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Abstract: Exposure to fine particulate matter (PM2.5) is associated with adverse health impacts on the
population. Satellite observations and machine learning algorithms have been applied to improve
the accuracy of the prediction of PM2.5 concentrations. In this study, we developed a PM2.5 retrieval
approach using machine-learning methods, based on aerosol products from the Moderate Resolution
Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observation System (EOS) Terra and
Aqua polar-orbiting satellites, near-ground meteorological variables from the NASA Goddard Earth
Observing System (GEOS), and ground-based PM2.5 observation data. Four models, which are
orthogonal regression (OR), regression tree (Rpart), random forests (RF), and support vector machine
(SVM), were tested and compared in the Beijing–Tianjin–Hebei (BTH) region of China in 2015. Aerosol
products derived from the Terra and Aqua satellite sensors were also compared. The 10-repeat 5-fold
cross-validation (10 × 5 CV) method was subsequently used to evaluate the performance of the
different aerosol products and the four models. The results show that the performance of the Aqua
dataset was better than that of the Terra dataset, and that the RF algorithm has the best predictive
performance (Terra: R = 0.77, RMSE = 43.51 µg/m3; Aqua: R = 0.85, RMSE = 33.90 µg/m3). This study
shows promise for predicting the spatiotemporal distribution of PM2.5 using the RF model and Aqua
aerosol product with the assistance of PM2.5 site data.

Keywords: daily PM2.5 concentrations; remote sensing; MODIS AOD; machine learning algorithm;
spatial and temporal distribution

1. Introduction

Recently, severe haze pollution over China, especially Eastern China, has received extensive
attention. Fine particulate matter (PM2.5: small inhalable solid and liquid particles suspended
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in the air with aerodynamic diameters of not more than 2.5 µm) consists mainly of ash haze that
sharply influences the environment and air quality, as well as public health [1,2]. Though stationary
ground measurements of PM2.5 are routinely performed with high accuracy and sampling frequency,
the measurements are limited by sporadic and uneven spatial coverage, as well as having point-based
monitoring and excessively high construction costs. However, the retrieval of ground-level PM2.5

concentrations from satellite remote sensors has become a good complementary technique for pollution
monitoring, source tracking, the assessment of health effects, epidemiological studies, and the
estimation of exposure and climate change [3,4].

The main satellite-derived parameter relevant to the estimation of surface PM2.5 concentrations is
the aerosol optical depth (AOD), which is defined as the integrated extinction coefficient by atmospheric
particles from the Earth’s surface to the top of the atmosphere [5], while meteorological variables
(e.g., planetary boundary layer height, wind speed, relative humidity, temperature, and atmospheric
pressure) and other auxiliary datasets are also considered and tentatively incorporated as covariates to
further enhance the estimation accuracy. Many satellite sensors have been launched and have provided
reliable AOD retrievals (MISR, SeaWIFS, VIIRS, OMI, and GOES) [6–10]. The Moderate Resolution
Imaging Spectroradiometer (MODIS) sensors, aboard the NASA Earth Observation System (EOS) Terra
and Aqua polar-orbiting satellites, provide aerosol-related data, and are being acknowledged and used
in many studies, due to their relatively mature aerosol retrieval algorithms and recalibration [11].

Methods utilizing satellite-based aerosol products to retrieve surface PM2.5 concentrations
are generally divided into three categories: global chemical transport model-based scaling factor
methods [12–14], physical mechanism-based semiempirical formula methods [15–17], and empirical
statistical models. The lack of emissions inventory data and the complexity of the physical mechanism
of PM mass hamper the use of the former methods, and statistical models, especially advanced
statistical models with high accuracy and wide applicability, are considered to be a compromise [18].
Regarding statistical methods, ordinary linear regression (LR) and multiple linear regression (MLR)
models have been first and extensively adopted to reveal the relationship between the PM2.5 mass
concentration and satellite-derived AOD, and reasonable correlations of the modeled and observed
PM2.5 laid a solid foundation for the use of image AOD parameters [19]. Additionally, more complex
nonlinear regression models, such as linear mixed effects models (LME), mixed-effects regression
models [20], generalized linear models (GLM) [21], generalized additive models (GAM) [10,22],
geographically weighted regression models (GWR) [23–26], and geographically and temporally
weighted regression models (GTWR) [27] have also been applied and proven to enhance the
capability of inferring PM2.5 mass. Furthermore, some robust approaches have been formed recently
by integrating two or several regression techniques to hierarchically estimate the surface PM2.5

concentration, typically integrating LME with GWR models [28] and combining GAM with natural
cubic splines (NS) [29], as well as building three-stage statistical models [30]. These approaches provide
great improvements in model precision for the estimation of PM2.5 concentration.

Interestingly, popular machine learning methods such as artificial neural network (ANN) [31],
Bayesian maximum entropy (BME) [22], support vector regression (SVM) [32], and multivariate
adaptive regression splines (MARS) [33], all yield more satisfactory performances compared with
conventional statistical models, which exhibit the visible potential for the estimation of surface PM2.5

concentration. Random forest (RF) models have several appealing properties and have emerged as a
promising machine learning approach. RF has been used for PM2.5 pollutant forecasting, air quality
prediction, and historical monthly PM2.5 concentration estimation, which has produced exciting
results [34,35]. Considering that this potentially attractive technique has been successfully applied in
many scientific disciplines despite still being in its infancy in remote-sensed daily PM2.5 estimation
problems, there is a relatively insufficient amount of studies comparing the predictions of these
effective methods concerning PM2.5 inversion research.

In this study, we aim to investigate and compare the performance of the current most advanced
and efficient methods, RF and SVM, for the estimation of daily PM2.5 concentration. At the same
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time, orthogonal regression (OR) [36] and regression tree (Rpart) [37] methods are also used as
contrasting approaches. The ground-based PM2.5 observations, meteorological parameters from
the Goddard Earth Observing System (GEOS), and the Collection 6 fusion of dark target (DT) and
deep blue algorithm (DB) aerosol products from the MODIS sensors on both the Terra and Aqua
satellites for the year of 2015 over the Beijing–Tianjin–Hebei (BTH) region of China were used, and the
10-repeat 5-fold cross-validation method was used to evaluate all model accuracies. We also further
verified the PM2.5-inferring performance from the spatial and temporal distributions by mapping the
PM2.5 concentration distribution using the best-performing models and kriging interpolation of the
parameters quantified at the sites.

2. Materials and Methods

2.1. Data Description

2.1.1. Ground Measurements

The BTH region lies in the northern part of the North China Plain, and one of the most
economically vibrant metropolitan regions is located along Bohai Bay, extending from 113–120◦E and
36–43◦N (Figure 1). Updated hourly ground-based PM2.5 measurements in this region are primarily
obtained from the China Environmental Monitoring Center (CEMC), published through the “National
Urban Air Quality Real-Time Publishing Platform” (http://113.108.142.147:20035/emcpublish/).
In total, 79 new monitoring sites have been added to our study domain. Figure 1 demonstrates the
elevation data (obtained from the Global Multi-Resolution Terrain Elevation Data, 2010) and the
distribution of PM2.5 monitoring stations (upper-right).Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 19 

 

 

Figure 1. Topography and spatial distribution of PM2.5 monitoring stations (upper-right) and annual 
mean “AODcom” maps (bottom-left for the Terra satellite and bottom-right for the Aqua satellite) of 
the Beijing–Tianjin–Hebei (BTH) region. A histogram equalization contrast stretch was applied in 
these maps. 

2.1.2. Satellite Data 

The MODIS sensors aboard the EOS Terra and Aqua polar-orbiting satellites were launched in 
1999 and 2002, respectively (see: https://modis.gsfc.nasa.gov/about/), and they observe the Earth at 
approximately 10:30 AM and 1:30 PM local time, with a broad swath of approximately 2330 km. The 
sensors possess a wide spectral range and high spatial coverage, and they make near-daily 
measurements. These measurements yield multiple datasets of aerosol optical depth for 
near-real-time monitoring, and a variety of other applications. The Collection 6 datasets have been 
proven to substantially increase the precision of inversion algorithms and spatial coverage 
compared to previous editions, and the Level 2 (L2) products provide all kinds of land aerosol 
datasets distinguished by different retrieval algorithms and quality control parameters, such as the 
“Optical_Depth_Land_And_Ocean” (“OD_LO”), “Image_Optical_Depth_Land_And_Ocean” 
(“IOD_LO”), “AOD_550_Dark_Target_Deep_Blue_Combined” (“AODcom”), etc. (for more 
information about MODIS L2 products, see: http://modis-atmos.gsfc.nasa.gov/MOD04_L2/). The 
augmented “AODcom” aerosol parameter fully combines the deep blue algorithm (DB, used for 
bright surfaces) with the dark target algorithm (DT, used for dark surfaces), apportioned by the 
MODIS Normalized Difference Vegetation Index (NDVI) product, has been preliminarily evaluated, 
and showed good precision [25,38,39]. We made a simple comparison among “AODcom”, 

Figure 1. Topography and spatial distribution of PM2.5 monitoring stations (upper-right) and annual
mean “AODcom” maps (bottom-left for the Terra satellite and bottom-right for the Aqua satellite)
of the Beijing–Tianjin–Hebei (BTH) region. A histogram equalization contrast stretch was applied in
these maps.
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2.1.2. Satellite Data

The MODIS sensors aboard the EOS Terra and Aqua polar-orbiting satellites were launched
in 1999 and 2002, respectively (see: https://modis.gsfc.nasa.gov/about/), and they observe the
Earth at approximately 10:30 AM and 1:30 PM local time, with a broad swath of approximately
2330 km. The sensors possess a wide spectral range and high spatial coverage, and they make
near-daily measurements. These measurements yield multiple datasets of aerosol optical depth
for near-real-time monitoring, and a variety of other applications. The Collection 6 datasets have
been proven to substantially increase the precision of inversion algorithms and spatial coverage
compared to previous editions, and the Level 2 (L2) products provide all kinds of land aerosol
datasets distinguished by different retrieval algorithms and quality control parameters, such as
the “Optical_Depth_Land_And_Ocean” (“OD_LO”), “Image_Optical_Depth_Land_And_Ocean”
(“IOD_LO”), “AOD_550_Dark_Target_Deep_Blue_Combined” (“AODcom”), etc. (for more
information about MODIS L2 products, see: http://modis-atmos.gsfc.nasa.gov/MOD04_L2/).
The augmented “AODcom” aerosol parameter fully combines the deep blue algorithm (DB, used for
bright surfaces) with the dark target algorithm (DT, used for dark surfaces), apportioned by the
MODIS Normalized Difference Vegetation Index (NDVI) product, has been preliminarily evaluated,
and showed good precision [25,38,39]. We made a simple comparison among “AODcom”, “OD_LO”,
and “IOD_LO” products with monitoring site data over the whole study domain, and both the
linear correlation coefficients and the practicable amount of data pairs simultaneously indicated
that “AODcom” increased the data size without decreasing the AOD-PM2.5 correlation precision.
Therefore, MODIS L2 (MOD04 for Terra, MYD04 for Aqua) “AODcom” products were chosen as
the primary predictor datasets. Figure 1 shows the yearly mean MODIS AOD spatial distributions
for both Terra (bottom-left) and Aqua (bottom-right) satellites. We also calculated the relationship
between MODIS-derived “AODcom” products and in situ PM2.5 concentrations at the 79 sites in the
BTH region during our study period, yielding the determination coefficients of R2 = 0.28 and R2 = 0.35
for the Terra and Aqua satellites, respectively. Simultaneously, among most of the aerosol-related
variables in MODIS products, we tentatively performed feature selection based on the synthesized
measurements of variable importance in each model. Finally, the “Scattering Angle” (“S_A”) and
“Aerosol_Cloud_Fraction_Land” (“ACFL”) were chosen to adjust our models. The “day of year”
(“DOY”) was also used as a seasonal indicator, which is in agreement with previous studies [33,40].

2.1.3. Meteorological Data

The meteorological data used in this article were operational assimilation data products provided
by the Global Modeling and Assimilation Office (GMAO) systems, which provide a nested grid of the
China region at a native spatial resolution of 0.3125◦ longitude × 0.25◦ latitude × 72 hybrid vertical
layers and a temporal resolution of hourly or 3-hourly averaged intervals. The most recent version,
GEOS-5 FP, was produced in version 5.11.0 of the GEOS Atmospheric Data Assimilation System
(GEOS-5 ADAS, can be found at: ftp://rain.ucis.dal.ca). The relative parameters chosen and extracted
include the “planetary boundary layer height above surface” (“PBLH”, “m”), “temperature 2 m above
displacement height” (“T2M”, “K”), “sea-level pressure” (“SLP”, “hPa”), ”specific humidity at 2 m
above the displacement height” (“QV2M”, “kg kg−1”), ”eastward wind 10 m above displacement
height” (“U10M”, “m s−1”), and “northward wind 10 m above displacement height” (“V10M”,
“m s−1”). Vector synthesis was utilized to combine the last two variables to represent the wind speed.

2.2. Data Processing and Integration

In this study, the acquired PM2.5 site data were point data. Additionally, two different sources
of lattice data were allocated: the MODIS satellite datasets were obtained from NASA at 0.1◦ pixel
size daily in HDF format, and GEOS-5 FP meteorological fields were obtained from GMAO at a
spatial resolution of 0.25 × 0.3125◦, and hourly time records stored in NetCDF format. For the MODIS
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data, the satellite orbits vary slightly from day to day, and they have a repetition interval every 16th
day [41]; therefore, we corrected the geographic misalignment using a nearest-neighbor resampling
technique on each center-marked pixel. Beforehand, we clipped these two image datasets to confine
them to our study domain, and converted the stored integer data to a geophysical floating point values
during 2015. In the period of model fitting, we extracted the daily ground-based PM2.5 sampling sites
corresponding to the remote-sensed values within the pixel level approximately at satellite overpass
time. Meanwhile, the nearest-interpolation methods were utilized for GEOS datasets to match the
spatial resolution with the MODIS data, and the time-matching has a half-hour error. We integrated
eight predictive variables (including MODIS data, meteorological data, and “DOY”) with one response
variable (station-monitoring PM2.5 data), and the partial distributions of each variable were visualized
to preliminarily investigate the data distribution and outliers. A total of 2400 records for Terra and
2650 observations for Aqua remained to construct models separately after a large number of missing
values were removed and several data errors were eliminated. When performing the retrieval process,
the remotely sensed MODIS spatial and temporal resolutions and pixels coordinate values were
acquired as a benchmark, and interpolated meteorological datasets were employed to approximate
common spatial extent with the same pixel coordinates during the concerned acquisition time. Finally,
we resampled and projected the data to a 10 km grid using the ArcGIS 10.0 system (Esri, CA, USA,
https://www.esri.com/en-us/legal/copyright-trademarks) to obtain averaged-value maps.

2.3. Nonlinear Model Approach

2.3.1. Orthogonal Regression (OR)

Linear regression techniques based on ordinary least squares (OLS) are usually used in data
analysis, however, due to the strict assumptions of OLS or improper handling of the measurement
uncertainties, linear regression may cause unneglectable error [42,43]. Orthogonal regression (OR) can
make up for these deficiencies and improve the model reliability. OR treats the independent variables
and dependent variables symmetrically, and minimizes the sum of the squares of the perpendicular
distances from the system of points to the regressed line [36]. Confirming the degree of the polynomial
is essential. We used the “poly” function in the “stats” package to compute orthogonal polynomials
using the R software (https://www.R-project.org/).

2.3.2. Regression Tree (Rpart)

Regression tree refers to a variant of decision trees commonly used to explain and predict
continuous and dependent variables by approximating truth functions through binary recursive
partitioning [44]. The model follows an inverted tree structure, which begins with root nodes and
consists of internal nodes and leaf nodes, as well as edges. Leaf nodes correspond to divisions of
different predictions, and the partitions determined by reliable spitting rules are devoted to achieving
the minimum sum of square deviations in each internal node. The algorithm is usually processed by
iteratively allocating the training dataset into two sections or partitions until each node reaches the
terminal condition. Post-pruning is usually performed depending on the validation set, by determining
the number of decision nodes to minimize the cost complexity factor and the sum of outcome variance
in the case of overfitting. The Rpart method was performed in our experiments using the “rpart”
package in the R software (https://CRAN.R-project.org/package=rpart).

2.3.3. Random Forest (RF) Regression

Random forest is a powerful “ensemble learning” strategy that consists of many weak and
unpruned decision trees with superior performance proposed by Breiman, 2001 [45]. When used for
regression, it works by randomly selecting a fixed number of original features with replacements
(a particular bootstrap sample, typically the number of features divided by three) in each iteration to
generate a new sample set and guarantee the same expectation of each tree, then aggregating these
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inefficient models into an individual strong model. For each bootstrap sample, RF grows a regression
tree in the training data by picking the best split among an independent sample extraction. The RF
method also estimates the error rate for observations left out of the bootstrap samples, which is called
the out-of-bag (OOB) error. The “ntree” and “mtry” parameters are the two most significant tuning
parameters that need to be determined; the former is used to define the number of trees with amounts
that depend on the size and complexity of the training set, while the latter determines the number
of random features used for splitting each node of the decision tree. RF regression was implemented
using the R package “randomForest” (https://CRAN.R-project.org/package=randomForest).

2.3.4. Support Vector Machine (SVM)

SVM regression is based on statistical learning theory, which maps linearly inseparable
low-dimensional feature space points into linear-separable high-dimensional transform spaces with an
optimal plane. Loss functions are adopted to measure the empirical risk by minimizing the bound
of the generalization error [46–48]. The generalization ability of SVM prediction depends greatly
on the parameter selection, mainly including the following error penalty factors: cost (default: 1),
insensitive-loss function epsilon (default: 0.1), and radial basis function (RBF) kernel parameter gamma
(default: 1/(data dimension)). Kernel functions mainly include the linear, polynomial, and radial
basis, and the sigmoid function. The R package “e1071” is employed to construct SVM models
(https://CRAN.R-project.org/package=e1071).

2.3.5. Model Validation

Cross-validation was used to assess the statistical models and the model selection amongst
regression models in this study. K-fold cross-validation was implemented by randomly dividing the
data into k roughly equal subsamples; for each subsample, the k-1 parts were used for fitting the model
and computing its error in predicting the k-th subsample, and the individual k-th parts were retained
for verification [49]. In order to obtain a more stable model, k-fold cross validation is often required to
be carried out n times, which is called n-repeat k-fold cross validation.

We randomly partitioned our practicable datasets into two subsamples, 80% of which was used
for training (a training set, used for our model fitting) and 20% of which was retained for testing
(a testing set, used to independently judge the prediction performances of different models). During
the model optimization phase, training sets were implemented in the 10-repeat 5-fold cross-validation
(10 × 5 CV) procedure to compare the accuracies, and to generate validation datasets. The ultimate
models were developed by using training datasets and optimized parameters. In the end, validation
datasets were employed for comparison with reserved independent testing datasets for the purpose of
limiting potential model overfitting, and for more accurately comparing the performances among the
four regression models with consistent, uniform metrics.

2.4. Model Development

Considering the differences in potential calibration, mission lifespan, and transit time of the
Terra and Aqua sensors [50], we trained two sets of models with the same aforementioned variables
for both sensors in parallel, and the same training and testing data were employed to deal with
each regression model for both datasets, respectively; this allowed for the comparability of the
performances of the different models. All of the parameters mentioned in Section 2.1 were used.
The relevant optimization methods were applied in the four selected regression models to identify
the optimal tuning parameters. Additionally, the cross-validation performance provides the criterion
for model choice and parameter optimization. For the OR model, the optimal degree of variables
that were determined through cross-validation are as follows: {ACFL, S_A, PBLH, QV2M, Wind}
= 1; {AODcom, T2M and SLP} = 2; and {DOY} = 3. We also tested the significance of each term in
the model. To establish the decision tree, we weighed the complex parameters (CP) and X-error
and finally obtained no post-pruning. We optimized the “ntree” and “mtry” parameters in the RF

https://CRAN.R-project.org/package=randomForest
https://CRAN.R-project.org/package=e1071


Remote Sens. 2018, 10, 2006 7 of 17

algorithm, in which different combinations (“ntree” values from 500 to 3000 at intervals of 500 were
tested, and “mtry” values from 3 to 7 were tried) were implemented to evaluate the performance
judged by the “tuneRF” function. The optimum assembly was that in which the values of “ntree” and
“mtry” were 2000 and 6, respectively, for both the Terra and Aqua models. The utilized radial basis
functions were chosen as kernel functions to construct our SVR model, and the turning parameters that
were chosen include gamma = {1/(data dimension),0.25}, cost = {0.1,1,10}, and epsilon = 0.1. The best
combinations were selected by a cross-validation procedure, and the optimized parameters are gamma
= 0.25, cost = 10, and epsilon = 0.1.

3. Results

3.1. Model Evaluation and Selection

We focused on investigating the performance of the four different regression methodologies
mentioned above and choosing the optimal method, and the main comparable metric parameters,
including the Pearson correlation coefficient (R), root mean square error (RMSE), and bias were
directly used for each model, respectively. Each parameter covers the overall average (mean), standard
deviation (std), and range corresponding to the 10 × 5 CV. The validation dataset regression results
are shown in Table 1 (“CV_valid_T” represents the Terra satellite, and “CV_valid_A” represents the
Aqua satellite); we aimed to obtain the highest value of R and the lowest value of RMSE, with small
biases as a reference.

Table 1. The statistical results of the cross-validation (CV) validation set for Orthogonal Regression
(OR), Regression Tree (Rpart), Support Vector Machine (SVM) and Random Forest (RF) models.

Model Dataset
R RMSE Bias

Mean (std) Range Mean (std) Range Mean (std) Range

OR
CV_valid_T 0.68 (0.03) 0.64~0.73 49.14 (4.18) 45.22~50.96 0.63 (3.85) −8.54~9.15
CV_valid_A 0.74 (0.03) 0.73~0.76 40.47 (2.49) 36.92~42.48 −0.91 (3.52) −7.21~6.89

Rpart CV_valid_T 0.65 (0.04) 0.56~0.73 52.63 (3.92) 43.35~60.44 0.02 (3.90) −9.65~9.45
CV_valid_A 0.76 (0.04) 0.68~0.83 41.82 (2.38) 35.42~46.20 0.01 (3.52) −7.03~7.32

SVM
CV_valid_T 0.72 (0.03) 0.65~0.77 47.31 (3.66) 39.29~56.68 −2.79 (3.94) −12.59~6.23
CV_valid_A 0.78 (0.03) 0.69~0.84 39.96 (2.23) 36.34~44.59 −3.96 (3.49) −11.31~3.36

RF
CV_valid_T 0.77 (0.02) 0.70~0.82 43.51 (3.81) 34.07~53.11 0.37 (3.96) −9.32~9.88
CV_valid_A 0.85 (0.02) 0.77~0.88 33.90 (2.08) 29.50~38.32 0.21 (3.53) −6.88~7.55

It can be seen that Aqua models generally have an advantage over the Terra models in all four
regression methods. One possible reason for this result is that the Terra sensors are older than the
Aqua sensors, which were launched later. Measured PM2.5 concentrations are higher in the afternoon
than that in the morning due to human activity and environmental factors, which result in a relatively
greater loss of high PM2.5 concentrations in the Terra-based model. The determination coefficient for
the daily “AODcom” compared to PM2.5 for both sensors mentioned above (see Section 2.1.2) can also
be explained by the same reason. From the model perspective, RF has an apparent advantage over the
other three methods in nearly all comparison parameters. The R values range from 0.70 to 0.82 with a
mean value of 0.77 for the MOD (Terra) data, and from 0.77 to 0.88 with a mean of 0.85 for the MYD
(Aqua) data. The mean RMSE and bias are 43.51 and 0.37 for the Terra model, and 33.90 and 0.21 for
the Aqua model on CV validation sets, respectively. For the SVM ensemble method, the R and RMSE
of the 10 × 5 CV validation sets had mean values of 0.72 and 47.31 for the Terra model, and 0.78 and
39.96 for the Aqua model, respectively. Both of these results are clearly better than those of the OR and
Rpart regressions, and simple OR and Rpart perform nearly the same, demonstrating that ensemble
models are more promising.

Figure 2 shows a scatterplot of the in situ (x coordinate) and external test set (y-axis) PM2.5

concentration produced by different algorithms to allow the intuitive comparison of the model
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performance. PM2.5 concentrations higher than 400 µg/m3 are not plotted. It can be seen that
the performances of the independent test sets are comparable with those of the cross-validation sets
at both the sensor level and the model level. The statistical parameters are all confined within the
extent of the cross-validation set, and they are nearly the same as the mean values for the four models,
which suggests that our models are barely overfitting. From the slope and intercept, we conclude
that the four models all inevitably have the limitations of low-value overestimation and high-value
underestimation, and the intersection of the fitting line and the 1:1 line is located at about 60 µg/m3,
and machine learning models outperform OR and Rpart, although their improvements are not very
impressive. This finding suggests that machine learning algorithms would adequately reduce the
estimation error. Similar to the results of 10 × 5 CV, the performances of the RF method are also
better than those of the other three algorithms in the independent test set, and RF retrievals also show
comparatively un-scattered distributions in scatterplots versus the other retrievals.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 19 
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Figure 2. Scatterplots of observed and predicted concentrations of PM2.5 in test sets for all models.
The solid line shows the fitted models for observed and predicted PM2.5 concentrations. The dashed
line is the reference (y = x).

As evidenced by the model performances of different algorithms for both datasets, the RF method
seems to perform the best, and it improves the regression correlations and accuracy to some extent;
complementarily, the algorithm also has some advantages, such as being robust for high-dimensional
data training, more stable performance, and having a faster speed of prediction [45]. We have reason
to believe that the RF has competitive performance compared to the other three models, with even
some currently advanced models, and it could be used as an eligible predictive model for this specific
use. Thus, we choose the RF model to retrieve PM2.5 particulate distributions day-by-day for the
two datasets.

In order to explore the degree to which each independent variable acts on the dependent variable
during the RF modeling process, we obtained the importance of every characteristic in estimating
PM2.5 concentrations for the Terra and Aqua satellites (Figure 3, left). The importance of RF variables
can be reflected by the IncNodePurity index, which represents the increased node purity from splitting
on each predictor variable over all trees. A larger value of this index indicates a greater importance of
the corresponding variable [51]. As can be seen from Figure 3, “AOD” (referring to “AODcom”) is
the most important parameter, as it reflects the scattering and absorption of incoming radiation by
atmospheric aerosol particles, and is closely related to the concentration of particulates; thus, it has
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the greatest influence on the model. The “DOY” parameter mainly reflects the discharge amount
of pollution and its contribution changing for air pollution in different periods, and it shows high
importance. The “PBLH” and “T2m” parameters are also important factors, and they mainly affect the
vertical distribution and absorption difference of aerosol particles. The “ACFL” parameter represents
the cloud influence for aerosol pixels, while the “QV2M”, “Wind”, and “SLP” parameters mainly affect
the humidity, flow speed, and pressure of the atmosphere, which affect the transmission and diffusion
of pollutants. Comparatively speaking, the importances of these four variables are lower than those of
“AOD”, “DOY”, “PBLH”, and “T2M”. The importance values of “ACFL”, “QV2M”, and “Wind” are
quite different between the two datasets, being much larger for the Terra dataset than for the Aqua
dataset. The “S_A” parameter may not be an important variable for PM2.5 inversion.

We also analyzed the Pearson correlation coefficients between each independent variable and
PM2.5 concentration (Figure 3, right). The correlation coefficients of “AOD”, “PBLH”, and “ACFL” are
significantly higher than those of other variables. Except for “QV2M”, whose correlation coefficients
had opposite values between the Terra and Aqua data (negative for Terra, positive for Aqua),
the correlation coefficients of other variables were consistent for the two satellites. It is clear that the
correlation coefficients between the variables and PM2.5 mass have a certain relationship with the RF
variable importance; however, there is also too much of a difference. The main reason for this is that
the relationship between the variables and PM2.5 is not linear, and the two approaches have different
measurement mechanisms.
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3.2. Time Series of Satellite-Derived and Ground-Based PM2.5 Concentration Estimates

Based on the aforementioned satellite-derived PM2.5 datasets, we created time-series plots in
order to compare the ground-based PM2.5 measurements with the RF model predictions for the
corresponding grid cells across all available days at the selected individual sites for both datasets
(as shown in Figure 4). Three sites were randomly chosen to study the fitting variability and changing
trends (the site name and statistical parameters are included in the upper-right corner of each
sub-figure). The results corroborated that the RF models could estimate PM2.5 mass concentration
well for both MOD and MYD data (r = 0.93, 0.83, and 0.75 for MOD sites, and 0.93, 0.92, and 0.89 for
MYD sites), with the latter providing a higher site-specific correlation compared with site observations,
which is in accordance with the CV results of the precision of these two sensors. The maximal
peaks or minimal valleys matched well in most conditions, with discrepancies or opposite patterns
only being observed only on very few days. The main reasons for this is that our methods are
empirically-based statistical models, and the chemical and physical properties and transmission
mechanism of PM2.5 were thus incompletely considered; therefore, further investigations on variable
selection are necessary. Additionally, spatial heterogeneity and site-image matching problems are also
important influencing factors.

We also observed an apparent lack of PM2.5 retrieval values at these sites, and that only about 1/3
of the days are effective, with a substantial proportion being in agreement with most of the stations,
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which is mainly due to the inversion algorithms of MODIS-related aerosol parameters that throw out
ice- and snow-covered surfaces, mask cloud-covered unsuitable pixels, and exclude extreme values.
The Chinese National Ambient Air Quality Standard of PM2.5 concentration for Class 1 and Class
2 are ruled as: 24-h averages of 35 µg/m3 and 75 µg/m3; and annual averages of 15 µg/m3 and
35 µg/m3, respectively. These three values (15, 35, and 75 µg/m3) are represented in Figure 4 by the
horizontal dashed lines. The number of days at the three sites 1006A, 1016A, and 1036A when the
PM2.5 concentration was less than 35 µg/m3 account for 41.90%, 24.73%, and 28.26% for the Terra
data, and for 46.39%, 38.89%, and 44.94% for the Aqua data, respectively, while the days on which
the concentration exceeded 75 µg/m3 account for 32.38%, 38.71%, and 42.39% for Terra, and 30.93%,
28.89%, and 31.46% for Aqua, respectively. It can be seen that nearly 30–40% of the days at the chosen
sites far exceeded the 24-h averages of the Class 2 national standard threshold. Although the statistical
results are not complete, these results indicate the severity of PM2.5 pollution in our study domain to a
certain extent.Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 19 
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3.3. PM2.5 Concentration Prediction Maps and Descriptive Statistics

To further evaluate the prediction performance of our RF models in spatial distribution and
seasonal aspects for exposure risk estimation and other adhibitions, we generated 10 km2 grids based
on calculated daily PM2.5 concentration values, and the averaged PM2.5 concentrations were calculated
by combining the daily pixel-based retrieval values, including both the Aqua and Terra satellite
results for each season, as well as for the whole year. The prediction maps are shown in Figure 5.
Lee et al. [52] compared remote sensing inversion methods with kriging interpolation, and their
conclusion highlighted the feasible use of kriging, especially in the case of a dense distribution of
monitoring stations. Although we used different retrieval methods, this provides a referential approach
to validate our retrieval results to some extent. Thus, as a comparison, Figure 5 also presents the mean
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ground observations according to kriging interpolation results. For interpolation maps, we extracted
the corresponding MODIS transit time of hourly measured PM2.5 data consistent with the satellites’
normal flight; to reduce the MODIS-GEOS-sites matching error in temporal resolution, the spherical
model was employed. Figure 6 shows the variation of the statistical results for each averaged
satellite-derived image versus geostatistical kriging interpolation maps for more intuitive analysis.Remote Sens. 2018, 10, x FOR PEER REVIEW  13 of 19 
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Figure 6. Statistical results of derived (_sat) and interpolated (_krig) PM2.5 concentration maps.
The mean values are shown as red circles, and the median marks and the midpoint are shown by the
lines. The upper and lower quartiles (75th and 25th quantiles) represent 75% and 25% of the data,
respectively, and the upper and lower whiskers represent the locations of the minima and maxima.
Outliers are represented by black circles.

Here, we compare these two sources of maps. The spatial distribution of PM2.5 concentration in
both maps over the whole region (Figure 5) show high values distributed in the middle and south plain
area, while low values are spread over the northern mountainous region. The satellite-derived images
provide more rich details and capture more spatial variations; they have more consistent distributions
of the yearly averaged AOD images, and reproduce the terrain conditions well (compare this with
Figure 1). However, the interpolation results only produce geographically continuous and smooth
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PM2.5 concentration estimations over the region, and thus barely reflect the varied topographic features
and some other conditions, especially in the southwest mountainous and plateau regions; this embodies
the inherent weaknesses of the kriging method applied for PM2.5 concentration estimation when there
is a lack of nearby measurements.

The seasonal variations of PM2.5 levels in the study area are pronounced. From the box plot in
Figure 6, it can be seen that the average PM2.5 concentration during the winter is significantly higher
than that in other seasons in both the derived and interpolated maps, with PM2.5 concentrations
of 70.42 and 89.86 µg/m3, respectively. Wintertime heating by coal burning generates air pollution
emissions, and complicated climatic conditions are considered to be the main reason for the highest
pollution levels occurring during this season. The second-highest PM2.5 concentrations are observed
in spring, with mean values almost the same at 58 µg/m3 in the two maps. In the interpolation maps,
summer has the lowest pollution level of 48.36 µg/m3 and autumn has a value of 55.39 µg/m3. In the
retrieval maps, the trend is reversed, with the PM2.5 concentrations in summer and autumn being
50.13 and 44.73 µg/m3 (the lowest concentration of the four seasons), respectively. The annual mean
PM2.5 concentrations are 56.69 and 62.97 µg/m3 in the retrieval and interpolation maps, respectively.
Across the whole study area, the average PM2.5 concentration is relatively higher in the kriging maps
than that in the retrieval maps, and the differences between the concentration values of the inversion
and interpolation maps in spring, summer, autumn, winter, and the whole year are about −0.57,
1.77, −10.66, −19.44, and −6.28 µg/m3, respectively; that is, the average differences between the
comparison maps are far less for spring and summer than for autumn and winter. The marked
discrepancy in both maps, and the distinct underestimation in our average retrieval results in autumn
and winter may be attributed to the lack of PM2.5 retrievals and the rarity of AOD observations on
some days of heavy pollution. Another possibility is that the interpolation results are not the criterion,
since the distribution of the monitoring sites are uneven in this area, being predominantly concentrated
in the most polluted urban areas; thus, the kriging interpolation results may inevitably overestimate
relatively clean areas wherein estimation points are distant from monitoring sites, or where regional
ground observation data are lacking, especially during the most polluted seasons. From the box-plot
in Figure 6, it can be seen that the ranges of the lower and upper whiskers for the retrieval maps are all
relatively larger than those for the interpolation maps, and the outliers lie within the retrieval values.
These findings suggest that our retrieval models might better capture the extreme values within a
wide dynamic range. In winter, the box plot is comparatively tall, which reveals a remarkable spatial
variability of the PM2.5 concentration.

We also plotted the inversion maps for the Terra and Aqua satellites separately (data not
shown), and the seasonal variations were found to be nearly the same using combined statistics.
The retrieved average PM2.5 concentration observed by the Terra satellite sensors is higher than those
obtained from the Aqua satellite; the differences between the values obtained by the Terra and Aqua
maps for spring, summer, autumn, winter, and the whole year, are about 17.02, 6.80, 13.78, 16.12,
and 13.11 µg/m3, respectively.

4. Discussion

We compared the inversion results from the Terra and Aqua satellite sensors by individually
training models. The results suggest that when using the same dataset and common training and
testing methods, the RF model is consistently more effective than the other three algorithms, that is, OR,
regression trees, and SVM. From an algorithm perspective, the conventional parametric models would
be difficult to fit asymmetrical data, regression trees may lead to overfitting and need to be pruned to
obtain more inductive trees, and the SVM algorithm has a relatively poor generalization ability and
will also produce overfitting phenomenon [53]. For the RF technique, the need for few and insensitive
tuning parameters make it user friendly for parameter optimization. Additionally, the RF algorithm
is not prone to overfitting, even for higher characteristic dimensions [54,55]. The most essential
ingredients can be selected through RF variable importance functions to construct more concise,
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readily interpreted, comprehensive, and high-accuracy models. Both the satisfactory performance in
our model comparison and the advantages of RF prove it to be a promising method to provide more
effective and accurate results for PM2.5 inversion. For model comparison and validation, we divided
our data into training set, validation set, and testing set, and conducted the 10 × 5 CV procedure,
which provides a better model validation and reduces the random error.

Nevertheless, the disadvantages of this study should not be ignored. For one thing, the reported
mean PM2.5 spatial patterns cannot accurately reflect the seasonal variations in PM2.5 concentration and
are not representative of the corresponding seasons when compared to observed interpolation maps,
and they especially underestimate the concentrations in autumn and winter. This is mainly caused by
missing MODIS aerosol products. In November and December 2015, the BTH region and some other
northern cities experienced particularly bad haze pollution episodes; during this period, extremely
high AOD values in MODIS pixels were mistaken for clouds and therefore eliminated, which brought
about marked underestimations in the autumn and winter average PM2.5 concentration maps across
the whole BTH region. The standard MODIS inversion algorithm also masks snow-covered grid cells,
which may sharply decrease the available AOD samples in winter. The interpolation results used for
comparison also have large errors, since the spatial heterogeneity distribution of PM2.5 images are
unreasonable when expressed as a simple statistical average. All of these factors explain some of the
discrepancies between retrieved and observed PM2.5 concentrations. Furthermore, the satellites transit
only twice a day, and the time limitation in health-related air quality studies are obvious. We could
convert hourly PM2.5 concentrations monitored by the sites into 24-h averages, and other modeling
datasets are kept as they were, to explore the difference between 24-h mean values applied in air
quality and the approximately daily concentration retrieved in this study. The predictive power needs
to be further improved for exposure assessment and environmental application.

We compared our predictive results with those of several previous publications using advanced
multivariate, nonparametric machine learning algorithms, and by integrating ground observations,
satellite products, and meteorological datasets to predict PM2.5 concentrations. For example,
Gupta et al. [31] used the ANN on three years of MODIS AOD data and meteorological analysis
materials over the Southeastern United States to estimate PM2.5 mass concentration, and obtained
regression coefficients of 0.74 (hourly average) and 0.78 (daily mean). Additionally, Nguyen et al. [32]
investigated the performance of MLR and SVM techniques applied for PM1/2.5/10 prediction over a
period from August 2010 to July 2012 over Hanoi, Vietnam; the results showed that SVM outperforms
MLR and has a R and RMSE of 0.593 and 31.674, respectively in PM2.5 concentration predictions.
We obtained a higher correlation coefficient when using the SVM algorithm than those in the
aforementioned literature results, let alone when using RF. Meanwhile, all of our models have a
slightly higher RMSE than that of Nguyen’s results; the main reason for this is that the concentration is
very high in our study domain, while the relatively low meteorological data precision and insufficient
data size are also important reasons. Zheng et al. [56] predicted the annual average PM2.5 concentration
maps in three regions, including the BTH region, in 2013, and obtained a CV R2 value of 0.77. Our model
has a slightly lower precision, although it exhibited roughly similar spatial patterns compared with
previous studies for the BTH region. The small precision discrepancy could mainly be attributed to
the different choices of AOD products incorporated into the retrieval algorithm and quality assurance
(QA) (we utilized the “AODcom” products with a mixed QA of 2 or 3, and this study used the DT
AOD with a strict QA of 3).

Generally, our RF model has a promising prediction accuracy. It is possible to use higher-spatial-
resolution materials to retrieve finer spatial patterns of PM2.5 concentrations at regional and global
scales, such as the MODIS Collection 6 aerosol products, which provide AOD retrievals with a spatial
resolution of 3 km [57–59], and the multiangle implementation of the atmospheric correction algorithm
(MAIAC), which infers the AOD retrievals at a spatial resolution of 1 km [60]. This strategy may also
hold promise for multiyear applications, which could specifically provide further details regarding the
spatial variation, to assess the acute and chronic epidemiological effects of PM2.5 exposure, investigate
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the human exposure risk, and evaluate significant air quality events. The RF method can also be
established for PM2.5 pollution prediction based on long time-series.

In view of the abovementioned studies, the limitation of non-AOD retrieval days is the main
obstacle of PM2.5 concentration prediction in our study, particularly for heavy pollution conditions.
Thus, further studies might place emphasis on improving the AOD spatial coverage. In particular,
multiple-image data fusion is recommended as an effective method for improving the inversion
algorithm of AOD. Missing data filling methods such as RF imputation also need to be explored and
experimentally examined. Additionally, fusion algorithms combining remote sensing results with
ground observation interpolation records would be a valuable direction for future research to not
only improve the PM2.5 coverage for high-pollution days near the measurement stations but also to
improve the accuracy of inversion maps by uniting the advantages of both approaches.

5. Conclusions

In this study, we investigated the performance of OR, Rpart, SVM, and RF techniques
for estimating the surface concentrations of PM2.5 by aggregating MODIS aerosol products,
GEOS meteorological parameters, and ground-based observations. The same training and testing
datasets, as well as methods, were used for both the Terra and Aqua satellites in the BTH region for
the year 2015, separately, to make all models entirely comparable. The 10-repeat 5-fold CV validation
sets and the independent testing sets show that nonlinear and nonparametric methods are more
efficient than the simple linear regression, and the ensemble machine learning models (SVM and
RF) significantly improve the accuracy of PM2.5 inversion. Furthermore, the RF methodology we
introduced exhibited the best predictive results; combined with some valuable functions of the
algorithm itself, the RF algorithm was shown to have a great potential for estimating ground-truth
PM2.5 observations. Additionally, due to the slightly varied data qualities for the individual satellites
and daily distribution trend of PM2.5, the Aqua satellite gives a more satisfactory prediction accuracy
than the Terra satellite in all four models.

By applying the RF advanced machine learning algorithm, the retrieval of the daily PM2.5

concentration at the time of MODIS passing over the territory in 2015, the spatiotemporal analysis
compared with monitoring sites and kriging maps are performed simultaneously. The results show
that the RF models with considerable improvement in inferring PM2.5 concentration in space and time
can basically reflect the spatial distribution of PM2.5, and can be employed for human health studies
where ground stations are very sparse or even unavailable, when the remotely-sensed aerosol data are
not missing in great quantities.
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