Models	Brief description	Advantages and disadvantages	Ref.
USLE	USLE is an empirical model for	USLE is not event-based and cannot quantify	[8,15,
(RUSLE,	annual estimate of soil erosion and	the events that are likely to result in large-scale	16]
MUSLE)	was further modified as MUSLE and	erosion. The use of slope length factor in RUSLE	
	RUSLE. It is a simple model for	enables the prediction of soil loss due to	
	predicting soil erosion considering	overland flow but is mostly applied to	
	rainfall, soil erodibility, land cover,	agricultural land of gentle slope angle not more	
	topography and flow rate (for	than 25° and does not estimate gully- or stream-	
	MUSLE) data.	channel erosion caused by raindrops.	
WEPP	Physical model for predicting	Predictions of the locations of sediment	[17]
	spatial and temporal distribution of	deposition and detachment are very effective,	
	soil loss, sediment yield, sediment	but the large computational data requirement of	
	size characteristics, run-off volume,	the model limits its applicability.	
	and soil-water balance.		
SWAT	Physical model for predicting the	Has different applications such as climate	[18]
	impact of land management	change, land-use change, evapotranspiration	
	practices on hydrology, sediment,	assessment, ground or soil water impact,	
	and contaminant transport in large	snowmelt process, etc. Although storm event-	
	river basins over a long period with	based, high and peak flows are not well	
	integration of drainage, topography,	simulated by the model.	
	soil, land use, and rainfall		
	information.		
AGNPS	AGNPS is a mix of empirical and	Computational complexity and greater data	[19,20
(Ann	physical models used to evaluate	requirements of these models provide a better]
AGNPS)	runoff, peak discharge, sediment	modelling capability but limit its applicability.	
	load and nutrient discharge, and	These models fit agricultural land better than	
	chemical oxygen demand transport.	hilly regions for modelling erosion and	
	The modified Ann AGNPS is a	pollution control.	
	physically based model for		
	predicting surface runoff,		
	suspended load and nutrients from		
	medium-sized river basins at a daily		
	time step.		
ANSWERS	A physical model that includes	The model is mainly designed for agricultural	[21]
	landform information, soil, land use,	catchment. Its applicability is limited in many	
	and channel description for runoff	catchments by the large spatial and temporal	
	and sediment transport calculation.	data requirements.	

Table S1. Summary of major soil erosion estimation models.

Models	Brief description	Advantages and disadvantages	Ref.
CREAMS	A physically based model for	It takes into account the gully erosion and	[22]
	predicting erosion, deposition, and	deposition along with overland erosion sources.	
	sediment transport into slope profile	The catchment being modeled is assumed to	
	and channels integrating	have uniform soil topography and land use,	
	precipitation, monthly air	which may prove unrealistic in some cases.	
	temperature, solar radiation values,		
	and soil and crop type data.		
EUROSEM	A physical model simulates erosion,	This model is able to predict yearly runoff and	[23]
	sediment transport and deposition,	soil loss, while it performs better in predicting	
	and runoff. Rainfall, soil, crop,	run-off rate than sediment discharge.	
	channel morphological information		
	are main inputs for this model.		
PESERA	A physically based model designed	It calculates the runoff on a daily basis using	[24]
	to predict hill slope erosion and	daily rainfall data, soil storage, and vegetation	
	transport of sediment at a range of	interception capacity. Its application is mainly	
	small catchment to national scale	limited to European scale.	
	with land cover, soil, topography,		
	and climate data.		
E30	An empirical model derived to	This model is applicable to hilly regions with	[25]
	predict soil erosion rate at catchment	undulating topography and steep slopes. The	
	scale using rainfall, vegetation, and	main drawback is that it does not take into	
	topographic information.	account the soil information as input data,	
		which is an important factor for estimating soil	
		erosion.	
WATEM/	A physically and raster based	This model is effective in quantitative	[26]
SEDEM	model. It calculates hill slope	assessment of erosion and deposition with a	
	erosion, sediment transport capacity	small number of parameters. The grid size	
	of channels and sediment routing	selected by the model user is a major factor	
	using rainfall, runoff, sediment, land	influencing sediment yield calculation for the	
	use, and soil data.	model. It is necessary to ensure that the	
		resolution chosen for modeling is adequate for	
		the task.	
EROSION	A process-based model for	Its requirement for few data and its	[27]
3D	calculating runoff, channel routing,	compatibility with GIS make it flexible in	
	and transportation and deposition	estimating erosion. Because the calculation is	
	of sediment.	based on a regular grid, the disadvantage of this	
		model is similar to that of WATEM/ SEDEM.	
TREX	A physically based model capable of	It can simulate sediment transport from upper	[28]
	estimating runoff, channel flow, soil	to lower catchment areas during severe	
	erosion, and stream sediment	rainstorms. The application of this model is	
	transport.	limited to watershed scale and requires large	
		amounts of hydrologic data.	

Models	Brief description	Advantages and disadvantages	Ref.
SEDD	An empirical approach for	This model is mainly applicable to estimate	[29]
	calculating sediment delivery ratio	stream channel erosion and is limited to	
	to stream channels.	watershed scale. It does not estimate overland	
		flow in hilly regions.	
MCE (AHP	MCE is a qualitative assessment	It is an integrated assessment approach used for	[30-
/WIO)	process. It is a probability weighted	identifying a solution with respect to multiple	32]
	approach that allows a linear	complex problems. It can provide a rationale for	
	combination of probability weights	making the best decision. The model uses	
	of several thematic maps. The	scoring factors and assigns a weighted index to	
	weightages of individual themes	several variables affecting erosion risk	
	and feature scores are fixed and	according to their influence in erosion based on	
	added to the layers by considering	expert knowledge. Selection of variables in such	
	its role in soil erosion.	approaches are not scientific enough and only	
		based on assumptions.	