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Abstract: To achieve high-quality surface solar radiation (SSR) data for climate monitoring and
analysis, the two satellite-derived monthly SSR datasets of CM SAF CLARA-A2 and SARAH-E have
been validated against a homogenized ground-based dataset covering 59 stations across China for
1993–2015 and 1999–2015, respectively. The satellite products overestimate surface solar irradiance
by 10.0 W m−2 in CLARA-A2 and 7.5 W m−2 in SARAH-E on average. A strong urbanization effect
has been noted behind the large positive bias in China. The bias decreased after 2004, possibly
linked to a weakened attenuating effect of aerosols on radiation in China. Both satellite datasets can
reproduce the monthly anomalies of SSR, indicated by a significant correlation around 0.8. Due to the
neglection of temporal aerosol variability in the satellite algorithms, the discrepancy between the
satellite-estimated and ground-observed SSR trends slightly increases in 1999–2015 as compared to
1993–2015. The seasonal performance of the satellite products shows a better accuracy during warm
than cold seasons. With respect to the spatial performance, the effects from anthropogenic aerosols,
dust aerosols and high elevation and snow-covered surfaces should be well considered in the satellite
SSR retrievals to further improve the performance in the eastern, northwestern and southwestern
parts of China, respectively.
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1. Introduction

High-quality surface solar radiation (SSR) data is highly demanded to meet the growing needs
for solar energy applications [1], the accurate estimation of the radiation budget [2,3], hydrological
processes [4,5] and carbon cycle [6,7]. The basic data source is from ground observations, which show
a worldwide decrease in SSR since the 1950s (termed “global dimming”) followed by an increase from
the late 1980s (“global brightening”) [8]. Uncertainties, however, still exist in the observed global
dimming and brightening phenomena, due to the limitations in the surface-based measurements [9].
Besides possible instrumental and operational issues, ground observations are sparse and not evenly
distributed, especially over oceans, remote or sparsely populated areas and mountainous regions with
complex terrain [10,11]. Correspondingly, an inhomogeneity issue in the ground-observed SSR trend
has been noted in China, especially during the 1990–1993 period and in the Tibet region with high
elevations [12]. For the whole of China covering over 9.6 million km2, there are only 130 solar radiation
stations, only 59 of them with records covering more than 75% of the measurement period from 1957
to the present. In addition, around three quarters of the stations are located in urban areas, indicating
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a non-negligible urbanization effect on the derived trends in China [13]. To compensate for the limited
spatial representation of ground observations, one effective alternative has been offered by satellite
products due to their unique geographical coverage and high spatial resolution [14–16].

Satellites provide observations since the 1980s and are becoming one of the most common methods
to derive SSR [17,18]. Two well-known global-scale satellite products of SSR fluxes are the Global
Energy and Water cycle Experiment Surface Radiation Budget (GEWEX-SRB; [19]) and the International
Satellite Cloud Climatology Project Flux Data (ISCCP-FD; [20]). However, these datasets have been
reported to be of limited values for climate analysis and practical applications [16,21,22]. To answer
the needs of high-quality satellite-derived SSR data, the Satellite Application Facility on Climate
Monitoring (CM SAF) has generated several long-term SSR datasets based on both geostationary and
polar-orbiting satellites with improved spatial resolution (Table 1). The CM SAF SSR datasets have
shown a good quality in comparisons with the surface observations around the world [15,16,23,24],
especially over Europe [10,14,17,25]. However, relatively large discrepancies have been noted over
the air pollution hotspots, for example Eastern Mediterranean [26], India [27] and so forth. This raises
our interest to have a closer look into the performance of the SSR datasets provided by the CM SAF in
another region of concern for haze pollution, namely China.

Table 1. Comparison of the resolution and coverage information of various satellite-derived surface
solar radiation (SSR) products discussed in this study 1.

Products
Resolution Coverage

Reference
Temporal Spatial Temporal Spatial

CLARA-A2 daily/monthly 0.25◦ × 0.25◦ 1982–2015 Global [24]

SARAH-E Hourly/daily/monthly 0.05◦ × 0.05◦ 1999–2016 ±65◦ lat.,
8◦W to 128◦E [28]

GEWEX-SRB V3.0 3-hourly/daily/monthly 1◦ × 1◦ 1983–2007 Global [19]
ISCCP-FD 3-hourly/monthly 2.5◦ × 2.5◦ 1983–2007 Global [20]

CERES-EBAF Ed2.7 monthly 1◦ × 1◦ 2000–2013 Global [29]
UMD-SRB V3.3.3 monthly 0.5◦ × 0.5◦ 1983–2007 Global [29]

1 Please note that only monthly means of CLARA-A2 and SARAH-E SSR were validated over China in this study
for the periods of 1993–2015 and 1999–2015, respectively.

Besides the strong influences from anthropogenic aerosols, China’s climate and topography
is highly complex and varies significantly from region to region. Accordingly, large biases in
previous satellite estimates of SSR in the GEWEX-SRB and ISCCP-FD products have been reported
in China [28,29]. The largest difference between ground-observed and satellite-derived SSR has been
found over the rapidly developing regions of South China [30,31], as well as the highly variable terrain
of the Tibetan Plateau [32,33]. However, two issues remain in the previous evaluations. First of all,
studies are done mainly for short-time periods, which limit the validation on the temporal stability
of the satellite products. Secondly, there was not much consideration of inhomogeneity issues in the
surface observations.

Therefore, this study attempts to validate the accuracy and the stability of two SSR datasets
provided by the CM SAF, namely CLARA-A2, based on polar-orbiting satellites and SARAH-E,
based on geostationary satellites, against a homogenized dataset of surface observations over
China. CLARA-A2 is the acronym of “CM SAF cLoud, Albedo and surface RAdiation dataset from
AVHRR data—Edition 2,” while SARAH-E is short for “Surface Solar Radiation Data Set—Heliosat,
Meteosat-East (SARAH-E)—Edition 1.” The validation of both CLARA-A2 and SARAH-E datasets
allows for a comparison of the performance between products derived from polar-orbiting and
geostationary satellites. Detailed information on the datasets used in this study is presented in
Section 2. Quality control of the ground observations and the validation metrics and procedure are
explained in Section 3. The validation results with respect to data availability, accuracy and stability of
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the satellite products are shown and discussed in Section 4. Finally, the main conclusions are drawn in
Section 5.

2. Datasets

Product user manuals and related reports regarding the two climate data records of CLARA-A2
and SARAH-E are available from the official website of the CM SAF at http://www.cmsaf.eu/. Here,
only the information relevant to the validation purposes is further illustrated. The ground-observed
SSR dataset from the China Meteorological Administration (CMA) is used as the reference. Satellite
data are extracted from the same location as the station data to do the comparisons. Depending on
the availability and homogeneity of all the datasets, the validations of CLARA-A2 and SARAH-E
SSR against the surface reference measurements are applied on monthly means for the periods of
1993–2015 and 1999–2015, respectively. The spatial coverage and climatology of multi-year averaged
SSR for the datasets analyzed are represented in Figure 1. Details of the datasets are explained in the
following text.
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Figure 1. Climatology of multi-year means of satellite-derived surface solar radiation (W m−2) from
CLARA-A2 (a) for 1993–2015 and SARAH-E (b) for 1999–2015 in comparison to surface observations
from CMA (denoted by points) for the common periods.

2.1. The CLARA-A2 Dataset

Derived from the Advanced Very High Resolution Radiometer (AVHRR) sensors onboard the
polar orbiting NOAA and METOP satellites, CLARA-A2 provides global information on cloud fraction
and their properties, surface radiation and the surface albedo from 1982 to 2015 with a spatial resolution
of 0.25◦ × 0.25◦ [24,34]; the variable of surface incoming shortwave radiation, that is, surface solar
radiation (SSR), from the CLARA-A2 climate data record is provided as daily and monthly means
(Table 1). Monthly SSR means of the CLARA-A2 dataset were validated in this study for the period
of 1993–2015. The measurement periods and orbits for all satellites covered by CLARA-A2 are
illustrated in Figure 1 of Karlsson et al. [24]. A deficiency influencing the data quality of CLARA-A2
SSR is the availability of only one satellite in orbit providing measurements during 1982–1991 [10].
Therefore, this period has been excluded from this study, to avoid the effect from a large number of
missing data on the validation results. The retrieval of CLARA-A2 SSR is based on a look-up-table
approach that relates, in cloudy situations, the reflected fluxes at the top of the atmosphere to the
surface fluxes. For clear-sky situations, the mesoscale atmospheric global irradiance code (MAGIC,
http://gnu-magic.sourceforge.net/) algorithm is used to derive the clear-sky surface irradiance.
In both cases, auxiliary data are used, namely a surface albedo map, monthly-averaged integrated
water vapor and an aerosol climatology. Detailed information on the retrieval scheme can be found
in Mueller et al. [35] and Karlsson et al. [36]. Data in areas where the surface albedo map used in
the satellite retrieval differs by more than 35% from the actual surface albedo as derived from the
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CLARA-A2 SAL data record are set to missing due to the degraded data quality under these conditions
(mainly snow-covered surfaces).

2.2. The SARAH-E Dataset

SARAH-E is derived from the visible channel of the Meteosat Visible Infra-Red Imager (MVIRI)
instruments onboard the geostationary Meteosat IODC (Indian Ocean Data Coverage) satellites [37].
Compared to the CLARA-A2 product, SARAH-E covers a limited region of 8◦W to 128◦E longitude
and ±65◦ latitude viewed by the geostationary Meteosat satellite for a shorter period of 1999–2016
but is of higher (up to hourly) temporal resolution and spatial resolution of 0.05◦ × 0.05◦ (Table 1).
The operation periods and positions of the relevant satellites Meteosat-5 and 7 are listed in the Table 1
of Gracia Amillo et al. [38]. The SPECMAGIC eigenvector-hybrid Look-Up Table (LUT) approach is
used for the generation of SARAH-E SSR [16]. It is noteworthy that, similar with CLARA-A2, aerosol
information is included as monthly climatological values for the SARAH-E SSR retrieval [17]. In other
words, effects from interannual and sub-monthly variations of aerosols are not considered in the
retrieved CLARA-A2 and SARAH-E SSR. Higher uncertainties in the calculation of SSR over bright
surfaces (e.g., desert regions) due to the reduced contrast between clouds and the surface are also
mentioned in the SARAH-E’s product user manual [37].

2.3. The CMA Dataset

The main data source for ground observations of SSR over China is from the China Meteorological
Data Service Center (CMDC, http://data.cma.cn) governed by the CMA. The measurements started
in 1957 but underwent a nationwide reorganization in both instruments and stations during
1990–1993 [39,40]. Consequently, an abnormal increase has been noted in the SSR trend of China
over this period [12]. To avoid this inhomogeneity, only the monthly surface data for the period after
1993 with consistent measurements are used as reference in this study. During the studied period,
the Chinese-developed thermopile pyranometers have been used for the surface solar irradiance
(in W m−2) measurements with an uncertainty of 3.4% (~5 W m−2) [41]. Every other year, all operating
instruments were calibrated against the national reference groups of China, which in turn were
calibrated by references at the World Radiation Center (WRC) every 5 years [39]. A basic data quality
control has been performed by the CMA, which, however, is not sufficient enough to cover all the
errors [42]. Therefore, an additional homogenization of the surface observations has been applied,
with the specific procedure shown in the next section.

3. Methods

3.1. Data Quality Control

The finally selected 59 CMA stations with homogenous SSR observations during 1993–2015
are shown in Figure 2, which cover 18◦13′N–50◦15′N latitude and 80◦14′E–129◦30′E longitude with
elevations varying from 3 to 4507 m. The homogenization process includes three steps. In the first
step, 92 out of the total 130 CMA stations with long-term records covering more than 95% of the
studied period 1993–2015 were picked out. In the second step, to further eliminate the outliers, a
physical threshold test was applied on the monthly CMA SSR following the two criteria raised by
Shi et al. [42] and Tang et al. [43]: (1) 0.03Ra < SSR < Ra and (2) SSR < 1.1Rso, where Ra and Rso

are extraterrestrial radiation and clear-sky radiation, respectively, calculated based on the FAO-56
method [44]. With this detection, 41 extreme monthly values (~0.15% of total) that exceed the physical
threshold were further deleted. In the third step, the Standard Normal Homogeneity Test (SNHT, [45])
was used to detect the monthly timeseries of CMA SSR including inhomogeneities, with sunshine
duration (SD, the most widely used proxy for SSR, collected as monthly records from the CMDC) and

http://data.cma.cn
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CLARA-A2 SSR as the references for comparisons. The SNHT derives a statistic T(k) for each month
k ∈ (1, 2, . . . , n), with n being the total number of months (i.e., 276 used in this study):

T(k) = kz2
1 + (n− k)z2

2, (1)

where z1 and z2 are the averages of the Xi values before and after a possible break point, calculated
based on the mean X and standard deviation σ of the whole timeseries {Xi}:

z1 =
1
k

k

∑
i=1

Xi − X
σ

, (2)

z2 =
1

n− k

n

∑
i=k+1

Xi − X
σ

, (3)

Possible break/shifts in the timeseries can then be detected in the months when T(k) exceeds the
value of a certain critical level, that is, 9.966 for the critical level of 95% used in this study, as acquired
from the Table I of Khaliq and Quarda [46]. The SNHT was applied on the timeseries of CMA SSR, SD
and CLARA-A2 SSR separately (known as “absolute” SNHT), as well as the relative bias series of CMA
SSR minus SD/CLARA-A2 SSR (known as “relative” SNHT). Monthly anomalies from the 1993–2015
monthly means instead of absolute values were used here to reduce possible effects from the annual
solar cycle. SARAH-E was not included as a reference series because of its shorter observational period
of 1999–2015 than the homogenized period for the surface data. After this, 33 CMA stations were
further excluded from this study, where significant breaks were detected in the series of relative biases
by the SNHT not owing to inhomogeneity in the reference series or changes in non-climatic factors
(e.g., aerosols).
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Figure 2. Spatial distribution of the selected 59 stations with homogenous ground observations of
surface solar radiation for 1993–2015. The color scale of the star symbols indicates the elevation (m) of
the stations. Rural stations have been especially highlighted by circles, with straight lines linking them
to the nearby urban stations.
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3.2. Validation Metrics and Procedure

To quantify the performance of the CM SAF CLARA-A2 and SARAH-E SSR products, two sets of
metrics were chosen for the accuracy and stability tests, respectively.

For the accuracy test, the basic metrics of mean bias deviation (MBD), mean absolute bias deviation
(MABD) and root mean square deviation (RMSD) have been used to remain consistent with previous
assessments of CM SAF products over other regions of the world [17,25,27]. Setting the variable x
as the satellite-derived SSR record to be validated, y as the surface reference measurement, n as the
number of months, the metrics are interpreted as follows:

Mean Bias Deviation (MBD): The mean difference between the compared datasets, indicating an
average over- or underestimation of the satellite-derived dataset compared to the reference dataset.

MBD =
1
n ∑n

i=1(xi − yi), (4)

Mean Absolute Bias Deviation (MABD): The mean of the absolute differences between the
compared datasets. MABD of 15 W m−2 is the threshold for accuracy applied in this study, combining
10 W m−2 for the target accuracy defined in the CM SAF CDOP Product Requirements Document [15]
and 5 W m−2 for the uncertainty in pyranometer measurements over China [41].

MABD =
1
n ∑n

i=1|xi − yi|, (5)

Root Mean Square Deviation (RMSD): The sample standard deviation of the differences between
satellite-derived and ground-observed values. Compared to MABD, RMSD is more sensitive to
outliers [47].

RMSD =

√
1
n ∑n

i=1(xi − yi)
2, (6)

The accuracy of the satellite products was tested at both temporal (annual and seasonal) and
spatial scales. The seasons are defined as spring (MAM, March to May), summer (JJA, June to August),
autumn (SON, September to November) and winter (DJF, December to February).

For the stability test, at the first step, the annual variations of the three metrics of MBD, MABD and
RMSD for both CLARA-A2 and SARAH-E SSR products were analyzed for the periods of 1993–2015
and 1999–2015, respectively. In addition, the monthly SSR anomalies from the 1993–2015 and 1999–2015
means were derived respectively for CLARA-A2 and SARAH-E and their corresponding surface
reference CMA data, to exclude the effect from the annual cycle of SSR. After this, the anomaly
correlations between the CM SAF and CMA radiation datasets were calculated. The linear trends in
the monthly SSR anomalies of CM SAF and CMA datasets were compared to evaluate the agreements.

4. Results and Discussion

4.1. Availability Test

To begin with, the data availability of the CLARA-A2 and SARAH-E products over China has
been checked. An indication can then be given for the performance comparison between polar-orbiting
and geostationary satellites.

As shown in Figure 3, polar-orbiting satellite-based CLARA-A2 has a complete spatial coverage
over China. The availability of monthly CLARA-A2 records generally increases with increasing
latitude. This is due to a skewed distribution of observations by the polar sun-synchronous satellites
with higher frequency near the poles than the equator [24]. Data availability fluctuates significantly
during the period of 1993–2001, when only two simultaneous satellites provided measurements in
the morning and afternoon orbits at local time about 7:00 and 15:00, respectively [10]. No data are
available from November 1994 to January 1995 and from October to December 2000, when only one
AVHRR instrument has been providing data. After a third morning satellite started observations at
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about 10:00 local time since 2002 [24], the availability of CLARA-A2 records has become quite stable
and almost 100% complete.Remote Sens. 2018, 10, x FOR PEER REVIEW  7 of 19 
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Figure 3. Availability (%) of the monthly SSR (Surface Solar Radiation) records in the CLARA-A2 and
SARAH-E datasets in space (upper panels) (for the selected 59 stations across China) and time (from
1993 to 2015) (lower panels).

In comparison, the geostationary satellite-based SARAH-E dataset has a full availability over all
the stations within the spatial coverage of the Meteosat disk except the Northeastern region of China.
The spatial coverage of the SARAH-E product over China further shrinks to the west after 2007, when
the Meteosat East observing location over the Indian Ocean shifted from 63◦E to 57◦E [38]. This is also
indicated in the time evolution of the availability ratio of the SARAH-E product (Figure 3 lower right).
There are three stages of no availability during 1993–1998, 83% availability during 1999–2006 and then
a decrease to 69% availability during 2007–2015 over the 59 stations across China.

In brief, the polar-orbiting CLARA-A2 SSR product has a better spatial coverage and longer
observational period over China; while the geostationary-based SARAH-E SSR data are more
consistent, indicative of higher spatial and temporal resolutions. In the following analysis, only
records available in both CM SAF and CMA datasets are considered, in order to ensure the same
number of months for comparisons.

4.2. Accuracy Test

Both CLARA-A2 and SARAH-E have been previously validated against globally distributed
observation sites from the Baseline Surface Radiation Network (BSRN) Archive, which includes one
station of Xianghe, located in China (http://bsrn.awi.de/) [48]. With reference to global BSRN data
on a monthly mean basis, CLARA-A2 shows a high accuracy with MBD of −1.6 W m−2, MABD of
8.8 W m−2 and SD (Standard deviation) of 13.1 W m−2 [24]; comparably, SARAH-E has a MBD of
−1.7 W m−2, a MABD of 7.9 W m−2 and a SD of 10.4 W m−2 [37], when compared to the BSRN stations
covered by the SARAH-E data record.

Table 2 summarizes the averaged metrics over China in comparison to the homogenized CMA
surface observations for the common periods. Although a negative bias has been observed on the

http://bsrn.awi.de/
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global scale compared to the BSRN sites, as well as in Europe compared to the GEBA dataset and a
variety of surface stations from European weather services [10,17], CLARA-A2 overestimates SSR in
China with a positive MBD of 10.0 W m−2. Equally, the MABD fails to fulfill the accuracy threshold of
15 W m−2. Nevertheless, the performance of CLARA-A2 is comparable to other products over China,
as large positive MBD have also been reported for the GEWEX-SRB by 8.5~14.6 W m−2, ISCCP-FD
by 16.4~18.3 W m−2, CERES-EBAF by 8.1 W m−2 and UMD-SRB by 14.2 W m−2 comparing to the
CMA observations [28,29,39,49]. The systematic overestimation by satellite algorithms in China was
suggested to be most likely associated with aerosols and their complex interactions with clouds [30].
Compared to CLARA-A2, SARAH-E shows a slightly higher accuracy of 7.5 W m−2 MBD, 15.1 W m−2

MABD and 18.7 W m−2 RMSD over China (Table 2), which might be related to its higher spatial and
temporal resolutions. The different retrieval schemes used for CLARA-A2 (based on AVHRR sensors)
and SARAH-E (based on MVIRI instruments) might also have an impact. To test possible random
effects from samplings, we recalculated the metrics for CLARA-A2 by limiting its spatial and temporal
coverage to the same as SARAH-E. After this, the results show even higher MBD of 12.5 W m−2,
MABD of 18.2 W m−2 and RMSD of 21.4 W m−2 for CLARA-A2. Therefore, the higher accuracy in
SSR estimates of SARAH-E than CLARA-A2 in China is not a chance result of the different spatial and
temporal coverages between the two satellite products. SARAH-E estimates over China also show
better performance as compared to India, where an almost twice as large bias has been reported [27].

Table 2. Annual and seasonal validation results for the CLARA-A2 and SARAH-E monthly SSR
datasets compared to 59 surface observation sites in China. MBD: mean bias deviation; MABD: mean
absolute bias deviation; RMSD: root mean square deviation.

MBD MABD RMSD

W m−2 % W m−2 % W m−2 %

CLARA-A2
Annual 10.0 ± 1.7 8.2 ± 1.4 16.9 ± 0.9 12.6 ± 0.9 20.5 ± 0.9 17.7 ± 1.8
MAM 14.4 ± 1.2 9.9 ± 0.9 20.3 ± 0.7 12.7 ± 0.7 23.2 ± 0.7 14.9 ± 0.7

JJA 10.2 ± 0.9 5.7 ± 0.5 16.1 ± 0.5 8.2 ± 0.3 19.3 ± 0.5 10.1 ± 0.4
SON 8.9 ± 1.0 8.1 ± 0.9 14.7 ± 0.6 12.1 ± 0.7 17.2 ± 0.6 16.1 ± 1.6
DJF 5.9 ± 1.3 9.3 ± 1.5 16.3 ± 0.7 18.2 ± 0.9 18.6 ± 0.7 22.1 ± 1.6

SARAH-E
Annual 7.5 ± 1.9 7.9 ± 1.5 15.1 ± 1.0 12.0 ± 1.0 18.7 ± 1.0 18.1 ± 2.2
MAM 10.3 ± 1.4 8.5 ± 1.0 18.2 ± 0.8 12.0 ± 0.8 20.9 ± 0.8 14.4 ± 0.9

JJA 5.7 ± 1.1 3.9 ± 0.6 14.8 ± 0.4 7.7 ± 0.3 18.0 ± 0.5 9.6 ± 0.4
SON 5.2 ± 1.1 5.9 ± 1.0 12.2 ± 0.7 10.4 ± 0.8 14.7 ± 0.7 14.5 ± 2.0
DJF 8.8 ± 1.3 13.2 ± 1.5 15.3 ± 0.9 17.9 ± 1.2 17.5 ± 0.9 22.1 ± 2.0

The annual cycle of SSR can be well tracked in both satellite products of CLARA-A2 and SARAH-E,
reaching the maximum in summer with the means over 200 W m−2 and the minimum in winter with
the means under 120 W m−2 (Figure 4). However, a generally opposite annual cycle can be observed
in the relative terms of MBD, MABD and RMSD for both datasets, with the largest relative deviations
occurring in the winter season. A similar pattern has been noted in Europe and attributed to an
inaccuracy in SSR retrievals over snow-covered surfaces, a degraded retrieval quality under low sun
and large viewing angle conditions in the northern hemisphere during the wintertime as well as low
absolute levels of SSR [25]. In addition, the large relative bias during the winter season in China
might also be partially introduced by the neglect of sub-monthly aerosol variability in the satellite
retrievals, considering winter as the season with the highest aerosol concentrations in China due to
domestic heating and stagnant weather [50]. The low absolute MABDs during the wintertime simply
reflects the low insolation [14]. Similarly, the relatively high insolation during the spring season could
partially explain the highest discrepancy indicated in the absolute values of the metrics (Table 2), while
in relative terms, spring still shows the second largest discrepancy. Spring is featured by frequent
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dust storm events in Northwest and North China [51] and extremely high humidity events with low
visibility in Southern China [52]. These factors would increase the difficulty in achieving accurate
satellite retrievals of SSR in the spring season in China. The best performance of satellite estimates is
in summer when rainfall scavenging of air pollutants is most efficient [53]. The bias slightly increases
in autumn, with increasing biomass burning during the harvest season [50]. The seasonal performance
of the satellite products is generally in good agreement with surface SSR observations; remaining
differences might be related to the seasonal cycle of aerosol loadings in China.
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of CLARA-A2/SARAH-E estimates against the corresponding surface observations and the metrics of
MBD (Mean Bias Deviation), MABD (Mean Absolute Bias Deviation) and RMSD (Root Mean Square
Deviation) in both W m−2 and %. For the box plots shown in the upper panels, the first, second and
third lines of the box represents the first, second and third quartiles, respectively; cross marks denote
the means; the whiskers indicate the standard errors of the means.

The spatial variability of SSR in China can be accurately described by both CLARA-A2 and
SARAH-E SSR products (Figure 1). At regional scale, there is a general overestimation of SSR in the
satellite estimates over the eastern part of China, with positive biases in a range of 2.4~33.0 W m−2

for CLARA-A2 and 1.1~26.1 W m−2 for SARAH-E (Figure 5). In the western part, negative biases are
prevalent with magnitudes ranging from −17.2~−0.1 W m−2 for CLARA-A2 and −14.6~−2.2 W m−2

for SARAH-E. A significantly positive correlation between MBD and longitude is shown in Figure 6b.
Latitude only has a significantly negative correlation with the MBD of CLARA-A2, possibly with the
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influence of data availability included (Figure 3). Similar spatial patterns have been noted in the biases
of the GEWEX-SRB [28,29], the ISCCP-FD [49] and the UMD-SRB dataset [30] compared to the CMA
surface measurements.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 
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Figure 5. Spatial patterns of MBD (Mean Bias Deviation), MABD (Mean Absolute Bias Deviation)
and RMSD (Root Mean Square Deviation) at the surface stations in W m−2 for the CLARA-A2 and
SARAH-E radiation datasets, respectively. Red and blue circles denote negative and positive MBD,
respectively. Green squares denote MABD below the accuracy threshold of 15 W m−2, while gray
squares denote the ones exceeding the threshold. Black rhombuses represent the RMSD, with the size
of the rhombuses indicating the magnitude of the RMSD.
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Figure 6. MBD (Mean Bias Deviation, W m−2) between satellite-estimated and surface-observed SSR
plotted against latitude ((a), ◦N), longitude ((b), ◦E) and elevation ((c), m). The pink and blue values are
the correlation coefficients r for the CLARA-A2 and SARAH-E radiation datasets, respectively; marked
with * denotes significant correlation at the 95% confidence level. The number of station samples for
the correlation analysis are 59 for CLARA-A2 and 49 for SARAH-E, respectively.

In the eastern part of China, the overestimation of SSR in the CM SAF products is probably due
to an underestimation of AOD (aerosol optical thickness) in this region with rapid economic growth.
Similar conclusions have been drawn by Xia et al. [30] and Wu and Fu [28] regarding the improper
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representation of aerosols in the satellite algorithms as the main explanation for the overestimation of
SSR in various satellite products over eastern China.

In the northwestern part of China where dust-storms are the dominant natural source of aerosol,
the high and temporally and spatially variable aerosol loading induced by frequent dust-storm events
are not captured by the aerosol climatology used in the retrieval. Similarly, Hayasaka et al. [29]
attributed the negative biases noted in the GEWEX-SRB product over the desert areas of western
China, that is, northwestern China, to the difficulty in evaluating AOD (aerosol optical thickness)
on the variable and high-albedo surface. Wu and Fu [28] suggested the underestimation of SSR in
northwestern China to be a result from an overestimation of cloud amount, despite the fact shown in
their Figure 3 that the underestimation mainly occurs in the dust storm active seasons.

In southwestern China, especially the Tibetan Plateau, the observed negative biases might be
related to the neglect of elevation effects in the satellite algorithms and degraded data quality under
snow-covered surfaces. Yang et al. [32,33] highlighted the difficulties of accurate satellite retrievals in
the Himalayas region for the highly variable terrain and elevation-relevant atmospheric environment.
In the CM SAF SSR retrievals, the reduced atmospheric scattering at higher elevations is not considered.
The reduced absorption, mainly from water vapor, is considered in the integrated water vapor column
from the ERA-Interim data set that includes the impact of elevation in the water vapor column, even
though at a coarser spatial resolution. Negative biases of the CM SAF SSR have also been reported
in the Alpine region [17,54]. Seen from Figure 6c, MBD shows the highest correlation of r > 0.7 with
elevation (p < 0.05). This might also explain the exception in northwestern China that several positive
biases can still be seen in the low-elevation area (Figure 5).

Besides, an exceptionally large negative bias of −32.4 W m−2 for CLARA-A2 and −48.9 W m−2

for SARAH-E was observed in the Emeishan station (no.32 in Figure 2), deployed at the top of Mt. Emei
with elevation of 3047 m. Besides seasonal snow, a common case for high-latitude areas, the Mt. Emei is
famous for the so-called Cloud Sea during November to February, constituted mostly of low clouds at
an elevation lower than 2000 m and thus representing heterogeneous cloud patterns [28]. Considering
the non-representativeness of this station location, we suggest an exclusion of this station for future
works which aim at evaluating the satellite-derived estimates. After excluding the Emeishan station,
the validation results are 10.7 ± 1.5 W m−2 MBD, 16.5 ± 0.8 W m−2 MABD, 20.0 ± 0.8 W m−2

RMSD for CLARA-A2; and 8.7 ± 1.5 W m−2 MBD, 14.4 ± 0.6 W m−2 MABD, 17.9 ± 0.7 W m−2

RMSD for SARAH-E on the average. In addition, the higher accuracy of SARAH-E as compared to
CLARA-A2 is also indicated in the comparisons at the individual stations (Figure 5). The ratio of the
stations with MABD fulfilling the accuracy threshold of 15 W m−2 is 42% and 63% for CLARA-A2 and
SARAH-E, respectively.

Another potential reason underlying the relatively larger biases in China than the global average
is the fact that most of the solar radiation stations in China are located in urban areas. Urban areas are
the main source for anthropogenic aerosols and thus may have higher aerosol loadings than rural areas.
A significant urbanization effect has been noted in the evolution of solar radiation and the relative
variables of sunshine duration and diurnal temperature range in China [13,55,56]. Using the same
classification method of urban and rural stations raised in Wang et al. [13], we found that over 86% of
the selected stations are located in urban areas, indicating a strong urbanization effect on the validation
results. Averaging only over the rural stations, the discrepancy largely reduces in both datasets of
CLARA-A2 and SARAH-E (Table 3). To test possible random effects from the spatial distribution of
the rural stations, we also calculated the metrics for their nearby urban stations displayed in Figure 2.
The results still show a smaller discrepancy in rural stations as compared to the corresponding nearby
urban stations (Table 3). Unfortunately, the limited number of only eight rural stations mainly located
in the northern part of China hindered a national-scale exploration of the urbanization effect (Figure 2).
Furthermore, the availability of rural stations further decreases for the validation of the SARAH-E
product, due to the limited spatial and temporal coverage of SARAH-E over China (Figure 3). Despite
these deficiencies, an enhanced agreement between the CM SAF satellite-derived radiation and surface
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observations can be expected if more rural stations are available in China for the validation. Besides,
some other operational effects that were not detected or excluded from this study might also exist and
contribute to the discrepancies with satellite estimates.

Table 3. Urbanization effects on the CLARA-A2 and SARAH-E validation results. MBD: mean bias
deviation; MABD: mean absolute bias deviation; RMSD: root mean square deviation.

MBD MABD RMSD

W m−2 % W m−2 % W m−2 %

CLARA-A2
51 Urban 11.9 ± 1.7 9.7 ± 1.5 17.6 ± 0.9 13.4 ± 1.0 21.1 ± 1.0 18.8 ± 2.0
8 Rural −2.1 ± 4.1 −1.3 ± 2.5 12.5 ± 1.4 7.8 ± 0.8 16.0 ± 1.7 10.5 ± 1.0

8 Nearby Urban 10.0 ± 3.3 5.8 ± 2.5 15.5 ± 1.8 10.1 ± 1.5 19.8 ± 1.6 13.0 ± 1.6

SARAH-E
43 Urban 9.0 ± 2.0 9.1 ± 1.6 15.8 ± 1.1 12.8 ± 1.1 19.3 ± 1.1 19.5 ± 2.5
6 Rural −3.2 ± 3.7 −0.7 ± 2.2 10.5 ± 1.3 6.1 ± 0.7 13.8 ± 1.8 8.1 ± 1.0

6 Nearby Urban 6.3 ± 3.3 5.1 ± 2.2 11.7 ± 1.1 7.8 ± 1.1 15.3 ± 1.3 10.3 ± 1.2

4.3. Comparison of Trends from Satellite and Surface

Designed for the study of climate trends, temporal stability is a critical property of the CM
SAF radiation datasets [17]. Figure 7 shows the annual evaluation of CLARA-A2 and SARAH-E SSR
estimates over China based on MBD, MABD and RMSD averaged over all surface stations. Interestingly,
there is a turning point in the annual series of all three metrics for CLARA-A2 SSR estimates over
China in the year 2004. CLARA-A2 consistently overestimates SSR during the examined period of
1993–2015. The positive MBD increases from 6.0 W m−2 to 15.8 W m−2 during 1993–2004 but thereafter
almost linearly decreases to 8.5 W m−2 in 2015 (Figure 7a). A similar transition from an increase to
decrease can also be observed in the annual series of MABD and RMSD of CLARA-A2 in 2004. The
improved accuracy of the CLARA-A2 SSR estimates might be related to the increased number of at
least four simultaneous satellites providing observations to CLARA-A2 after 2005 [24]. However, the
overestimation of SSR decreases not only for CLARA-A2 but also for SARAH-E during the last decade,
suggesting a common phenomenon in the satellite-based records. Meanwhile, a transition to decrease
in the PM2.5 concentrations has been reported in China after 2005 [57]. Considering the application of a
temporal-constant aerosol climatology in the satellite retrievals, the decreasing (increasing) bias in the
post-2004 (pre-2004) period is very likely due to the neglecting of the decrease (increase) in aerosol and
its attenuating effect on SSR in China. Similarly, a change point in the time evolution of the discrepancy
between satellite estimates and surface measurements from a stable to a sharp increasing trend has
been observed in the year of 2009 for India, with the changes in aerosol loading or properties over India
unresolved by the SARAH-E aerosol climatology proposed as a possible cause [27]. On the annual
basis, the geostationary satellite-based SARAH-E still shows a higher accuracy than the polar-orbiting
satellite-based CLARA-A2 product. The annual MABDs of CLARA-A2 are generally higher than the
accuracy threshold, with only one year of 2012 meeting the requirement (Figure 7b). In comparison,
SARAH-E MABD can basically meet the accuracy threshold in 42% of the period 1999–2015 with
a stable trend in general. On the other hand, the trend of RMSD for SARAH-E slightly increased
(Figure 7c), possibly due to the reduced spatial samples for China in the SARAH-E product (Figure 3).

Significant correlation between satellite estimates and surface measurements at the monthly scale
is indicated in Figure 8. Here, anomalies rather than absolute values were used to exclude the effect
from the annual cycle of SSR, which then can give more representative correlation coefficients and
better measures the quality of the satellite product [49]. The correlation coefficient r is almost 0.8 for
both CLARA-A2 and SARAH-E, suggesting both data records can reasonably reproduce the monthly
anomalies of SSR in China. In comparison, lower deseasonalized correlation coefficients ranging from
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0.48 to 0.72 were found for other satellite radiation products of GEWEX-SRB, ISCCP-FD, CERES-EBAF
and UMD-SRB as compared to the CMA observations over China [49].
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Figure 9 compares the trends derived from the composites of anomalies time series of satellite and
surface records at the station locations for the common periods. None of the trends pass the significance
test at the 95% confidence level. Surface-measured SSR in China tends to level off since the 1990s,
consistent with previous analyses [12,40,58]. CLARA-A2 generally records the levelling off trend in
surface data over 59 stations across China for 1993–2015 with a slight increase of 0.84 W m−2 decade−1,
showing a difference of less than 1 W m−2 decade−1 (Figure 9a). For the observing period of SARAH-E
since 1999, there is a more obvious increasing trend in surface-based SSR by 1.45 W m−2 decade−1,
while SARAH-E SSR slightly decreases by −0.71 W m−2 decade−1 (Figure 9b). Limiting the period
to 1999–2015 as used for SARAH-E, the SSR trend between CLARA-A2 and CMA shows a similarly
opposite direction (Figure 9a). A varying aerosol trend in China might have contributed to the larger
discrepancy between satellite-derived and surface-observed SSR trends in the latter period, which is
also indicated in Figure 7. The Breathing Earth System Simulator (BESS) product reported no trend
(p > 0.1) of SSR over China between 2001 and 2016 [59], consistent with the sunshine duration derived
SSR trend [39]. The CM SAF radiation datasets have been proven to be able to detect the brightening
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trend over Europe, which in the CM-SAF framework is primarily related to changes in clouds [9,10].
In China with aerosol as the dominant factor for the decadal trends in SSR [60], an inclusion of aerosol
variability in the satellite algorithms might be necessary for an accurate detection of changes in SSR.Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 19 
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clouds [9,10]. In China with aerosol as the dominant factor for the decadal trends in SSR [60], an 
inclusion of aerosol variability in the satellite algorithms might be necessary for an accurate detection 
of changes in SSR. 
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5. Conclusions

With the advantage in spatial and temporal coverage, CLARA-A2 allows to study the radiation
climatology and trends since the early 1990s over the whole China. A better performance regarding
accuracy is shown in the geostationary satellite-based SARAH-E with higher spatial and temporal
resolution as compared to CLARA-A2. The limited spatial and temporal coverage of SARAH-E,
however, prevents the validation for the northeastern part of China and most of the 1990s.

Due to the high aerosol loading and complex terrain in China, the discrepancy between
satellite-retrieved and surface-based SSR data is larger than in most other regions of the world.
Averaged over all 59 stations used in this study, the comparison shows an overestimation of 10.0 W m−2

by CLARA-A2 and 7.5 W m−2 by SARAH-E. One of our most interesting findings is a strong
urbanization effect behind the large positive bias in China. The bias largely decreases to −2.1 W m−2

for CLARA-A2 and −3.2 W m−2 for SARAH-E if only the rural stations available are considered. An
underestimation of aerosol effects in the satellite retrievals over China is also evident in the seasonal
performance. Indicated by all three metrics of MBD, MABD and RMSD, the largest relative deviation
is found in winter, followed by spring, autumn and summer, consistent with the seasonal cycle of
aerosol concentrations in China. Spatially, the overestimation of SSR in the satellite estimates is not
found over the whole of China but mainly occurs in the eastern part featured by a strong variability
and high absolute magnitude of anthropogenic aerosols. In contrast, in the western part of China an
underestimation is prevalent, most likely related to the difficulty to capture the frequent dust-storms
in the satellite retrievals over the desert regions (i.e., northwestern part) and the neglect of reduced
atmospheric scattering and degraded data quality under snow-covered surfaces of the high-elevation
regions (i.e., southwestern part).

Both CLARA-A2 and SARAH-E datasets are generally capable of reproducing the monthly
anomalies of SSR measured at the surface, indicated by a significant anomaly correlation around
0.8 at both annual and seasonal scales. The satellite products can estimate the SSR trends in
China with an insignificant (p > 0.05) difference of about 0.8 W m−2 decade−1 for 1993–2015 and
−2.2 W m−2 decade−1 for 1999–2015. The increased discrepancy in the latter period is a result of an
increase in surface-observed SSR but a slight decrease in satellite estimates. As also evidenced by
a decrease in the overestimation of SSR in the last decade, a weakening in the attenuation effect of
aerosols might have caused the brightening observed in surface measurements, which however fails to
be recorded by the satellite products using a temporally constant aerosol climatology. Therefore, an
inclusion of aerosol variability in the satellite algorithms is crucial for an accurate reproduction of the
solar dimming/brightening phenomenon especially for regions like China with non-negligible aerosol
radiative effects.
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