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Abstract: Forests play a key role in terrestrial ecosystems, and the variables extracted from single trees
can be used in various fields and applications for evaluating forest production and assessing forest
ecosystem services. In this study, we developed an automated hierarchical single-tree segmentation
approach based on the high density three-dimensional (3D) Unmanned Aerial Vehicle (UAV) point
clouds. First, this approach obtains normalized non-ground UAV points in data preprocessing;
then, a voxel-based mean shift algorithm is used to roughly classify the non-ground UAV points
into well-detected and under-segmentation clusters. Moreover, potential tree apices for each
under-segmentation cluster are obtained with regard to profile shape curves and finally input to the
normalized cut segmentation (NCut) algorithm to segment iteratively the under-segmentation cluster
into single trees. We evaluated the proposed method using datasets acquired by a Velodyne 16E
LiDAR system mounted on a multi-rotor UAV. The results showed that the proposed method achieves
the average correctness, completeness, and overall accuracy of 0.90, 0.88, and 0.89, respectively, in
delineating single trees. Comparative analysis demonstrated that our method provided a promising
solution to reliable and robust segmentation of single trees from UAV LiDAR data with high point
cloud density.

Keywords: UAV LiDAR; single tree; segmentation; mean shift; improved normalized cut

1. Introduction

Forests play a key role in the terrestrial ecosystem and have a large amount of economic, ecological,
and social benefits because they regulate the water cycle and carbon cycle on the surface of the
Earth [1]. For effective forest management and human activity documentation, the forest inventory
for sustainable forest management is usually needed to obtain a great number of single tree-related
parameters, such as tree species and tree species distribution, timber volume, increment of timber
volume, and mean tree height [2–9]. Traditionally, in practice, most single-tree-level parameters are
estimated by manually sampling small plots in a field survey, which is time consuming and labor
intensive [10,11].
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In recent years, airborne light detection and ranging (LiDAR) has become an emerging remote
sensing technique for performing forest inventory tasks because it can penetrate through tree canopies
and acquire three-dimensional (3D) forest structures [12,13]. LiDAR technology can improve the
accuracy of forest parameter retrieval at the single-tree level because of its capability of providing
accurate and spatially detailed information of tree structure elements (such as branches and foliage) [14].
Currently, airborne LiDAR is considered to be a standard data source for deriving forest spectral and
spatial information at the scale of single trees because it provides timely, large-scale, and accurate
forest information to support forest management. Matasci et al. [2] demonstrated that the integration
of airborne LiDAR and Landsat-derived reflectance products predicted a total of 10 forest structural
attributes by using a nearest neighbor imputation approach based on the random forest framework,
with R2 values ranging from 0.49–0.61 for key response variables such as canopy cover, stand height,
basal area, and stem volume. Allouis et al. [3] estimated stem volume and aboveground biomass
from the single-tree metrics derived from full-waveform LiDAR data by using regression models and
improved the accuracy of aboveground biomass estimates. Matsuki et al. [4] obtained a tree species
classification accuracy of 82% by integrating spectral features obtained from hyperspectral data and
tree-crown features derived from LiDAR data with a support vector machine classifier. However, it is
still difficult to detect single trees automatically from airborne LiDAR data due to the various shapes
of trees and their periodic changes with the seasons, especially to segment trees with complex and
heterogeneous crowns.

With the development of unmanned aerial vehicles (UAV) technologies in weight capacity,
durability, and controlling, UAV LiDAR systems have been proposed to be an alternative means
for capturing 3D canopy structural information. Compared to airborne LiDAR, UAV LiDAR has
been shown to be lower cost, which can monitor key development stages of forest management in
a timely manner, such as pruning, thinning, and harvesting [15]. Moreover, it is more flexible and
controllable in terms of flying altitude, viewing angles, and forward and side overlap with fine spatial
and temporal resolutions [16]. Furthermore, UAV LiDAR can avoid some complications, such as plane
flight logistics, cloud covers, and atmospheric effects [17]. Because UAV and airborne LiDAR data
show certain similar characteristics, most researchers segmented single trees from UAV LiDAR data by
using the algorithms that are usually applied to airborne LiDAR data.

Many methods have been proposed for detecting and delineating single trees from airborne
LiDAR points. These methods can be generally categorized into two categories, i.e., raster-based and
point-based methods, in terms of data types used [18]. Raster-based methods first interpolate point
clouds into a two-dimensional (2D) canopy height model (CHM), in which potential stem positions
are located based on the local maxima, and then, tree crowns are delineated by using the established
image processing algorithms, such as watershed segmentation, valley following, template matching,
and region growing [19–21]. However, raster-based methods heavily rely on the accuracy of the
constructed CHM. Moreover, these methods usually fail to detect and delineate some smaller trees
under the canopies and closely neighboring trees especially in dense and heterogeneous forests [22].
Consequently, some improvements have been proposed. For example, a filtering CHM and variable
window strategy have been presented to reduce the misclassification of local maxima caused by the
noise in CHM [20,21]. Wallace et al. [15] demonstrated that high density UAV LiDAR points contributed
to the improvement of the tree extraction accuracy. Hyyppä et al. [1] detected trees by using the last
pulse data, which improved the tree detection accuracy by 6%. However, these raster-based methods
use only tree elevation information of the constructed CHM, and 3D spatial information of LiDAR
data has been ignored [23].

To make full use of the 3D structures of point clouds, in recent years, many researchers have
identified single trees directly from original LiDAR data [23–25]. Morsdorf et al. [26] segmented trees
in a 3D voxel space with a k-means clustering method by using the local maxima of the CHM as seed
points. Gupta et al. [27] improved Morsdorf’s method by scaling down height values to increase the
similarity between point clouds. However, these methods also relied on the local maxima detected
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in CHM data. Region growing has been widely used in single-tree delineation from airborne LiDAR
data. Lee et al. [21] first defined an optimal moving window size to detect all possible seed points with
an overall accuracy of 95.1%. However, it required ground truth data as training data to achieve the
optimal results. Li et al. [22] proposed a top-to-down region-growing algorithm based on the relative
tree spacing to detect single trees. The method performed well in conifer forest, but it worked less
effectively when applied to a deciduous forest. Lu et al. [25] segmented single trees with an overall
F-score of 0.9. However, the method required intensity information and could be only applied to
leaf-off conditions, which limited the further applications. These clustering methods are unsuitable
to deal with forests with overlapped canopies because they can hardly find appropriate parameters
for large-scale forest environments or staggered stems in deciduous forests. Moreover, the above
single-tree segmentation methods have certain restrictions on tree species and LiDAR data, and their
segmentation accuracies on overlapped canopies are usually unsatisfactory.

Ferraz et al. [28] presented an improved mean shift algorithm, considering both density and
height factors to detect tree apices in multi-layered forests. Dai et al. [29] improved the tree detection
accuracy by using multispectral airborne LiDAR. A mean shift method is capable of locating tree
apices according to the density and height maxima of point clouds without prior knowledge of the
number of clusters or depending on the interpolated 2D CHM data. To delineate small trees under
canopies from airborne LiDAR data, Reitberger et al. [30] introduced normalized cut (NCut), originally
proposed for 2D image segmentation, and achieved a recognition rate of 12%, which is higher than
conventional watershed segmentation methods. Zhong et al. [31] improved the algorithm to segment
overlapped trees with a correctness of above 90% by means of terrestrial and mobile LiDAR data. NCut
has shown great potential in 3D segmentation and works very well when separating two overlapping
objects [32,33]. However, the traditional NCut has difficulty in accurately locating tree stems in
airborne/UAV LiDAR data due to the lack of understory information in severely-overlapped forests.

The objective of this study aims to propose an automated hierarchical single-tree delineation
approach, as well as applying and assessing the feasibility of the proposed algorithm using high-density
UAV LiDAR data. The remainder of the paper is organized as follows: Section 2 describes the study area
and UAV LiDAR data acquired from a Velodyne 16E system. Section 3 details the proposed single-tree
segmentation method using UAV LiDAR data. The method starts with the normalization and
segmentation of non-ground points from the Velodyne 16E UAV LiDAR data. After that, to improve
data processing efficiency, a voxel-based mean shift algorithm is used to roughly obtain well-detected
and under-segmentation clusters. Finally, to delineate overlapped trees effectively, an improved
normalized cut (NCut) segmentation method is proposed to segment under-segmentation clusters
iteratively into single trees with a tree apex detection strategy. The conducted tests are described and
analyzed in Section 4. Finally, concluding remarks are given in Section 5.

2. Test UAV LiDAR Data

The study area (marked by a large yellow frame in Figure 1) is about 54.67 hectares and located in
Dongtai forest farm with relatively flat terrain, Yancheng City, Jiangsu, China. The specific location
of the study area is detailed in Figure 1. The trees in the forest farm were planted in almost the
same period of time, leading to approximate similarities of these trees in shape and size. The test site
dominantly covers two tree species: Metasequoia and Poplar. Metasequoia, a fast-growing, deciduous tree,
and the sole living species, has a cone-shaped canopy with sparse branches and leaves, as shown in
Figure 2a. Poplar, a genus of 25–35 species of deciduous flowering plants, is among the most important
boreal broadleaf trees in northern cities of China. Poplar has an irregular shape (see Figure 2b)
with spirally-arranged leaves that vary in shape from triangular to circular or lobed, and with a
long petiole.
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LA2016-003. The UAV platform is composed of the following components: eight brushless motors, 
a Novatel initial measurement unit (IMU-IGM-S1), a dual-frequency GPS (global positioning 
system) produced by Novatel, and a ground control system to track the aircraft, control the 
UAV-LiDAR system, and continuously monitor UAV flying parameters. The main components of 
the UAV platform can be seen in Figure 3. Lin et al. [34] demonstrated the advantages of these 
sensors integrated on a UAV platform and the feasibility of the UAV development. Besides, a 
Novatel global navigation satellite system ground base station was used to ensure GPS accuracies. 
The real-time UAV LiDAR data were transferred to the ground data terminals through a long-range 
Wi-Fi system connected to the UAV [35]. The parameters of the UAV platform are listed in Table 1. 
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Figure 2. Two tree species in the study site (a) Metasequoia and (b) Poplar.

The research data were collected by a laser scanner system mounted on a GV1300 multi-rotor
UAV produced by Green Valley International. The serial number of the UAV LiDAR system is
LA2016-003. The UAV platform is composed of the following components: eight brushless motors, a
Novatel initial measurement unit (IMU-IGM-S1), a dual-frequency GPS (global positioning system)
produced by Novatel, and a ground control system to track the aircraft, control the UAV-LiDAR system,
and continuously monitor UAV flying parameters. The main components of the UAV platform can
be seen in Figure 3. Lin et al. [34] demonstrated the advantages of these sensors integrated on a UAV
platform and the feasibility of the UAV development. Besides, a Novatel global navigation satellite
system ground base station was used to ensure GPS accuracies. The real-time UAV LiDAR data were
transferred to the ground data terminals through a long-range Wi-Fi system connected to the UAV [35].
The parameters of the UAV platform are listed in Table 1.
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Table 1. Specifications of the UAV platform.

Parameters Value

Weight of loadings 7 kg
Take-off-weight 17 kg
Diagonal wheelbase 1280 mm
Maximum flying time 32 min
Maximum flying distance 10 km
Flying height 86 m above ground in this research
Flying speed 3.6 m/s in this research
Measurement range of gyroscope ±400 degrees/s
Gyroscope zero drift 0.5 degrees/h
Measurement range of accelerometer ±10 g
Measurement deviation of accelerometer 0.05 mg

The UAV LiDAR data were acquired with a point density of 40.57 points/m2 on 24–26 July 2017,
by a VLP16 (Velodyne 16E) laser scanner system produced by Velodyne LiDAR. The full specifications
of VLP16 are listed in Table 2. Note that, in this study, the LiDAR data accuracy, which usually requires
being evaluated based on the ground control points measured by a total station and creating a reference
dataset [36,37], was unavailable; therefore, the data accuracy was directly reflected by the system’s
ranging accuracy.

Table 2. Specifications of the Velodyne 16E laser scanner system.

Parameters Value

Principle Pulse ranging
Laser wavelength 905 nm

Measurement distance range 100 m
Vertical scan angle −15–+15 degrees

Laser scan frequency 16 lines/s
Divergence 3 mrad

Swath overlap 100%
Amplitude 500 m/s2

Vibration frequency 5–2000 Hz, 3 Grms 1

Weight 0.83 kg
Ranging accuracy <10 cm

1 Grms is a unit for representing root mean square acceleration.

To evaluate the single-tree segmentation accuracy, the reference data were collected in July 2017,
by field measurements and a backpack laser scanning system produced by Green Valley International.
The full specifications of the backpack laser scanning system are listed in Table 3. According to the
producer, the data accuracy was about 5 cm. Seven reference plots were selected to evaluate the
single-tree segmentation accuracy in the study site, as shown in Figure 1, including three samples of
Metasequoia (Plots 1, 2, and 3) and four samples of Poplar (Plots 4, 5, 6, and 7). Each tree within the plots
was located by the backpack laser scanning system. Each plot was 30 m× 30 m in size. The numbers of
the reference trees for Plots 1–7 were 29, 54, 54, 18, 20, 21, and 42, respectively. Accordingly, their forest
densities were 0.032, 0.060, 0.060, 0.020, 0.022, 0.023, and 0.047 trees/m2, respectively. Within each plot,
the location and the diameter at breast height (DBH) of each tree were recorded.
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Table 3. Specifications of the backpack laser scanning system.

Parameters Value

Weight 5.8 kg
Working time 2.5 h each battery

Laser scanning system Velodyne 16E
Measurement distance range 100 m

Vertical field angle −15–+15 degrees
Data accuracy <5 cm

3. Methodology

To obtain single trees segmented from UAV LiDAR data, our proposed approach includes the
following steps: (1) data preprocessing, which first separates ground points from non-ground points
and normalizes the UAV LiDAR data according to the produced DTM from the filtered ground points,
(2) a voxel-based mean shift method, which voxelizes and roughly segments non-ground points into
well-detected and under-segmentation clusters, and (3) an improved normalized cut segmentation
method, based on a tree apex detection strategy, which iteratively identifies single trees from the
under-segmentation clusters that contain multiple overlapped trees.

3.1. Data Pre-processing

In the data preprocessing procedure, to reduce computational complexity, a ground filtering
method based on cloth simulation (CSF), developed by Zhang et al. [38], was utilized to classify UAV
LiDAR points into ground and non-ground points because it needs a few parameters that are easy to
set and adapts to various terrains without tedious parameter setting. The CSF algorithm first turns
the terrain upside down and places a cloth on the inverted surface from above, then determines
the final shape of the cloth to separate ground from non-ground points by analyzing the interaction
between the nodes of the cloth and the corresponding LiDAR points. The CSF algorithm consists
of four user-defined parameters: rigidness (FRI), steep slope fit factor (FST), grid resolution (FGR),
and time step (FDT). The first two parameters are the key parameters, which control the filtering results,
and vary with terrain types. The last two parameters are usually fix-valued and universally applicable
to all LiDAR datasets. The detailed description of the CSF algorithm can be found in [38]. The ground
points were then interpolated into a digital terrain model (DTM) by linear interpolation. Afterward,
to reduce the influence of undulating terrain on single-tree recognition and tree height extraction,
the non-ground points were normalized according to the produced DTM with a spatial resolution of
0.5 m. Moreover, low-rise shrubs in the forests were removed by a given height threshold (Γh).

3.2. Voxel-Based Mean Shift

The point cloud data, acquired by a UAV LiDAR system, contained a considerable number of
points; however, point-wise processing methods are usually time consuming and computationally
complex. To reduce data redundancy and improve data processing efficiency, a voxelization strategy
was introduced in this study. The non-ground points were segmented into a number of voxels with
a given voxel size (Vs). The voxel size depends on the point density of the UAV LiDAR points to be
processed. We statistically counted the number of points and determined the center of all the points
for each voxel. The voxelization for UAV LiDAR points contributes to improving the computational
efficiency and maintaining feature details of objects, which has been widely used for point cloud
registration, surface reconstruction, shape recognition, etc.

After voxelization, mean shift, proposed by Ferraz et al. [28], was used to segment single trees
roughly with the local maxima based on the density function. All non-ground UAV LiDAR points in
the form of voxels can be regarded as a multimodal distribution, where each mode, here defined as a
local maximum in both density and height, corresponds to a crown apex [28].
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The algorithm starts with selecting the highest voxel, Xc = (xc, yc, zc), in the non-ground voxels
and obtaining all its neighboring voxels, Xi = (xi, yi, zi) (i = 1, 2, 3, . . . , n), where n is the number of
voxels within a given radius, R. Next, we calculated the offset vector by summing the vectors between
the voxel and its neighboring voxels. To converge voxels within each crown toward the corresponding
crown apex, a 3D space was separated into horizontal and vertical directions. The horizontal kernel
was defined for searching local density maxima, and the vertical one for local height maxima [29].
Therefore, the offset vector of voxel Xi to voxel Xc is defined by:
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The vertical kernel, gr, is specially-designed for assigning a larger weight to the highest voxel:

gr(||
xr

c − xr
i

hr ||2) =
{

1− ||1− dist(xr
c, xr

i )||2 i f mask(xr
c, xr

i ) = 1

0 otherwise
, (3)

where mask(xc
r, xi

r) represents a mask of foreground object; dist(xc
r, xi

r) is the distance between Xi and
the boundary of the mask. They are defined by,

mask(xr
c, xr

i ) =

{
1 i f xr

c − hr

4 ≤ xr
i ≤ xr

c +
hr

2

0 otherwise
, (4)

dist(xr
c, xr

i ) =

min(|| (xr
c− hr

4 )−xr
i

3hr
8

||, || (xr
c+

hr
2 )−xr

i
3hr

8
||) i f mask(xr

c, xr
i ) = 1
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Then, voxel Xc moves along the offset vector until it reaches the density and height maxima
and labels all voxels visited during this process as the same cluster. The proposed voxel-based mean
shift method repeats the above steps until all voxels in the non-ground points are visited and labeled
into specific clusters. Afterward, the nearby clusters, whose distances are less than a given distance
threshold, Γd, are merged together. In the study, to increase the similarity of all voxels belonging to a
single tree, the proposed method compresses (m, a multiple of height compression) the point height to
improve the clustering results.

With the voxel-based mean shift method, the non-ground voxels were roughly segmented into a
set of local clusters. For each cluster, we projected all voxels onto the XOY plane and calculated the
diameters in the x- and y-directions (d1 and d2). According to the ratio of d1 to d2, the clusters will be
classified into two groups: well-detected and under-segmentation clusters. Here, we defined that a
well-detected cluster is a single tree with circular-shaped canopy, while an under-segmentation cluster
is an irregularly-shaped one containing more than two trees. Thus, if the ratio of d1 to d2 was close
to 1, the cluster was labeled as well-detected (i.e., a single tree), otherwise the cluster was labeled
as under-segmentation.
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3.3. Improved Normalized Cut Single-Tree Segmentation

To delineate single trees from the under-segmentation clusters that contain multiple overlapped
trees and objects, an improved NCut segmentation algorithm was introduced.

3.3.1. Normalized Cut

NCut aims to solve the graph partitioning problem in 2D image segmentation [39]. It works on a
weighted connected graph. The idea behind the algorithm is that, by using dynamic programming,
a given object is segmented by minimizing the cost for cutting the weighted connected graph into
two sub-graphs. The algorithm has been extended to 3D space. The non-empty voxels were used to
construct a weighted graph G = {V,E} (see Figure 4), where V is a set of graph nodes representing the
voxels and E is the set of graph edges that connect the nodes.
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Denote weight wij as the similarity between a pair of nodes {i,j} ε V. It is computed as follows:

wij =

e−(
DXY

ij
σXY )

2

× e−(
DZ

ij
σZ )

2

× e−(
DS

ij
σS )

2

i f DXY
ij < ΓR

0 otherwise
, (6)

where Dij
XY, Dij

Z, and Dij
S represent the horizontal, vertical, and shortest distances, respectively,

between nodes i and j. σXY, σXY, σZ, σZ, and σS are coefficients, set to be 0.05-times the maximum of
Dij

XY, Dij
Z, and Dij

S, for controlling the sensitivity of the impact factors, respectively. ΓR represents the
maximum horizontal distance threshold between nodes. wij = 0, if the horizontal distance between
nodes {i,j} exceed the threshold, ΓR. NCut aims to divide the graph G into two disjoint voxel groups
A and B by maximizing the similarity within each voxel group and minimizing the similarity between
two voxel groups A and B. The corresponding cost function is as follows:

NCut(A, B) =
Cut(A, B)

Assoc(A, V)
+

Cut(B, A)

Assoc(B, V)
, (7)

where Cut(A, B) = ∑i∈A,j∈B wij is the sum of weights between voxel groups A and B.
Assoc(A, V) = ∑i∈A,j∈V wij and Assoc(B, V) = ∑i∈B,j∈V wij represent the sums of weights of all
edges ending in the voxel groups A and B, respectively. To segment voxel groups A and B exactly,
NCut(A, B) is minimized and solved by the corresponding generalized eigenvalue equation:

(D−W)y = λDy, (8)

where W is an n × n weighting matrix representing the weights between all nodes of graph G. D is an
n × n diagonal matrix, and

D(i, i) = ∑j wij. λ is an eigenvalue, and y represents the eigenvector corresponding to the
generalized eigenvalue. The minimum solution, y1, to Equation (8) corresponds to the second smallest
eigenvalue, λ1 [23].
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3.3.2. Improved NCut

The traditional NCut algorithm has difficulty in accurately locating tree stems in airborne/UAV
LiDAR data due to the lack of understory information in severely-overlapped forests. NCut requires
the specific number of single trees in point cloud data to be processed. Therefore, in the study,
to segment single trees from the under-segmentation clusters containing multiple overlapped objects,
we improved the NCut algorithm by adopting a tree apex detection strategy, which is capable of
automatically determining the number of single trees in the clusters. The tree apex detection strategy
starts with profile generation, which sections the cluster into a set of profiles both in the x- and
y-direction with a user-defined profile size, Γs. The profiles generated both in the x- and y-direction
help reduce the occlusions. For each profile in the x- and y-direction, respectively, we calculate the
maximum height for generating shape curves by cubic spline data interpolation. Figure 5 shows
two clusters and their corresponding shape curves. Figure 5a,d show two clusters in the form of 3D
points, Figure 5b,e their corresponding shape curves in the x–direction and Figure 5c,f the shape curves
in the y-direction. The peaks of the generated shape curves both in the x- and y-direction are found to
determine tree apices, which means the number of peaks in the shape curves determines the number
of potential single trees to be segmented in the under-segmentation cluster.

With the determined number of potential tree apices, the NCut iteratively segments the cluster
into the specified number of single trees. Figure 6a shows an example of an under-segmentation cluster
with multiple overlapped trees. As seen in Figure 6b, the cluster is further segmented into six potential
single trees.
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4. Experimental Results and Discussion

The proposed single-tree segmentation method was performed using Microsoft Visual Studio
2013 (programed using C++) and MATLAB 2016a and tested on an HP Z820 eight-core-16-thread
workstation. To evaluate the proposed single-tree segmentation method qualitatively and
quantitatively, we conducted a set of experiments on seven reference plots. In this study, we segmented
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single trees based on tree apices, which might lead to an identification error between the location of
the segmented single tree and the reference data. If the identification error was within a certain range
or the majority of points (over 80%) belonging to the segmented single tree were correctly identified,
we considered that the single tree was correctly identified.

Before we investigated the applicability and feasibility of the proposed single-tree segmentation
method, several parameters were empirically selected in advance, according to prior acknowledge
of the UAV LiDAR data and the test site. As seen in Table 4, in the data preprocessing,
five parameters—FRI, FST, FGR, FDT, and Γh—were used. FRI represented the terrain type and was
set to three according to the flat terrain. FST decided whether the post-processing of steep slopes
was required. FGR and FDT were respectively set to 0.5 and 0.65, which were adapted to most of the
scenes. FGR represented the horizontal distance between two neighboring points, and FDT controlled
the displacement of points from gravity during each iteration. Low-rise shrub height threshold, Γh,
was set to 5.0 m according to the tree height in the test site. In the voxel-based mean shift algorithm,
six parameters—Vs, m, R, Γd, hs, and hr—were used to obtain a set of clusters. The voxel size, Vs,
was set according to the point density. To increase the similarity in vertical distance, m was set to four.
The search radius, R, and the minimum distance between clusters, Γd, were both set to 2.0 m according
to the average width of canopies in the study. hs and hr were two bandwidths of the horizontal and
vertical kernels, which represented the range where the local density and local maxima existed. hs and
hr were set to 1.5 m and 5.0 m, respectively, according to the average width and depth of the tree
canopies in the test site. In the improved NCut-based single-tree segmentation stage, Γs, the profile size
in the x- and y-direction was set to 0.5 m based on the defined voxel size. The maximum horizontal
distance threshold between the cluster nodes, ΓR, was empirically set to 4.5 m according to the average
width of tree canopies.

Table 4. Parameters and configurations in the proposed method.

Stage Parameter Definition Value

Data preprocessing

Γh Low-rise shrubs height threshold 5.0 m
FRI Terrain types 3
FST Steep slope fit factor False
FGR Grid resolution 0.5
FDT Time step 0.65

Voxel-based mean shift

Vs Voxel size 0.2 m
m Height compression 4
R Search radius 2.0 m
hs Horizontal bandwidth 1.5 m
hr Vertical bandwidth 5.0 m
Γd Minimum distance between clusters 2.0 m

Improved NCut segmentation Γs Profile size in the x- and y-direction 0.5 m
ΓR Maximum horizontal distance 4.5 m

The accuracy of the proposed method was evaluated by the following three measurements:
correctness (Ecor), completeness (Ecpt), and F-score (Ef). Ecor indicates what percentage of the segmented
single trees were valid, whereas Ecpt describes how complete the detected single trees were. Ecor is
defined as Ecor = Cp/Ep, and Ecpt is expressed as Ecpt = Cp/Rf, where Cp denotes the number of real
single trees, Rf is the number of single trees in the reference data, and Ep represents the number of
single trees segmented by our method. Ef evaluates the overall accuracy, which is defined as:

E f = 2(Ecor × Ecpt)/(Ecor + Ecpt), (9)
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4.1. Overall Performance

To evaluate the performance of our proposed single-tree segmentation method, we applied it to the
UAV LiDAR data set. Two tree species, Metasequoia and Poplar, were tested. The parameters involved
in this study were set according to Table 4. The UAV LiDAR data in the test site were first preprocessed
to obtain the normalized non-ground points. The ground points were compared with the reference
DTM, which was manually processed by means of a Terrasolid© software (http://www.terrasolid.
com/home.php). The root mean squared error (RMSE) was 0.23 m, referring to the evaluation method
in [40]. Then, with the voxel-based mean shift algorithm, the non-ground UAV points were compressed
and roughly segmented into a set of clusters (See Figure 7). As shown in Figure 7, visual inspection
demonstrated that the voxel-based mean shift algorithm roughly classified the non-ground UAV
voxels into well-detected and under-segmentation clusters. According to the calculated mean shift
vectors that always pointed to the local density and height maxima in the non-ground UAV voxels,
the clusters with distinct tree apices were classified as well detected. The well-detected clusters were
then directly labeled as single trees. However, the clusters without distinct tree apex structures,
labeled as under-segmentation, needed to be further processed. An under-segmentation cluster
contains multiple, overlapped tree canopies or small trees. As seen in Figure 7, the segmentation
results of Metasequoia outperformed those of Poplar. This is because Poplar has complex tree structures
with staggered stems and irregularly-shaped canopies. On the contrary, over-segmentation phenomena
existed for Poplar, as seen in Figure 7d–g.
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To further detect single trees from the under-segmentation clusters, the improved NCut
segmentation method was performed. For each under-segmentation cluster, tree apices, based on the
tree shape curves generated by the vertical profile information both in the x- and y-directions, were
found and input to the NCut method to obtain single trees by iteratively segmenting the cluster. Table 5
shows the single-tree segmentation results by our proposed approach. As seen in Table 5, most single
trees have been correctly segmented with an average correctness of 0.90, completeness of 0.88, and Ef
value of 0.89, respectively. For Metasequoia (Plots 1, 2, and 3), the Ecor values were greater than 0.96,
the Ecpt values were higher than 0.88, and the Ef values ranged from 0.93–0.94. The quantitative
results indicate that the proposed method was greatly suitable for detecting the deciduous Metasequoia
with the cone-shaped canopies, sparse branches, and leaves. For Poplar (Plots 4, 5, 6, and 7) with the
irregularly-shaped canopies and staggered-like stems, the values of Ecor, Ecpt, and Ef ranged from
0.81–0.9, slightly lower than those of the Metasequoia trees. Overall, the experiments indicate that our
approach was robust to different tree species.

Moreover, according to the forest density statistics in Table 5, we found that for Metasequoia, slight
improvements of the Ecor values were achieved for Plots 2 and 3 with the highest forest densities of
0.060 trees/m2 when compared to Plot 1 with a forest density of 0.032 trees/m2. On the contrary,
the Ef values of Plots 2 and 3 were slightly lower than that of Plot 1. For Poplar, Plots 4–6 with little
differences in forest density achieved Ef values ranging from 0.83–0.87. Compared to Plot 4 with the
lowest forest density of 0.020, an improvement of the Ecor, Ecpt, and Ef values of Plot 7 was achieved by
0.05, 0.02, and 0.03, respectively. This indicates that our approach was capable of processing dense
forests with overlapped canopies.

Table 5. Single tree segmentation results by our approach.

Forest Density (trees/m2) Ecor (%) Ecpt (%) Ef

Plot 1 0.032 0.96 0.93 0.94
Plot 2 0.060 0.98 0.93 0.93
Plot 3 0.060 0.98 0.88 0.93
Plot 4 0.020 0.84 0.88 0.86
Plot 5 0.022 0.89 0.85 0.87
Plot 6 0.023 0.81 0.85 0.83
Plot 7 0.047 0.89 0.9 0.89

Average accuracy 0.90 0.88 0.89
1 Ecor indicates what percentage of the segmented single trees are valid; Ecpt describes how complete the detected
single trees are; and Ef evaluates the overall accuracy.

4.2. Comparative Tests

A comparative test was carried out to compare our method with the marker-controlled
watershed segmentation [12]. The method was performed using LiDAR360 produced by Green
Valley International (https://www.lidar360.com/archives/5135.html), and Figure 8 was drawn by
Arcgis10.2 produced by the Environmental Systems Research Institute (ESRI). Figure 8 and Table 6,
qualitatively and quantitatively, show the watershed segmentation results for the seven plots.

As seen in Figure 8a–c, for the cone-shaped, orderly-arranged Metasequoia trees, the watershed
segmentation method performed very well. Accordingly, as seen in Table 6, the values of Ef were 0.98,
0.92, and 0.92, respectively. A few trees were over-segmented or missed. The average Ef value of the
marker-controlled watershed segmentation algorithm was slightly lower than that of our approach.
This is because the watershed segmentation algorithm was sensitive to noise, which leads to staggered
stems probably being misclassified into tree seed points. Moreover, the watershed segmentation
algorithm detects single trees from the 2D CHM data interpolated from 3D points, which means data
interpolation might decrease the accuracies of canopy segmentation and cause the unreliability of
delineating crown diameters. For the Poplar trees (Plots 4, 5, 6, and 7), Figure 9a,b shows a close
segmentation example of Plot 5 by the watershed segmentation and our proposed approach. Green

https://www.lidar360.com/archives/5135.html
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dots and black circles represent tree locations and canopy radii derived from watershed segmentation,
respectively, and black crosses represent reference tree locations. As seen in Figure 9a, the single trees
detected by local maxima in CHM data were over-segmented, which was mainly caused by staggered
stems, and tree canopies were still overlapped with each other, indicating that the segmentation
results were unsatisfactory. Quantitatively, as seen in Table 6, the Ecor values greatly ranged from
0.75–0.91, the Ecpt values changed from 0.83–0.90, and the values of Ef for the four Poplar plots only
attained 0.79, 0.80, 0.85, and 0.84, respectively. This is because the local maxima detection in 2D
CHM data, which only contain height difference information, is unreliable for dealing with the trees
with irregularly-shaped canopies and staggered-like branches, and thus, many Poplar trees were
over-segmented and missed.
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Table 6. Single-tree segmentation results by the marker-controlled watershed segmentation method.

Forest Density (trees/m2) Ecor (%) Ecpt (%) Ef

Plot 1 0.032 0.96 1.00 0.98
Plot 2 0.060 0.92 0.92 0.92
Plot 3 0.060 0.94 0.91 0.92
Plot 4 0.020 0.75 0.83 0.79
Plot 5 0.022 0.75 0.90 0.80
Plot 6 0.023 0.90 0.82 0.85
Plot 7 0.047 0.91 0.81 0.84

Average accuracy 0.87 0.88 0.87
1 Ecor indicates what percentage of the segmented single trees are valid; Ecpt describes how complete the detected
single trees are; and Ef evaluates the overall accuracy.
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For the Metasequoia test plots (i.e., Plots 1, 2, and 3), our proposed approach and
the marker-controlled watershed segmentation method achieved similar single-tree delineation
performances, both satisfactorily at delineating single trees from the cone-shaped, orderly-arranged
Metasequoia forest. Moreover, for Poplar trees with irregularly-shaped canopies and staggered-like
branches, the 2D CHM-based watershed segmentation method achieved unreliable results due to the
loss of some tree-related information in the data interpolation. Compared to the marker-controlled
watershed segmentation method, our approach was robust to forests with different tree species and
forest densities by finding both local density and height maxima directly from 3D point clouds.

5. Conclusions

This paper proposed a hierarchical single-tree segmentation approach using UAV LiDAR data,
which consists of data preprocessing, voxel-based mean-shift clustering, and delineation of single trees
by the improved NCut segmentation with a tree apex detection strategy.

The test data acquired by a Velodyne 16E UAV LiDAR system were used in this paper to assess our
single-tree segmentation method. We selected seven plots containing two tree species with different
forest densities. The experimental results demonstrated that our approach was capable of delineating
single trees with an average correctness of 0.90, an average completeness of 0.88, and an average
overall accuracy of 0.89, respectively. Our approach is robust and highly efficient for segmenting single
trees from UAV LiDAR data with high point cloud density since: (1) voxelization facilitates improving
the efficiency of data processing; (2) the full use of the 3D spatial structure of the point cloud rather
than the interpolated 2D CHM data, which only contain height difference information, in voxel-based
mean shift improves tree apex location accuracy due to less loss of tree information; (3) a profile shape
curve strategy based on vertical profile information contributes to locating tree apices and solving the
problem that NCut is incapable of detecting single trees from overlapped canopies due to the lack of
understory information in severely-overlapped forests.
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Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
NCut Normalized cut segmentation
LiDAR Light detection and ranging
2D Two-dimensional
3D Three-dimensional
CHM Canopy height model
CSF Cloth simulation filtering
DTM Digital terrain model
DBH Diameter at breast height
VLP16 Velodyne 16E laser scanning system
GPS Global positioning system
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