution of vegetation increases with the
observation frequency, f, and depends on the structure and dimensions of plant elements. The most
commonly used for modeling microwave emission from soil covered by vegetation is the tau-omega
(τ-ω) model, which is a simple formulation of RT transfer theory [26].

Also in this case, multi-frequency, dual polarization measurements can provide significantly
more information than single channel observations. Indeed, depending on the type of plants and
observation wavelength, Tb can increase or decrease as the biomass increases. This corresponds to
different types of electromagnetic interactions. In general, absorption occurs for plant elements that are
small with respect to observation wavelength, whereas scattering dominates in the opposite case [27].

On the other hand, the trend of the difference between the two linear polarization components
(and then the PI), was found to be independent of the vegetation type and always decreasing as
biomass increases [12]. Indeed, the polarized emission from an almost homogeneous and smooth
soil is attenuated by the volumetric effect of any vegetation type [6]. Thus, significant information on
vegetation biomass can be obtained by using PI, making it possible establishing an inversion approach
to retrieve vegetation biomass independently of crop type.

Figure 7 shows experimental values of Tn (in H pol.) (left) and PI at X and Ka bands (right) as
a function of the PWC of two crop types: narrow-leaf crops (e.g., wheat and alfalfa), and broad-leaf
crops (e.g., corn, sugar-beet and sunflower). In case of narrow-leaf crops, the mechanism of absorption
is significant and Tb increases as PWC increases; whereas on broad-leaf crops scattering is dominant
and Tb decreases with PWC. In all cases PI decreases as a function of increasing vegetation biomass,
with a trend that is gradual at X band and rather steep at Ka band.
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Figure 7. left: Normalized Temperature (Tn, in H pol.) at X (triangles) and Ka (rhombs) bands as
a function of PWC, and right: PI at X and Ka bands as a function of PWC, for two different crop
types: narrow-leaf crops (e.g., wheat and alfalfa) (top), and broad-leaf crops (e.g., corn, sugar beet and
sunflower) (bottom).

Table 1 shows the regression equations with the determination coefficients (R2) at the two
frequencies for the two crop types.

Table 1. Regression equations and R2 between Tn and PWC, and PI and PWC, at X and Ka bands.

Crop Type Tn Regression Lines R2 PI Regression Lines R2

Narrow-leaf TnX = 0.014PWC + 0.93 0.5 PIX = −0.5ln(PWC) + 0.077 0.6
Narrow-leaf TnKa = 0.0063PWC + 0.96 0.3 PIKa = −3.52ln(PWC) + 6.77 0.74
Broad-leaf TnX = −0.002PWC + 0.91 0.13 PIX = −7.51ln(PWC) + 15.35 0.79
Broad-leaf TnKa = −0.0065PWC + 0.95 0.57 PIKa = −6.17ln(PWC) + 16.34 0.85

These data obtained with ground-based sensors where positively compared with model
simulations based on tau-omega (τ-ω) model in [28].

The results obtained from ground-based or airborne sensors have been confirmed by satellite
investigations: a global map of vegetation cover based on the polarization difference at Ka band,
obtained from Nimbus 7 data, was first shown in [7]. More recently, maps of PWC retrieved from
PI at X band were obtained in the context of an algorithm based on an Artificial Neural Network
(ANN) developed for generating simultaneous maps of SMC, PWC, and SD from the Advanced
Multifrequency Scanning Radiometer (AMSR-E) [29,30].

2.3. Snow

The sensitivity of microwave emission to snow cover has been evident since the early experimental
(e.g., [31,32]) and theoretical (e.g., [33]) studies.
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Radiation emitted at lower frequencies of the microwave band (lower than about 6–10 GHz)
by soil covered with a shallow layer of dry snow is mostly influenced by soil conditions below the
snowpack. At higher frequencies and for thick snow layers, however, the role played by volume
scattering increases, and microwave emission becomes sensitive to the presence of snow.

The most interesting parameter for hydrological applications is the snow water equivalent (SWE)
equal to the product of snow depth (SD) by its density. As past research has demonstrated, the
key-frequency channels for detecting the presence of snow and estimating SWE or SD are Ku and
Ka bands. Measurements collected over several winter seasons on a relatively flat area located in
Northeast Italy on Mount Cherz, by using ground-based radiometers at Ku and Ka bands, showed a
decrease of Tb as the SWE increases up to about 260 mm at Ka band and 300mm at Ku. For SWE values
beyond this value, Tb tends to increase again due to emission from the snowpack itself which masks
the large scattering from the deep hoar (e.g., [34,35]). This trend, with some variability due to the snow
characteristics, was observed in several other studies (e.g., [36–38]). Moreover, the range of SWE in
which the minimum of Tb occurs depends on the penetration depths of radiation inside the snowpack.

This reversal of brightness temperature at increasing SWE can cause ambiguity in the retrieval.
In our measurements, after the inflection point, Tb shows a sharp increase at both frequencies and
then tends to fluctuate with a relatively flat behavior. However, the difference between Tb at the
two frequencies also tends to slightly increase after the threshold. Hence, we can speculate that, by
using an appropriate combination of observation frequency and polarization the retrieval of SWE
can be extended beyond the range 0–300 mm (e.g., [17,39,40]). For example, the Frequency Index
(FI = ((TbKuV − TbKaV) + (TbKuH − TbKaH))/2) is sensitive to SWE and SD due to the fact that, in the
case of dry snow, radiation at Ku band penetrates the snowpack with smaller attenuation and more
deeply than the emission at the higher frequency (Ka band), which is more influenced by the scattering
inside the snowpack [29]. The difference between the brightness at the two frequencies can therefore
be linearly related, to some extent, to SD (and/or SWE). Other combinations of frequency channels and
polarizations have also been tested to evaluate their sensitivity to SWE and, among these indices, the
Spectral Polarization Difference defined as SPD = (TbKuV − TbKaV) + (TbKuV − TbKaH) was identified
as the best correlated quantity to SD and SWE [38]. In summary, both FI and SPD present rather
high correlation (in terms of R2) to SD and SWE, as demonstrated in [41], where the comparison of
radiometric data with ground truth has shown the following logarithmic regressions: FI = 9.4 Ln(SWE)
− 27.59 (R2 = 0.71); SPD = 22.76 Ln(SWE) − 58.32 (R2 = 0.76) in a range of SWE up to 500 mm. This
result confirms that the use of dual-frequency/dual-polarization indices allows investigating snow
properties, even beyond the inversion limit (Figure 8).
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3. Model Simulations

3.1. Soil and Vegetation

Several models have been used for simulating brightness temperature and microwave indices
from land surfaces. As per vegetation covered soils, the most used model is an approximate solution of
the radiative transfer equation for a homogeneous soil overlaid by a medium at uniform temperature
characterized either by small scattering (ks� ka) or scattering “mainly forward”. In this approach,
well-known as tau-omega (τ-ω) model [26], the parameters that characterize the absorbing and
scattering properties of vegetation are the optical depth (τ) and the “albedo (ω). The radiation
component due to vegetation is assumed to be unpolarized, whereas the radiation emitted from the
smooth soil, and then by the whole canopy-soil system, is partially polarized.

The key parameter of the (τ-ω) equation related to the vegetation biomass is vegetation optical
depth (VOD or τ). This quantity increases as the canopy grows and, at L band, it has usually been
related to the VWC/PWC with a linear relationship, for several crop types [42,43]. However, early
studies at higher frequencies (X and Ka bands), had shown that experimental data can be fairly well
approximated (R2 > 0.8) by the following logarithmic function [28,44], as it is shown in Figure 9:

τ
√

λ
= k× ln(1 + PWC) (1)

where k is a constant depending on crop type, and λ is the wavelength of the emitted radiation.
Equation (1) is represented in Figure 9 compared with experimental data for some crop types (alfalfa,
corn, sugar beet and sunflower). The lines refer to the model obtained using two values of k (0.16 for
alfalfa) and 0.4 for corn and sugar-beet) for better simulating the different crop types.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 16 
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sunflower (SF).

The conflict between the linear or logarithmic trend of τ versus PWC was clarified in [10] by
expanding Equation (1) into power series (Equation (2)) and showing that this corresponds to the
power expansion of the extinction coefficient, γ, of a collection of discrete scatterers computed with
the radiative transfer theory. Hence, the linear relation between optical depth and PWC, frequently
used at L band, agrees with the first term of this series and can be considered valid for low values of
vegetation water content and long wavelengths:

τ = k× PWC− 1
2

k× PWC2 + . . . = k× PWC×
(

1− 1
2

PWC + . . .
)
= τ0

(
1− 1

2
k× τ0 + . . .

)
(2)
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where τ0 is the optical depth at low values of PWC.
In spite of the reduced range of the experimented PWC values (up to 2.5 Kg/m2), the progressive

shift from linear to logarithmic relationship as the frequency increases is demonstrated in a study
by [10,45] (Figure 10).
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Figure 10. Dependence of optical depth on PWC. Solid curve is calculated by the model of Equation (1)
(After [10]).

Figure 11 shows model simulations of PI (X band) as function of PWC compared with experimental
data of two crop types: narrow-leaf (alfalfa and wheat) and broad-leaf (corn, sugar-beet and sunflower)
crops. Here simulations are obtained by means of the τ-ω solution of the RT model, relating τ to PWC
as in Equation (1) and using two values of k (0.16 and 0.40) for the two crop types. In the model, the
scattering albedo, ω, the surface temperature, Ts, and the soil moisture, SMC, are kept constant and
equal to 0.01, 290K, and 15%, respectively [6].
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3.2. Snow

Microwave emission from for several types of terrestrial snow cover has been simulated using
a multi-layer dense-medium radiative transfer model (DMRT) [46] implemented under the quasi
crystalline approximation (ML-QCA). In particular, the model evaluated the sensitivity of the
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two FI and SPD indices on SWE comparing simulations to radiometric dual frequency/polarization
measurements collected over three winter seasons between 2007 and 2011 in the Eastern Italian
Alps [40].
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both simulated (dashed lines) and experimental (continuous lines) data.

In these simulations, inputs to the model were taken from ground data considering the changes
in the snow structure (grain size, density, stickiness of snow particles, number and depth of layers)
as SWE increased. The soil contribution was accounted for by using the Advanced Integral Equation
Model (AIEM) [47] with a permittivity corresponding to frozen or moderately wet soil depending on
the measured temperature.

The simulations confirmed the sensitivity of these indices to SWE up to a value of 500 mm water
equivalent (Figure 12). The regression equations obtained for both experimental and simulated data
are the following:

FI = 9.4ln(SWE) − 27.6 (R2 = 0.71) (measured).
FI= 7.1ln(SWE) − 12.63 (R2 = 0.44) (modeled).
SPD = 22.76ln(SWE) − 58.32 (R2 = 0.76) (measured).
SPD = 16.89ln(SWE) −20.88 (R2 = 0.47) (modeled).

4. Observation from Satellite

Results obtained from satellite data (SSM/I, AMSR-E, AMSR2, SMAP) confirmed those obtained
from ground-based and airborne sensors [48], by exploiting the potential of microwave indices in
a global scale estimation of geophysical parameters, provided appropriate retrieval procedures are
used. As an example, by including PI at X and Ku band in a SMC retrieval algorithm based on
Artificial Neural Networks (ANN), a correlation coefficient R2 > 0.7 between retrieved and target
SMC was obtained, while the correlation achievable on the same dataset by using only Tb at C band
would have been lower, i.e., R ' 0.5 [49]. Other studies demonstrated the possibility of estimating
SD in the Scandinavian peninsula, using PI and FI derived from AMSR-E, with RMSE = 9.13 cm and
R2 ' 0.8 [29].

Another algorithm based on the joint use of PI at C, X and Ku band data derived from AMSR2
was able to produce global maps of vegetation biomass with a RMSE < 1 kg/m2 [30]. The validation of
the latter algorithm, carried out on the entire Australian continent, demonstrated that the microwave
data from AMSR2 can be legitimately used to produce vegetation maps on a global scale by separating
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several levels of biomass on low and medium dense vegetation (up to 8 Kg/m2), without any need of
further information from other sensors and guaranteeing an all-weather monitoring.

5. Summary and Conclusions

Passive microwave remote sensing has been proved to be an important technique for monitoring
land surfaces, and, in particular, three important parameters: soil moisture (SMC), vegetation biomass
(PWC), and snow water equivalent (SWE). Unfortunately, all these parameters, together with some
others (e.g., soil surface roughness/texture, vegetation/snow type), simultaneously affect microwave
emission, so that the retrieval of the requested parameters is a typically ill-posed problem.

The complexity of the algorithms to be developed for retrieving spatial variations in land surface
parameters depends on the auxiliary information available and on the direct models selected for
the inversion procedures. Indeed, the more information (auxiliary or model derived) available, the
more accurate but more complex algorithm can be developed. The analytical inversion of EM models
is a complicated procedure, and generally, unfeasible without setting several boundary conditions.
Different approaches have therefore been studied to provide information on all the factors that affect
emission and reduce the effects of the undesired parameters, using ancillary or a-priori data. In this
framework, the synergy between observations at different frequencies, polarizations, and incidence
angles, significantly helps in improving the reliability of the inversion methods. A typical example
is the polarization index (PI) at X band, which was confirmed to be the most suitable parameter for
estimating vegetation biomass, and, furthermore, to be able to significantly increase the accuracy of
the estimate of soil moisture based on L and C band data.

Concerning the retrieval of snow parameters, the Frequency Index (FI) and the Spectral
Polarization Difference (SPD) demonstrated to be able to overcome the ambiguity introduced by
the non-linear relationship between Tb and SWE, making it possible estimating SWE up to 500 mm.
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