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Abstract: Unmanned aerial vehicle (UAV)-based remote sensing (RS) possesses the significant
advantage of being able to efficiently collect images for precision agricultural applications. Although
numerous methods have been proposed to monitor crop nitrogen (N) status in recent decades,
just how to utilize an appropriate modeling algorithm to estimate crop leaf N content (LNC) remains
poorly understood, especially based on UAV multispectral imagery. A comparative assessment
of different modeling algorithms (i.e., simple and non-parametric modeling algorithms alongside
the physical model retrieval method) for winter wheat LNC estimation is presented in this study.
Experiments were conducted over two consecutive years and involved different winter wheat
varieties, N rates, and planting densities. A five-band multispectral camera (i.e., 490 nm, 550 nm,
671 nm, 700 nm, and 800 nm) was mounted on a UAV to acquire canopy images across five critical
growth stages. The results of this study showed that the best-performing vegetation index (VI)
was the modified renormalized difference VI (RDVI), which had a determination coefficient (R2)
of 0.73 and a root mean square error (RMSE) of 0.38. This method was also characterized by a
high processing speed (0.03 s) for model calibration and validation. Among the 13 non-parametric
modeling algorithms evaluated here, the random forest (RF) approach performed best, characterized
by R2 and RMSE values of 0.79 and 0.33, respectively. This method also had the advantage of full
optical spectrum utilization and enabled flexible, non-linear fitting with a fast processing speed (2.3 s).
Compared to the other two methods assessed here, the use of a look up table (LUT)-based radiative
transfer model (RTM) remained challenging with regard to LNC estimation because of low prediction
accuracy (i.e., an R2 value of 0.62 and an RMSE value of 0.46) and slow processing speed. The RF
approach is a fast and accurate technique for N estimation based on UAV multispectral imagery.
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1. Introduction

Nitrogen (N) is one of the most important nutrients required for plant growth and is therefore
critical for crop production. A deficiency in N significantly reduces crop photosynthetic yields while
the excessive use of fertilizers for this element leads to both resource waste and environmental
pollution [1,2]. Furthermore, leaf N content (LNC) at early growth stages (e.g., jointing and booting) is
a good indicator for N fertilizer application [3], and LNC at late growth stages (e.g., after heading) is
highly related to the final grain quality [4]. Quantification of LNC is therefore a prerequisite for the
production of high-yield and good-quality crops while causing minimal environmental impact.

Remote sensing (RS) has become an attractive technique in precision agricultural assessment as
it can be used to monitor crop growth status rapidly and nondestructively. The main RS platforms
currently in use include satellite, manned airborne, and ground-based approaches, which can all be
equipped with various kinds of sensors. Although satellite images can be used to monitor N status
across large areas [5,6], they cannot provide sufficient accuracy because of their low spatio-temporal
resolution. Even though manned airborne platforms are able to capture images at high spatio-temporal
resolution, this approach is limited by both high operational complexity and cost [7].

In contrast, ground-based RS platforms are able to attain high N status estimation monitoring
accuracy [8,9], but this approach remains inefficient when used over large areas, while unmanned
aerial vehicle (UAV)-based RS platforms provide a low-cost alternative for collecting RS data at high
spatio-temporal resolution [10,11]. This platform has been widely applied in precision agriculture
and has been utilized for LAI [12] as well as biomass estimations [10,13], but few studies to date
have discussed N status detection using this approach [14,15]. It therefore remains an open question
whether, or not, UAV images can be used to monitor N status.

A range of methods have so far been proposed that use spectral data to model N content, including
statistical and chemometric algorithms alongside physical models. The statistical method has been used
most commonly to monitor N content based on optical measurements from different platforms [8,16].
Empirical relationships between LNC and canopy optical properties have also been calibrated using
experimental datasets, an approach that has proven to be both efficient and accurate [8,9,17]. It is
also the case, however, that retrieval algorithms based on vegetation indices (VIs) tend to exhibit
poor model portability because they are easily influenced by band configuration, index formulation,
and fitting function [18]. Besides, most VIs are easily saturated at high N content levels [8,19].

An additional set of techniques that have been commonly applied to identify variables for N
modeling comprise non-parametric algorithms, including partial least square regression (PLSR),
artificial neural networks (ANNs), random forest (RF), and support vector machines (SVMs) [3,20,21].
These approaches make full use of all spectral data and avoid multicollinearity that is inherent to
multiple linear regressions [20]. As these methods have also been shown to be very efficient for
processing nonlinear data, it is likely that they are also able to deal with high-dimensional data [21]
although performance remains an issue [22,23]. In the earlier study, Verrelst et al. [23] investigated
the efficiency of four machine learning regression algorithms at estimating leaf chlorophyll content
(LCC), LAI, and fractional vegetation cover (FVC), specifically neural networks (NN), support vector
regression (SVR), kernel ridge regression (KRR), and Gaussian processes regression (GPR). As the
results of this study showed that the latter was more efficient compared to the other three [23],
it will also be worthwhile to investigate the performance of different non-parametric algorithms for
LNC estimation.

It remains challenging to quantify LNC differences based on small-plot experiments using several
cultivars as well as N application levels and planting densities. As differences in N content under
experimental conditions are generally limited, established models might be unstable in practical
applications. It is also the case that a significant component of variations in canopy optical properties
are also due to changes in sun zenith angles, canopy structures, and background. As these differences
significantly affect the relationships between spectral parameters and N content, a model based
on physical parameters should enable us to clearly explain these potentially confounding factors.
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Although a PROSAIL radiative transfer model (RTM) [24] used in combination with hyperspectral
reflectance has been shown to provide an effective method for estimating crop LAI [25,26] and LCC [27],
it remains unclear how this approach can be utilized to offer enough LNC estimation accuracy with
UAV multispectral imagery.

The different modeling algorithms discussed above were studied here using a range of species and
sites. One key aim of this research was to comprehensively compare these approaches and determine
the optimal retrieval method for a particular objective, especially when using UAV images. A range of
questions remains to be addressed, including which VI is optimal for wheat LNC estimation? Which
non-parametric algorithm provides the best estimates? How well do physical models perform for LNC
retrieval when based on UAV multispectral images? Additionally, which is the best approach when
all three modeling algorithms are compared in terms of processing efficiency, model simplification,
and estimation accuracy? The objective of this study was therefore to evaluate the performance of these
three different retrieval methods for winter wheat LNC estimation using UAV multispectral imagery.

2. Materials and Methods

2.1. Experimental Design

Three field experiments were conducted over two growing seasons (2013–2014 and 2014–2015) in
Rugao City (120◦45′E, 32◦16′N) within Jiangsu Province in eastern China. The predominant soil type
is loam and the soil organic matter was 18.9–24.6 g/kg, available N was 140.56–150.41 mg/kg, total
nitrogen was 1.87–2.07 g/kg, available phosphorus was 50.12–57.84 mg/kg, and available potassium
was 90.32–96.76 mg/kg. These experiments involved different N rates, planting densities, and wheat
cultivars, and comprised a randomized complete block design with three replicates, thus there were
36, 30, and 36 treatments for Exp. 1, Exp. 2, and Exp. 3, respectively. A mixture of 120 kg/ha P2O5

and 120 kg/ha K2O was applied to all treatments prior to seeding. Crop management followed local
standard practices for wheat production; additional details regarding these three experiments are
provided in Table 1.

Table 1. Details of the three field experiments.

Experiment Year Cultivar N Rate
(kg/ha)

Planting
Density

(plants/ha)
Sampling Date Growth Stage N

Exp. 1 2013–2014 Yangmai 18
Shengxuan 6 0, 100, 300 1.5 × 106

3.0 × 106

14 March
9/15/23 April

6 May

Jointing, Booting,
Heading,

Anthesis, Filling
159

Exp. 2 2013–2014 Xumai 30
Ningmai 13

0, 75, 150,
225, 300 2.4 × 106

14 March
9/15/23 April

6 May

Jointing, Booting,
Heading,

Anthesis, Filling
135

Exp. 3 2014–2015 Yangmai 18
Shengxuan 6 0, 100, 300 1.5 × 106

2.4 × 106

26 March
8/17/25 April

6 May

Jointing, Booting,
Heading,

Anthesis, Filling
164

2.2. Data Collection

2.2.1. UAV System and Image Acquisition

An eight-rotor MK-Oktokopter UAV (Mikrokopter Inc., Moormerland, Germany) was used to
carry a six-channel multispectral Tetracam mini-MCA6 camera (Tetracam Inc., Chatsworth, CA, USA)
to collect images in this study (Figure 1). The specific parameters of this UAV and camera are shown
in Table 2. This multispectral camera was equipped with five spectral channels (i.e., 490 nm, 550 nm,
671 nm, 700 nm, and 800 nm) with a 10 nm bandwidth, and had an incident light sensor (ILS). All UAV
campaigns were undertaken in stable ambient light conditions (between 11:00 and 13:30) at five critical
growth stages (Table 1). The UAV was flown at a height of 150 m, and images were collected with



Remote Sens. 2018, 10, 2026 4 of 16

spatial resolution of 8.125 cm. After each flight, only one image with high quality was selected for
image analysis due to the small study area (50 m × 35 m).
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Figure 1. The UAV equipped with multispectral camera used in this study.

Table 2. Specifications of UAV and Mini-MCA multispectral camera.

UAV Camera

Weight (g) 2050 Weight (g) 700
Battery weight (g) 520 Geometric resolution (pixel) 1280 × 1024

Maximum payload (g) 2500 Radiometric resolution (bit) 10
Flight duration (min) 8–41 Speed (frame/s) 1.3

Radius (m) 1000 Focal length (mm) 9.6

2.2.2. Ground Sampling

A total of 30 wheat plant samples were randomly collected from each plot subsequent to each
UAV campaign in order to determine LNC values (%). All the green leaves from each sample were
separated from stems, oven-dried at 80 ◦C to a constant weight, and then weighed. Dried leaf samples
were ground to pass through a 1 mm screen and stored in plastic bags for subsequent chemical analysis.
Total leaf N concentration was determined using the micro-Kjeldahl method. Leaf chlorophyll content
(Cab) was measured using a soil and plant analyzer development (SPAD) 502 (Minolta Camera Co.,
Osaka, Japan) with sub-samples (five plants) randomly selected and the first, second, and third fully
expanded leaves chosen from three layers encompassing the base, middle, and top parts of wheat
leaves. Averaged SPAD readings were taken as sample values in each case. Absolute leaf chlorophyll
content (LCC) was then obtained using an equation that expresses the relationship between SPAD
readings and LCC values [28].

2.3. Image Processing

The pre-processing UAV image workflows used in this analysis followed those proposed
by [12,29], and included noise reduction, veginetting, and lens distortion correction as well as band
registration and radiometric calibration. Thirty ground control points (GCPs) were evenly distributed
in the experimental area, and the geographic coordinates were determined by X900 GNSS (Huace
Inc., Beijing, China). The GCPs were used for band registration and georeferencecing processed
in the ENVI/IDL environment (Exelis Visual Information Solutions, Boulder, CO, USA). After that,
radiometric calibration was conducted by the empirical line method [30] with four standard calibration
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canvas with different reflectance values (3%, 22%, 48%, and 82%). Reflectance was then extracted from
each radiometrically corrected image using a region of interest (ROI) from each plot.

2.4. Retrieval Techniques

2.4.1. Parametric Modeling Algorithms

The parametric modeling algorithm used in this analysis was based on VI calculated with
reflectance from UAV multispectral images. Thus, 19 kinds of VI formulations, including two-band,
three-band, and four-band indices, encompassing all possible combinations were used to develop
correlations versus wheat LNC (Table 3). Linear regression between LNC and all VIs was utilized to
eliminate the impact of functions as opposed to band selection and index formulation.

Table 3. Commonly used vegetation indices.

Index Formula Reference

Two-band
Ratio VI (RVI) Rλ1/Rλ2 [31]
Difference VI (DVI) Rλ1 − Rλ2 [31]
NDVI (Rλ1 − Rλ2)/(Rλ1 + Rλ2) [32]
Renormalized difference VI (RDVI) (Rλ1 − Rλ2)/(Rλ1 + Rλ2)0.5 [33]
Soil adjusted VI (SAVI) 1.5(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.5) [34]
Optimized soil adjusted VI (OSAVI) (1 + 0.16)(Rλ1 − Rλ2)/(Rλ1 + Rλ2 + 0.16) [35]
Optimized VI (VIopt) (1 + 0.45)(Rλ1

2 + 1)/(Rλ2 + 0.45) [36]
Modified sample ratio (MSR) ((Rλ1/Rλ2) − 1)/(SQRT((Rλ1/Rλ2) + 1)) [37]

Three-band
Enhanced VI (EVI) 2.5(Rλ1 − Rλ2)/(Rλ1 + 6Rλ2 − 7.5Rλ3 + 1) [38]
Modified normalized difference (mND) (Rλ1 − Rλ2)/(Rλ1 + Rλ2 − 2Rλ3) [39]
Modified sample ratio (mSR) (Rλ1 − Rλ2)/(Rλ3 − Rλ2) [39]
Modified chlorophyll absorption in RI (MCARI) (Rλ1 − Rλ2 − 0.2(Rλ1 − Rλ3))(Rλ1/Rλ2) [40]
Transformed chlorophyll absorption in RI (TCARI) 3((Rλ1 − Rλ2) − 0.2(Rλ1 − Rλ3)(Rλ1/Rλ2)) [41]
Three-band index 1 (TBI1) (Rλ1 − Rλ2 − Rλ3)/(Rλ1 + Rλ2 + Rλ3) [42]
Three-band index 2 (TBI2) (Rλ1 − Rλ2 + 2Rλ3)/(Rλ1 + Rλ2 − 2Rλ3) [17]

Four-band
Vogelmann index (VOG) (Rλ1 − Rλ2)/(Rλ3 + Rλ4) [43]
MERIS terrestrial chlorophyll index (MTCI) (Rλ1 − Rλ2)/(Rλ3 − Rλ4) [44]
TCARI/OSAVI TCARI/OSAVI [41]
MCARI/OSAVI MCARI/OSAVI [40]

Rλ1, Rλ2, Rλ3, and Rλ4 denote the reflectance of spectral bands randomly selected from 490 nm, 550 nm, 671 nm,
700 nm, and 800 nm.

2.4.2. Non-Parametric Modeling Algorithms

The SimpleR toolbox [45] was used in this study to implement 13 non-parametric modeling
algorithms and to develop models. A comprehensive description of these algorithms was presented
in [46]. These non-parametric approaches can be further subdivided into linear and non-linear
regressions; of these, three fall into the former category-least-squares linear regression (LSLR),
principal component regression (PCR), and partial least-squares regression (PLSR)-while 10 fall into
the latter-artificial neutral networks (ANN), decision trees (DT), regression trees (RT), bagging trees
(BaT), and boosting trees (BoT) as well as random forest (RF), relevance vector machine (RVM), kernel
ridge (KRR), and Gaussian processes regressions (GPR) alongside variational heteroscedastic GPR
(VH-GPR) and extreme learning machines (ELM).

2.4.3. Physical Based Modeling

The widely used PROSAIL radiative transfer model comprises a combination of the SAIL canopy
reflectance and PROSPECT leaf optical properties models. The combined approach was utilized here
to retrieve canopy parameter data and was generated via both the latter two methods, PROSPECT-5
and 4SAIL. A look-up-table (LUT) was then applied; these efficient inversion algorithms are commonly
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used for agronomic parameter retrieval [46,47]. The imposed boundaries and distributions of PROSAIL
input variables used in this study are summarized in Table 4; these values were obtained from field
measurements and other studies that have utilized the same crops [47,48]. Thus, uniform distributions
of LCC and normally distributed LAI were sampled 100 times, uniform carotenoid distributions were
sampled 50 times, and all other variables were held constant. A resultant LUT dataset comprising
500,000 parameter combinations was chosen for this analysis; a total of 22 cost functions, including the
insertion of up to 50% Gaussian noise into simulated data and multiple best solutions, were considered
to optimize the LUT inversion strategy to address radiative transfer model issues [49]. After LCC was
retrieved from the PROSAIL model, LNC was indirectly obtained on the empirically linear relationship
between LCC and LNC.

Table 4. PROSAIL model input parameters.

Parameters Units Range Distribution

Leaf: PROSPECT-5
Leaf structure index (N) Unitless 1.2–1.8 Gaussian
Leaf chlorophyll content (LCC) [µg/cm2] 25–75 Gaussian
Leaf dry matter content (Cm) [g/cm2] 0.013
Leaf water content (Cw) [cm] 0.018

Canopy: 4SAIL
Leaf area index (LAI) [m2/m2] 0–7 Gaussian
Soil scaling factor (αsoil) Unitless 0.3
Average leaf angle (ALA) [◦] 60
Hotspot parameter (HotS) [m/m] 0.2
Diffuse incoming solar radiation (skyl) [%] 10
Sun zenith angle (θs) [◦] 25
View zenith angle (θv) [◦] 0
Sun-sensor azimuth angle (Φ) [◦] 0

2.5. Model Calibration and Validation

Table 5 lists the calibration and validation of models on different methods. Data collected
from all experiments were pooled to examine the relationship between VIs and LNC with linear
regression, and then the optimal bands’ configurations were determined. Both the LNC-VI model and
non-parametric model were calibrated and validated with a k-fold (k = 10) cross-validation procedure.
The whole dataset was randomly divided into 10 equal-sized sub-datasets. Nine sub-datasets were
used as the calibration (training) dataset and the rest was used as the validation (test) dataset, then this
procedure was repeated 10 times [48]. For the physical-based modeling method, predicted LNC
values, after being retrieved from the empirical model, were compared with the field measured
values. The predictive capability of those models with different methods was then assessed using the
determination coefficient (R2) and root mean square error (RMSE). All the above procedures were
implemented using MATLAB 2014a (The MathWorks Inc., Natick, MA, USA).

Table 5. Calibration and validation of the models on different methods.

Method Calibration Validation

Parametric 10-fold cross validation, nine sub-datasets used for calibration (training), the rest for
validation (test), repeated 10 timesNon-parametric

Physical-based model

LCC retrieved from PROSAIL, LNC
obtained through the empirically linear

model between LCC and LNC with
measured data

All retrieved LNC values compared
with measured LNC values
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3. Results

3.1. Optimal VI Determination

Relationships between LNC and 19 different formulas with random bands were established, and
the best-performing VIs in each case are listed in Table 6. Results show that both RDVI and SAVI
performed equally well in the case of two-band indices (R2 = 0.73 and RMSE = 0.38, respectively),
outperforming other examples. In addition, optimal VI values for each formulation comprising two
bands were constructed with a red edge (720 nm) and a near infrared band (800 nm); results show that
EVI was superior to others in terms of LNC estimation in the case of three-band indices yielding an R2

and RMSE of 0.73 and 0.38, respectively. Data show that all four-band indices exhibited similar LNC
estimation efficiency even when encompassing different band combinations, but performed worse than
optimal two-band and three-band VI variations. It is also clear that formulation type exerts a significant
influence on VI performance even when the same bands are employed. In addition, this modeling
method is characterized with an extremely fast speed (within 0.05 s) under the MATLAB. From the
scatter plots shown in Figure 2, the saturation at high LNC values still exists despite a relatively high
R2, resulting in low estimation accuracy at high values.

Table 6. Cross-validation statistics and processing speed for the best-performing vegetation index (VI)
under each formulation.

VI Optimal Bands R2 RMSE
(%)

Processing
Speed (s)

Two-band

RVI λ1: 700; λ2: 800 0.49 0.52 0.029
DVI λ1: 800; λ2: 700 0.67 0.41 0.029

NDVI λ1: 800; λ2: 700 0.49 0.52 0.046
RDVI λ1: 800; λ2: 700 0.73 0.38 0.029
SAVI λ1: 800; λ2: 700 0.73 0.38 0.030

OSAVI λ1: 800; λ2: 671 0.70 0.40 0.029
VIopt λ1: 800; λ2: 671 0.69 0.40 0.029
MSR λ1: 700; λ2: 800 0.48 0.52 0.028

Three-band

EVI λ1: 800; λ2: 700; λ3: 490 0.73 0.38 0.031
mND λ1: 800; λ2: 700; λ3: 490 0.69 0.40 0.029
mSR λ1: 700; λ2: 490; λ3: 800 0.68 0.41 0.026

MCARI λ1: 550; λ2: 700; λ3: 800 0.69 0.41 0.029
TCARI λ1: 550; λ2: 700; λ3: 800 0.68 0.41 0.028

TBI1 λ1: 671; λ2: 700; λ3: 550 0.56 0.48 0.028
TBI2 λ1: 800; λ2: 490; λ3: 671 0.55 0.49 0.028

Four-band

VOG λ1: 490; λ2: 700; λ3: 800; λ4: 671 0.70 0.40 0.027
MTCI λ1: 671; λ2: 800; λ3: 700; λ4: 490 0.69 0.40 0.027

TCARI/OSAVI λ1: 550; λ2: 700; λ3: 800; λ4: 490 0.66 0.42 0.028
MCARI/OSAVI λ1: 550; λ2: 700; λ3: 800; λ4: 490 0.66 0.42 0.028

The row in bold type denotes the best-performing VI.
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3.2. Optimal Non-Parametric Modeling Algorithm Determination

A total of 13 non-parametric modeling algorithms were utilized in this study to estimate wheat
LNC (Table 7); data show that all outperformed optimal VI, with the exception of RT. Indeed,
the best-performing regression method was RF, which yielded an R2 of 0.79 and an RMSE of 0.33
and had a fast processing speed of 2.28 s. In addition, we found that the majority of nonlinear
non-parametric modeling algorithms were superior to their linear counterparts. Albeit yielding
accurate estimates, RVM, ELM, VH-GPR, and NN approaches all proceeded very slowly. In contrast,
the linear non-parametric regression models of LSLR, PCR, and PLSR were all extremely fast, more
rapid even than their parametric counterparts.

The data presented in Figure 3a comprise scatter plots of measured LNC values versus estimated
ones derived from the optimal non-parametric RF algorithm. In this case, estimated values at the high
level turned out to be closer to the 1:1 line than those generated from RDVI. Thus, after measuring the
importance of predictor variables using the mean squared error (MSE) [50], it is clear that these values
for NIR (800 nm) bands were the largest among the five, followed by the red (671 nm) band (Figure 3b).
The red (671 nm) and NIR (800 nm) bands are therefore more important for LNC estimation than any
of their counterparts.

Table 7. Performance of different non-parametric modeling algorithms in LNC estimation ranked
according to RMSE values.

Non-Parametric Algorithm R2 RMSE (%) Processing Speed (s)

Random Forest (RF) 0.79 0.33 2.284
Bagging Trees (BaT) 0.78 0.34 2.700

Kernel Ridge Regression (KRR) 0.78 0.35 1.934
Neural Network (NN) 0.77 0.35 10.406

VH Gaussian Process Regression (VH-GPR) 0.77 0.35 17.059
Gaussian Process Regression (GPR) 0.77 0.35 4.265
Extreme Learning Machine (ELM) 0.76 0.36 20.068

Least-Squares Linear Regression (LSLR) 0.75 0.36 0.007
Boosting Trees (BoT) 0.75 0.37 2.301

Relevance Vector Machine (RVM) 0.75 0.37 268.473
Partial Least-Squares Regression (PLSR) 0.74 0.37 0.016
Principal Component Regression (PCR) 0.73 0.38 0.009

Regression Trees (RT) 0.69 0.40 0.616
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3.3. Performance of LUT-Based PROSAIL Inversion Performance

The data presented in Table 8 illustrate the performance of the LUT-based PROSAIL model with
different cost functions, noise proportions, and multiple solutions. In this case, however, as LNC
could not be retrieved directly from the PROSAIL model, LCC was initially estimated. The optimal
inversion strategy for LCC retrieval used in this study was K(x) = log(x)2 with R2 and RMSE values of
0.81 and 7.05, respectively. LNC was then indirectly estimated subsequent to LCC inversion via the
relationship between LCC and LNC (Figure 4a). The PROSAIL model performance in LNC inversion
was not particularly satisfactory with an R2 value of 0.62 (Figure 4b); thus, compared to both VIs
and non-parameter modeling methods, the LUT-based PROSAIL approach actually performed worse
although the processing speed in this case was comparable with those of non-linear non-parametric
regression algorithms.

Table 8. Performance of different regularization strategies used in the PROSAIL model ranked
according to RMSE values.

Cost Function Noise
(%)

Multiple
Solutions (%) R2 RMSE

(µg/cm2)
Processing
Speed (s)

K(x) = log(x)2 29 9 0.81 7.05 2.04
K(x) = x(log(x)) − x 41 41.5 0.75 8.24 1.85
Neyman chi-square 37 10.5 0.74 8.74 1.86

W Kagan 37 10.5 0.74 8.74 1.85
Kullback-Leibler 45 11.5 0.81 8.98 1.92

Jeffreys-Kullback-Leibler 45 19.5 0.80 9.17 1.76
Bhattacharyya divergence 45 19.5 0.81 9.26 2.03

Pearson chi-square 50 43 0.78 9.33 1.85
L-divergence Lin 47 20.5 0.81 9.35 2.16
Shannon (1948) 47 20.5 0.81 9.35 1.98

Shannon entropy 50 21.5 0.81 9.45 1.82
Harmonique toussaint 50 21 0.81 9.50 1.85

K-divergence Lin 50 30.5 0.80 9.54 1.96
Negative exponential disparity 48 20.5 0.79 9.65 1.92

Exponential 50 48 0.59 11.84 1.98
Normal distribution-LSE 50 50 0.47 13.10 1.74

Geman and McClure 50 50 0.46 13.16 1.79
K(x) = −log(x) + x 39 50 0.79 13.19 1.98

Least absolute error 50 50 0.34 15.16 1.75
K(x) = log(x) + 1/x 50 50 0.07 17.61 1.96
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3.4. Effects of Growth Stage, Cultivar, and Cultivation Factors on Estimation Accuracy

The data presented in Table 9 summarize the effects of growth stage, cultivar, planting density,
and year on the estimation accuracy of different methods. These records show that for different growth
stages, both RDVI and LUT-based methods performed better in the middle of the season (i.e., booting,
heading, and anthesis) compared to either early (i.e., jointing) or late (filling) stages. An RF approach
was able to obtain accurate estimates from jointing to anthesis stages alongside lower ones at the
filling stage.

The results of this study reveal varied RDVI performance depending on the wheat cultivar;
the most accurate estimates were recovered for Ningmai 13 (RRMSE = 10.4%) while the worst were
seen for Shenxuan 6 (RRMSE = 14.0%). The RF approach also generated satisfactory and stable values
for different cultivars with RRMSE ranging between 10.7% and 12.0%, while the LUT-based retrieval
method also performed equally in all cases.

As planting density increased, LNC estimation accuracy gradually decreased based on RDVI and
the best performance was obtained at the lowest density. At the same time, the LUT-based retrieval
method yielded highest accuracies at the lowest density while the RF approach led to comparable
performance at different planting densities. All three methods performed better for 2014 than for 2015.
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Table 9. Relative RMSE (RRMSE, %) values for different wheat LNC estimation methods under
different conditions.

Sub-Group Treatment
Different Modeling Algorithms

RDVI RF LUT

Growth stage

Jointing 16.0 11.4 16.53
Booting 8.8 8.8 12.60
Heading 10.0 9.9 12.80
Anthesis 11.7 11.7 14.03

Filling 17.9 16.2 22.92

Variety

Yangmai 18 13.1 11.3 16.34
Shengxuan 6 14.0 12.0 16.43

Xumai 30 13.4 11.9 16.51
Ningmai 13 10.4 10.7 15.41

Plant density
1.5 × 106 plants/ha 12.1 12.1 13.41
2.4 × 106 plants/ha 12.4 11.7 16.30
3 × 106 plants/ha 14.4 11.1 16.34

Year
2014 12.0 11.2 0.14
2015 14.6 12.2 0.18

4. Discussion

Although ground-based spectral data and satellite images have been widely utilized to monitor
the N status of crops [9,16,51], few studies to date have assessed the capabilities of UAV platforms.
We evaluated the performance of UAV images using different modeling algorithms and demonstrate
that this approach provides a reliable technique for winter wheat leaf N content estimation.

The results of this analysis show that in terms of parametric approaches, use of an RDVI
modified with NIR and red edge bands provides optimal VI values for LNC estimation (i.e., R2

= 0.73; RMSE = 0.38); this result is in close agreement with the previous findings of Inoue et al. [20]
and Yao et al. [52], who noted that a combination of NIR and red edge bands provides an efficient
approach for N status monitoring. The RDVI is also advantageous because it optimizes the vegetation
signal and therefore has an improved degree of sensitivity in high-biomass regions; this approach is
able to enhance vegetation monitoring via decoupling of the canopy background signal and reducing
atmospheric influence [38].

However, even though results of sufficient accuracy were obtained in this analysis using a simple
model, a number of drawbacks remain, including the fact that this approach becomes saturated at
high N rates and canopy densities; it is easily affected by the growth stage, and information is lost at
other spectral bands. Indeed, the RDVI performed poorly at both jointing and filling stages (Table 8),
a result that might be explained by the fact that the canopy was mixed with soil background during
the early stage and then panicles later in development. Furthermore, the accuracy of estimation
decreased from the booting to filling stage, which might be due to the differences of the leaf biomass
at varied stages [53]. The use of the VI incorporating more bands was also unable to generate higher
accuracy than a two-band approach; furthermore, different formulas with the same bands performed
significantly in LNC estimation, which indicated that both band configuration and VI formulation
played an important role in LNC estimation. It is also crucial to consider the applicability of VI-LNC
models as the performance of these approaches often depends on the ecological site, crop type,
and growth stage [54]. The RDVI-LNC model should therefore be tested using additional datasets so
as to extend its capability in the future.

It is well known that vegetation canopy spectral signatures are dominated by numerous
biophysical and biochemical variables [55,56]. Thus, compared with parametric methods,
most non-parametric algorithms tend to perform better because this regression family makes full
use of all spectral information and so are able to better handle confounding factors when compared
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to VI values [20,22]. Although linear non-parametric algorithms performed lightly worse than their
nonlinear counterparts in this analysis, these approaches possessed an extremely fast processing speed;
this attribute indicates that these methods comprise a promising technique that can be integrated into
crop monitoring systems.

Previous studies have also shown that linear non-parametric algorithms, such as PLSR, are able
to generate satisfactory estimates for crop biomass [3] as well as N [20] and chlorophyll content [22].
The results of this study show that amongst non-parametric algorithms, the RF approach was both
the most accurate and stable method under different conditions because RF provides a nonlinear
regression with LNC and has the advantage of dealing with a large dataset with high speed and
efficiency [50,57]. Furthermore, RF also has the ability to rank the importance of variables [50,57].
We therefore recommend that the RF approach would be a reliable technique for crop N estimation,
even though many software packages do not yet include this algorithm.

The LUT-based retrieval method used in this study had the lowest LNC estimation accuracy of
the three approaches tried, in contrast to previous research results [27,58]. Indeed, as some variables
(e.g., LAI and chlorophyll content) could be retrieved directly from the PROSAIL model while LNC
was generated indirectly from the empirical relationship between LNC and LCC [59,60], estimation
accuracy was influenced by retrieval equation accuracy. We also note that the LUT-based retrieval
method has a number of drawbacks, including the need for too many input parameters, large data size,
and long processing times, and the fact that only parameters inherent to the model can be retrieved.
However, a physical model has the advantage of offering uncertainty estimates, which provide
information on model transplantation possibilities.

Although previous studies have attempted to employ UAV-based images to monitor crop N
status [14,15], the datasets used was small and so estimation accuracy was unsatisfactory. In contrast,
the results of this study show that the RDVI generated higher estimates while the non-parametric
RF regression method led to a higher degree of accuracy under different conditions. These results
suggest that UAV-based multispectral images provide a promising approach that can be applied to
crop N status monitoring. However, even though a high predictive accuracy was obtained in this
study, the established LNC model will still need to be tested with data from other ecological sites and
crop types as the variables used here came from just one site. We also show that the PROSAIL model
is not suitable for LNC retrieval because of its low predictive accuracy unless the relationship between
this variable and LNC can be made more robust.

5. Conclusions

A range of modeling algorithms (i.e., parametric, non-parametric, and physical retrieval) were
employed in this study to estimate winter wheat LNC using UAV-based multispectral images.
Estimation models were then cross-validated with datasets from different growing seasons, including
different stages, cultivars, N rates, and planting densities. In terms of parametric regressions, modified
RDVI with a red edge and NIR bands turned out to comprise the best-performing index with the most
accurate cross-validated result (i.e., R2 = 0.73, RMSE = 0.38). This method was also characterized by an
extremely high processing speed and a saturation effect at high LNC levels. In terms of non-parametric
regression approaches, we showed that the RF method comprised the best-performing algorithm
(i.e., R2 = 0.79, RMSE = 0.33), also with a fast processing speed. The use of a physical retrieval
method remains challenging for LNC estimations because of undeterminable input variables and low
prediction accuracies.
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Abbreviations

UAV unmanned aerial vehicle
RS remote sensing
LNC leaf nitrogen content
LAI leaf area index
LCC leaf chlorophyll content
SPAD soil and plant analyzer development
RVI ratio vegetation index
DVI difference vegetation index
NDVI normalized difference vegetation index
RDVI renormalized difference vegetation index
SAVI soil adjusted vegetation index
OSAVI optimized soil adjusted vegetation index
VIopt optimized vegetation index
MSR modified sample ratio
EVI enhanced vegetation index
MCARI modified chlorophyll absorption in reflectance index
TCARI transformed chlorophyll absorption in reflectance index
TBI three-band index
VOG Vogelmann index
MTCI MERIS terrestrial chlorophyll index
LSLR least-squares linear
PCR principal component
PLSR partial least-squares regression
ANN artificial neutral networks
DT decision trees
RT regression trees
BaT bagging trees
BoT boosting trees
RF random forest
RVM relevance vector machine
KRR kernel ridge
GPR Gaussian processes regressions
VH-GPR variational heteroscedastic GPR
ELM extreme learning machines
RTM radiative transfer model
LUT look-up-table
R2 determination coefficient
RMSE root mean square error
RRMSE relative root mean square error
ILS incident light sensor
GCP ground control point
ROI region of interest
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