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Abstract: The accurate mapping of impervious surfaces is of key significance for various urban
applications. Usually, traditional methods extract the proportion image of impervious surfaces from
remote sensing images; however, the proportion image cannot specify where the impervious surfaces
spatially distribute within a pixel. Meanwhile, impervious surfaces often locate urban areas and have a
strong correlation with the relatively new big (geo)data points of interest (POIs). This study, therefore,
proposed a novel impervious surfaces mapping method (super-resolution mapping of impervious
surfaces, SRMIS) by combining a super-resolution mapping technique and POIs to increase the spatial
resolution of impervious surfaces in proportion images and determine the accurate spatial location
of impervious surfaces within each pixel. SRMIS was evaluated using a 10-m Sentinel-2 image and
a 30-m Landsat 8 Operational Land Imager (OLI) image of Nanjing city, China. The experimental
results show that SRMIS generated satisfactory impervious surface maps with better-classified image
quality and greater accuracy than a traditional hard classifier, the two existing super-resolution
mapping (SRM) methods of the subpixel-swapping algorithm, or the method using both pixel-level
and subpixel-level spatial dependence. The experimental results show that the overall accuracy
increase of SRMIS was from 2.34% to 5.59% compared with the hard classification method and the
two SRM methods in the first experiment, while the overall accuracy of SRMIS was 1.34–3.09%
greater than that of the compared methods in the second experiment. Hence, this study provides
a useful solution to combining SRM techniques and the relatively new big (geo)data (i.e., POIs) to
extract impervious surface maps with a higher spatial resolution than that of the input remote sensing
images, and thereby supports urban research.

Keywords: super-resolution mapping; impervious surfaces; spatial dependence; points of interest;
urban remote sensing

1. Introduction

Impervious surfaces are mainly artificial areas where water cannot infiltrate the soil [1,2]. They are
used as a critical indicator in a range of fields, such as urbanization [3,4], urban heat island effect [5,6],
and urban water resource protection [7,8]. The accurate extraction of impervious surfaces from
remote sensing imagery is a prerequisite of such applications. In past decades, there have been
three main approaches to mapping impervious surfaces: (1) pixel-based (i.e., hard classification),
(2) subpixel-based (i.e., soft classification or spectral unmixing), and (3) object-based algorithms [1].
These approaches have been applied to various remote sensing images including low spatial resolution
(>100 m), medium spatial resolution (10–100 m), and high spatial resolution (<10 m) images and have
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achieved acceptable performances in mapping impervious surfaces [1]. However, the extraction of
impervious surfaces from remote sensing imagery still suffers from several issues: (1) the accuracy
of impervious surfaces is limited by the complexity of impervious surfaces because impervious
surfaces are mainly distributed in complicated urban areas [9]; (2) mixed pixels composed of
impervious surfaces and other land features are inevitable in various spatial resolution images [6,10];
(3) impervious surfaces from low and medium spatial resolution images are often too coarse to
use in urban environments [1]; and (4) most impervious surface maps can provide the proportion
of impervious surfaces by soft classification but cannot specify where impervious surfaces are
spatially distributed within pixels [11–13]. Auxiliary datasets are usually applied to reduce the
complexity and uncertainty of mapping impervious surfaces through providing complementary
information, such as light detection and ranging (LiDAR) data [14]. However, LiDAR data concentrates
mainly on geometric information (i.e., three-dimension representation of targets) rather than spectral
information [1]. For the mixed pixel problem, an attractive solution is the super-resolution mapping
(SRM) technique [15]. It first increases the spatial resolution of each pixel (i.e., dividing each pixel
into several smaller subpixels) in the proportion images derived from a soft classification and then
determines the spatial location of classes within each pixel [16–20]. Since SRM was proposed by
Atkinson [15], there has been a proliferation of SRM methods developed; these include artificial neural
networks [21–23], subpixel-swapping methods [11,24,25], spatial attraction models [26,27], Markov
random fields [28–30], geostatistical solutions [16,31,32], interpolation-based approaches [33–35],
and other advanced methods [19,36–39]. To improve the performance of SRM methods, various
auxiliary data have been integrated into SRM methods, such as panchromatic images [40], multiple
shifted images [41], and prior information [42]. Meanwhile, SRM methods have been widely used to
increase the spatial resolution of many thematic maps from remote sensing images, such as wetland
inundation [43,44], land use maps [45], lakes [11,46,47], urban trees [28], forests [42], and burned
areas [48]. However, little if any attempt has been given to applying SRM to map impervious surfaces
at a higher spatial resolution than that of its input images.

Usually, impervious surfaces are located in urban areas and have a strong correlation with places
of human activity [49–51]. Points of interest (POIs) are often geographical points that mark the useful
and important places of human activity [52–54], such as restaurants, nodes of roads, and residential
areas. With the rapid development of online maps in recent years, a proliferation of POIs have been
added to online maps for navigation. Therefore, POIs can be viewed as the relatively new big (geo)data
and they are able to provide complementary information for mapping urban variables [51,55,56].
Recently, POIs have been successfully used in the enhancement of mapping several urban variables,
such as the spatial distribution of urban land use [51], urban neighborhood vibrancy [49], and urban
functional regions [54]. However, less evidence is available on using the auxiliary data of POIs in the
field of SRM to improve the mapping of impervious surfaces.

Therefore, this study aims to develop a super-resolution mapping of impervious surfaces (SRMIS)
method to incorporate POIs into SRM to solve these issues in mapping impervious surfaces. The main
objectives are (1) to make full use of the complementary information from POIs to reduce the complexity
and uncertainty of mapping impervious surfaces, (2) to estimate the accurate spatial location of
impervious surfaces within mixed pixels and increase the spatial resolution of impervious surface
maps, and (3) to provide a cost-effective way to obtain impervious surface maps with a higher spatial
resolution than that of input remote sensing images, which may save money in purchasing expensive
high spatial resolution remote sensing images in urban research.

2. Methods

2.1. Background of SRM

Suppose that the number of classes is C and that the C proportion images X = {xc
i |i =

1, . . . , n and c = 1, . . . , C} have been obtained by soft classification from originally coarse remote
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sensing images with n pixels. By setting the zoom scale factor S, each pixel in the coarse proportion
images is decomposed into S × S finer subpixels, generating an SRM map as Y = {yc

j |j =

1, . . . , N and N = n × S2}. yc
j ∈ {0, 1} is a logical value for subpixel j that means whether it is

assigned to class c. SRM is a post step of soft classification and can be considered as a hard classifier to
produce the hard-classified maps with a higher spatial resolution than that of the input proportion
images [12,36,41]. Under the assumption of maximal spatial dependence between and within pixels,
SRM aims to estimate the most likely spatial locations of classes within a mixed pixel, subject to the
class proportion constraints of each pixel in proportion images. SRM can be formulated as a binary
integer spatial optimization problem [18,57,58]:

max z =
C

∑
c=1

S2

∑
j=1

yc
j × qc

j (1)

s.t.


C
∑

c=1
yc

j = 1

S2

∑
j=1

yc
j = xc

i × S2
(2)

where qc
j is the measurement of the spatial dependence of class c for subpixel j, xc

i is the proportion of
class c in mixed pixel i. The first constraint in Equation (2) indicates that each subpixel is assumed
pure and is allocated only to a unique class, while the second constraint in Equation (2) means that the
proportion of the number of subpixels for each class should be consistent with the class proportion in
proportion images. When mapping impervious surfaces, SRM is considered as a special case in that
only two classes—impervious surfaces and pervious surfaces—are involved.

2.2. SRMIS Method

SRMIS inherits the basic idea of traditional SRM and extends it to use the complementary
information of POIs in mapping impervious surfaces at subpixel scales. SRMIS involves four main
processes: (1) characterizing and normalizing the spatial dependence of each subpixel for the two
classes of impervious and pervious surfaces; (2) calculating the proportion of POIs located at each
subpixel to POIs within the mixed pixel; (3) fusing spatial dependence and proportion of POIs for
each subpixel; (4) building a spatial optimization model to allocate the optimal class to each subpixel.
An example of SRMIS implementation for a mixed pixel is presented in Figure 1. The example shows
a mixed pixel has 44.4% impervious surfaces and 55.6% pervious surfaces. Given a testing zoom
scale factor of 3, the mixed pixel is divided into nine subpixels. The class spatial dependence of the
nine subpixels is first obtained and then the proportion of POIs of the nine subpixels are calculated.
Furthermore, the spatial dependence of impervious surfaces and the POI proportions are fused as the
soft class values for each subpixel. Finally, the optimal class label of each subpixel is determined in
terms of the soft class values and the class proportions within the mixed pixel.
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Figure 1. An example of the implementation of super-resolution mapping of impervious surfaces (SRMIS).

(1) Perform the characterization and normalization of spatial dependence

The measurement of spatial dependence from the proportion images of soft classification for
each subpixel is critical in determining the optimal class of subpixels. Currently, there are three
categories of methods for measuring spatial dependence: (1) pixel-level methods, such as the spatial
attraction model [26] and the high-accuracy surface modeling [34]; (2) subpixel-level methods, such as
the exponential weighting function [24]; and (3) fused methods, such as combining pixel-level and
subpixel-level spatial dependences algorithm (PSSD) [57]. PSSD has not only the merit of preserving
structure information of patches by pixel-level dependence but also the advantage of providing
local details by subpixel-level dependence. Therefore, it is adopted here to characterize the spatial
dependence of subpixels and is calculated using

qc
j = ω · qc

pl(j) + (1−ω) · qc
sl(j)

qc
pl(j) = 1

m

m
∑

i=1

xc
i

d(j,i)

qc
sl(j) = 1

M

M
∑

j′=1

(
exp(− d(j,j′)

β ) · yc
j′

) (3)

where qc
pl(j), qc

sl(j) are the pixel-level and subpixel-level spatial dependences of class c for subpixel
j, ω is the weight for the pixel-level dependence, d(j, i) is the Euclidian distance between subpixel
j and neighboring pixel i, β is the parameter in the exponential function, m, M are the numbers of
neighboring pixels and subpixels. The surrounding neighborhood is used in calculating the pixel-level
spatial dependence. Note that the equations in Equation (3) were developed in previous work [57].
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To facilitate the fusion of spatial dependence and proportion of POIs, the spatial dependence is
normalized using the following:

q′cj =
C · qc

j

S2

∑
j=1

C
∑

c=1
qc

j

(4)

where q′cj is the normalized spatial dependence of class c for subpixel j from the original spatial
dependence qc

j obtained by PSSD. Note that the normalization does not change the relative sequence
of subpixel spatial dependences for all classes and adjusts only the spatial dependence values to the
same value scale of POI proportions. That is to say, the SRMIS result is the same as the result when
only the original spatial dependences are used when there are no POIs.

(2) Calculate the proportion of POIs for each subpixel

The proportion of POIs within each subpixel to POIs within the mixed pixel is used to characterize
one possibility of impervious surface occurrence for the subpixel. The calculation of the POI proportions
for subpixel j is

pc
j =

POIc
j

POIc
i

POIc
i =

S2

∑
j=1

POIc
j

(5)

where pc
j is the POI proportions of class c for subpixel j, POIc

j is the number of POIs within subpixel j,
and POIc

i is the total number of POIs for all subpixels within pixel i. Note that it defines c = 1 to be
the class of impervious surfaces and c = 2 to be the pervious surfaces because SRMIS deals with only
the two classes. Therefore, the calculation in Equation (5) is only for one class of impervious surfaces
(i.e., the case of c = 1).

(3) Fuse spatial dependence and proportion of POIs for each subpixel

With the spatial dependence and proportion of POIs of each subpixel as inputs, they are fused to
get the soft class values of subpixels to represent the probabilities of class occurrences. The soft class
values of subpixels are calculated using

Gc
j = q′cj + pc

j (6)

where Gc
j is the soft class value of class c for subpixel j. Note that only the class of impervious surfaces

is involved in this process in order to save computation time and the normalized spatial dependence
of pervious surfaces is directly used as its soft class value. The reasons for using equal weight for the
spatial dependence and proportion of POIs are that the proportion of POIs is considered as important
for the spatial dependence of impervious surfaces; and the soft class value of impervious surfaces
may be clearly increased when there are POIs and the soft class value of pervious surfaces cannot be
decreased since only the class of impervious surfaces performs this process. According to the fusion
process, subpixels with POIs can significantly improve the probability of allocating to the class of
impervious surfaces because the soft class values of impervious surfaces may increase while the soft
class values of pervious surfaces do not change.

(4) Allocate optimal class to each subpixel

Similar to traditional SRM, SRMIS builds a binary integer spatial optimization model to determine
the optimal class of each subpixel. The objective of the model is to maximize the soft class values
of subpixels within a mixed pixel, subject to the class proportion constraints imposed by proportion
images and the POI proportion constraint; that is:
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max z =
2

∑
c=1

S2

∑
j=1

yc
j × Gc

j (7)

s.t.



2
∑

c=1
yc

j = 1

S2

∑
j=1

yc
j = xc

i × S2

y1
j = 1, i f p1

j = 1

(8)

where the first two equations in Equation (8) are the same as the constraints of traditional SRM
optimization model while the third equation in Equation (8) is added in SRMIS to allocate the
impervious surfaces to subpixel j when only subpixel j has POIs within mixed pixel i.

3. Case Study

3.1. Experimental Design

To evaluate the performance of SRMIS, two experiments—one on a Sentinel-2 image and one on a
Landsat 8 OLI image in Nanjing city, China—were carried out to produce the impervious surface maps
at a higher spatial resolution than that of the input images. The flowchart of the experiments is shown
in Figure 2 and the experiments were implemented in four main steps: (1) prepared experimental
datasets including remote sensing images, POIs, and validation data; (2) produced proportion images
by a support vector machine (SVM) soft classifier [59]; (3) performed SRMIS; (4) assessed SRMIS maps
with validation data.
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3.2. Experiment on a Sentinel-2 Image

A multi-spectral Sentinel-2 image (8100 × 10,800 pixels) was chosen to test the SRMIS.
The Sentinel-2 image, taken on 2 April 2017, locates Nanjing city, China. It is a level-2A product
and contains four bands (i.e., blue, green, red, and near-infrared bands) with a spatial resolution of
10 m. The geo-tagged POIs within the Sentinel-2 image were acquired from one of the biggest online
maps in China (http://map.qq.com/) on 6 July 2017. The number of POIs is 299,640 and they are
divided into twelve categories (http://lbs.qq.com/webservice_v1/guide-appendix.html), as shown in
Table 1. Note that only POIs that are related to impervious surfaces were obtained while POIs (e.g.,
scenic spots) that are not related to impervious surfaces were not obtained. The validation image in
Figure 3c within this area was downloaded from Google Maps (http://www.google.cn/maps) and
the acquisition date of the validation image was 9 February 2017. The impervious surfaces of Nanjing
mainly distribute in its downtown area, as shown in the area marked by the black polygon in Figure 3a.
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Table 1. The number of points of interest (POIs) for each category in Nanjing.

Category FD SP LS RC CS HC HS CV SS BF IE RA

Number 52,435 80,853 47,806 14,310 1384 7427 7513 2541 11,912 7148 22,356 43,955

FD: food and drink, SP: shopping places, RC: recreation centers, CS: car service places, HC: health care, HS: hotels,
CV: cultural venues, SS: schools, BF: banks and finance, IE: infrastructure, RA: residential areas, LS: life service
places including travel agency, express sites, business offices, etc.

With the Sentinel-2 image in Figure 3a as input, a soft classification was implemented to produce
proportion images of impervious and pervious surfaces by the SVM soft classifier. This experiment
used a combination of two endmembers (i.e., buildings and roads) to represent impervious surfaces,
while a combination of three endmembers (i.e., vegetation, water, and others) was built for the class
of pervious surfaces. Training samples of the five endmembers were selected from Figure 3a for the
soft classification of the Sentinel-2 image. The total number of training samples was 25,065 pixels,
including 4561 pixels of buildings, 1644 pixels of roads, 10,602 pixels of vegetation, 7135 pixels of
water, and 1123 pixels of others. Note that the normalized difference vegetation index (NDVI) was
generated as an additional feature in soft classification because NDVI had near inverse correlation with
impervious surfaces [1]. The proportion image of impervious surfaces in Figure 3d was generated by
summing the two proportion images of buildings and roads; the same method was used to produce the
proportion image of pervious surfaces. It can be observed from Figure 3b,d that the spatial distribution
of impervious surfaces is strongly consistent with the POIs. Thus, POIs are able to provide effective
complementary information in mapping the impervious surfaces.

Two zoom scale factors (i.e., S = 2 and S = 4) were employed to increase the spatial resolution of
the impervious surface maps and assess the performance of SRMIS maps. Meanwhile, PSSD without
POIs and the subpixel-swapping algorithm (PSA) were used as the representative SRM methods to
compare with SRMIS. Note that the spatial attraction model result was used as the initial result of
PSA to reduce its iterations [26]. Moreover, the SVM hard classification map was generated from the
SVM soft classification results for comparison with the SRM maps. Figure 4a shows the SVM hard
classification map of impervious surfaces in Nanjing. Figure 4b–d present the PSA, PSSD, and SRMIS
maps produced by the zoom scale factor of 2, respectively. It can be seen from Figure 4a–d that the
spatial distribution of impervious surfaces is consistent with POIs in Figure 3b and the proportion
map in Figure 3d. At the same time, most impervious surfaces of these results are spatially distributed
within the black polygon in Figure 3a. Focusing on the details of three small subareas in Figure 4,
three SVM hard classification results in Figure 4(e2–g2) show less local detail of impervious and
pervious surfaces and more wrongly classified patches than the three SRM results. Specifically,
there are some mixed pixels in the intersection areas between buildings and vegetation in subarea-1.
Additionally, some overestimated pervious surfaces (i.e., vegetation) in Figure 4(e2) were produced by
the hard classifier whereas the three SRM results have less overestimated pervious surfaces and more
accurate impervious surfaces, especially in the SRMIS result of Figure 4(e5). The road in subarea-2
was obviously classified to pervious surfaces by the SVM hard classifier while the three SRM methods
produced more accurate road patches than the SVM hard classifier. The impervious surfaces in
Figure 4(g2) show coarser patches and less detail than the other three SRM results in Figure 4(g3,g5).
Compared with the hard-classified result, the improvement of three SRM results is mainly due to the
fact that SRM methods generated the details of impervious and pervious surfaces within mixed pixels
and increased the spatial resolution of impervious surface maps. When comparing the three SRM
results, PSA and PSSD produced slightly more underestimated impervious surfaces (i.e., the buildings)
in Figure 4(e3,e4) than SRMIS in Figure 4(e5) and the SRMIS result in subarea-1 is closer to the
validation image in Figure 4(e6) than those in Figure 4(e3,e4). At the same time, the unconnected road
in Figure 4(f3,f4) was connected in Figure 4(f5) by SRMIS using the new constraints of POIs within this
road to reduce the uncertainty in mapping impervious surfaces. Furthermore, SRMIS, with the help of
POIs, produced more accurate impervious surfaces than PSA and PSSD in the subarea-3, especially for
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the three ellipse areas in Figure 4(g5). The classification enhancement within the three ellipse areas by
SRMIS was largely due to lots of POIs. In visual assessment, PSA, PSSD, and SRMIS perform better
than the traditional SVM hard classifier and SRMIS slightly outperforms PSA and PSSD.
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are the POIs, SVM hard classification result, PSA result, PSSD result, SRMIS result, and validation
image in subarea-2, respectively. (g1–g5) are the POIs, SVM hard classification, PSA, PSSD, and SRMIS
results in subarea-3, respectively.

To quantitatively assess the performances of the classification maps, 8000 validation sites
(including 3787 impervious surfaces sites and 4213 pervious surfaces sites) were selected as test
data from the validation data in Figure 3c by a stratified random sampling scheme. Each validation site
was first manually interpreted into impervious surfaces or pervious surfaces from the validation image
in Figure 3c, and then they were compared with the corresponding sites in the classification maps of
impervious and pervious surfaces to generate confusion matrices. Finally, overall accuracy (OA) and
Kappa coefficient were calculated from confusion matrices for each classification map, as shown in
Table 2. Table 2 indicates that the OA and Kappa coefficient of the SVM hard classifier are lower than
those of PSA, PSSD, and SRMIS and that SRMIS has higher OA and Kappa coefficient than PSA and
PSSD for each zoom scale factor. Specifically, the OA of the SVM hard classifier is 2.99% and 0.92%
lower than the average OA of PSA, PSSD, and SRMIS for the zoom scale factors of 2 and 4, respectively.
Compared with the average OA of PSA and PSSD, the OA increases of SRMIS are 3.90% and 3.10% for
the zoom scale factors of 2 and 4, respectively. The OA and Kappa coefficient of PSA, PSSD, and SRMIS
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decrease with the increase of zoom scale factors. It suggests that the improvement of SRMIS by POIs
is suitable for different zoom scale factors. The quantitative accuracy assessment confirms the visual
observation that PSA, PSSD, and SRMIS produce better results than the SVM hard classifier and that
SRMIS has greater accuracy than the two existing SRM methods of PSA and PSSD. Thus, the proposed
SRMIS with the help of POIs produced reliable impervious surface maps at subpixel scales from both
visual and quantitative assessments.

Table 2. Accuracy assessment for the classification results using a Sentinel-2 image.

Hard Classification PSA PSSD SRMIS

S = 2 S = 4 S = 2 S = 4 S = 2 S = 4

OA (%) 84.91 86.04 84.04 87.16 85.55 90.50 87.89
Kappa 0.6977 0.7204 0.6803 0.7428 0.7108 0.8097 0.7575

3.3. Experiment on a Landsat 8 OLI Image

A 30-m Landsat 8 OLI image within the same area of the first experiment on the Sentinel-2 image
was further employed to test the SRMIS. The Landsat 8 OLI image (2700 × 3600 pixels) in Figure 5a
was taken on 18 May 2017 and six bands (i.e., from band2 to band7) were involved in this experiment.
The POIs, training sample sites, and validation sites used in the first experiment were also used in
this experiment. The SVM classification was performed on the Landsat 8 OLI image to generate the
proportion image of impervious surfaces and the hard classification map. The zoom scale factor of
3 was employed to increase the spatial resolution of impervious surface maps and the proportion
image of impervious surfaces was applied to PSA, PPSD, and SRMIS to yield the SRM maps with the
increased spatial resolution of 10 m. Figure 5b–e present the hard classification, PSA, PSSD, and SRMIS
maps, respectively. Most impervious surfaces in the four classification maps distribute in the black
polygon in Figure 3a and their spatial distributions have high consistency with the POIs. The four
results within a subarea that is the same as subarea-3 in Figure 4 are presented in Figure 5i–iv to
compare their performances in detail. The SVM hard classification result in Figure 5i again shows less
detail and coarser boundaries of impervious surface patches than the three SRM results in Figure 5ii–iv.
PSA generated slightly more clustered impervious surfaces than PSSD and SRMIS. With the help
of POIs, SRMIS preserved slightly more impervious surface details than PSSD. For example,
SRMIS preserved the road in the right ellipse and the vegetation in the left ellipse in Figure 5iv,
whereas PSSD made the road unconnected and the vegetation close to neighboring large pervious
surface patches under the assumption of spatial dependence.

The quantitative accuracy assessment was conducted for the SVM hard classification result and
three SRM maps of impervious surfaces in the experiment on a Landsat 8 OLI image. The OA and
Kappa coefficient of each map are calculated in Table 3. It shows that SRMIS has greater accuracy
than the SVM hard classifier, PSA, and PSSD. Specifically, the OA of SRMIS is 3.09%, 1.96%, and 1.34%
greater than that of the SVM hard classifier, PSA, and PSSD, respectively.

Table 3. Accuracy assessment for the classification results using a Landsat 8 OLI image.

Hard Classification PSA PSSD SRMIS

OA (%) 76.16 77.29 77.91 79.25
Kappa 0.5229 0.5458 0.5582 0.5850
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hard classification map (30 m); (c) PSA map (10 m); (d) PSSD map (10 m); (e) SRMIS map (10 m). (i–iv)
are the SVM hard classification, PSA, PSSD, and SRMIS results in a subarea, respectively.

4. Discussion

4.1. Improvements in Mapping Impervious Surfaces by SRM Methods

Three SRM methods of PSA, PSSD, and SRMIS were employed to increase the spatial resolution
of proportion image of impervious surfaces and produce the hard classification map of impervious
surfaces at subpixel scales. Compared with the SVM hard classifier, the three SRM methods produced
better impervious surface maps in the two experiments because they determined where the impervious
surfaces spatially distribute within a mixed pixel from the proportion image that tells only how many
impervious surfaces are within a pixel. Especially, with the help of POIs, SRMIS generated slightly
more accurate hard-classified impervious surface maps than PSA and PSSD in the two experiments.
According to the accuracy assessment of the experimental results, the OA increase of SRMIS is from
2.34% to 5.59% for different methods in the first experiment while the OA of SRMIS is 1.34–3.09%
higher than that of the compared methods in the second experiment. Compared with the traditional
SVM hard classifier, the OA increases of the other two SRM methods (i.e., PSA and PSSD) are 1.13% and
2.25% in the first experiment using the zoom scale factor of 2, while the OA of PSA and PSSD is 1.13%
and 1.75% greater than that of the traditional SVM hard classifier in the second experiment. Therefore,
SRM methods, especially SRMIS, provide an alternative way to generate impervious surface maps
with a higher spatial resolution than that of input remote sensing images for urban study. Although
the proposed SRMIS method with POIs produced relatively satisfactory impervious surface maps
(e.g., the OA is over 90% in the first experiment using the zoom scale factor of 2) with higher spatial
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resolutions than the input remote sensing images, other types of auxiliary data (e.g., the extent of POIs)
may have potential to be incorporated in SRM methods in order to improve the accuracy of impervious
surface maps. In future, more auxiliary data can be used to integrate into the SRM technique for
mapping impervious surfaces.

4.2. Impact of the Density of POIs on SRMIS

Although SRMIS increased the classification performance of impervious surfaces with the help
of POIs, different regions have different numbers of POIs. Therefore, the performance of SRMIS
was analyzed in different regions with different numbers of POIs. This study took the SRMIS map
generated by the zoom scale factor of 2 from the Sentinel-2 image for an example. It can be found
from the results of three subareas in Figure 4(e5–g5) that the classification image quality of impervious
surfaces has different improvements with different numbers of POIs. The subarea-2 has the least POIs
and only a few central subpixels were improved to correct classes in Figure 4(f5). The subarea-1 has a
moderate number of POIs and the subpixels at the upper left part of the central pervious patch (i.e.,
vegetation) were correctly classified to impervious surfaces (i.e., buildings) with relatively more POIs
than those in subarea-2. Subarea-3 has the most POIs and the improvement in the classification map is
better than the other two subareas in Figure 4d. The reason is that the three ellipse areas with clustered
POIs in Figure 4(g5) show improvement in mapping impervious and pervious surfaces in comparison
with the results of PSA in Figure 4(g3) and PSSD in Figure 4(g4). Specifically, the connectivity of the
roads in the left and right ellipse areas of Figure 4(g5) was preserved by SRMIS with the help of POIs.
The connectivity of the green belt along a road in the central ellipse area of Figure 4(g5) was preserved
under the constraints of POIs. However, the connectivity of the green belt and the roads in the left
and right ellipse areas of Figure 4(g5) was not preserved by the SVM hard classifier in Figure 4(g2),
PSA in Figure 4(g3), or PSSD in Figure 4(g4). To quantitatively evaluate the impact of the density of
the POIs on the performance of SRMIS, the relationship between the density of POIs and OA increase
within the administrative units of eleven districts in Nanjing was analyzed for the 5-m SRMIS map
generated from the Sentinel-2 image and the 10-m SRMIS map generated from the Landsat 8 OLI
image. The number of POIs and the OA increase within each district were first calculated and then
they were plotted in Figure 6. It shows that the OA increase improved with an increase of POIs in the
two experimental results when compared with the PSSD results. However, most OA increases range
between 2% and 4% for the SRMIS map generated by the zoom scale factor of 2 from the Sentinel-2
image in Nanjing, whereas most OA increases range between 0.5% and 2% for the SRMIS result in the
second experiment.

1 
 

 

Figure 6. Relationship between the number of POIs (x-axis) and the overall accuracy (OA) increase
(y-axis) for SRMIS results. (a) The 5-m SRMIS map generated from the Sentinel-2 image; (b) The 10-m
SRMIS map generated from the Landsat 8 OLI image.
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4.3. Impact of POI Uncertainty on SRMIS Maps

The proposed SRMIS was developed by incorporating relatively new big (geo)data (i.e., POIs)
into an existing SRM method of PSSD to produce impervious surfaces at subpixel scales. According
to the case study in Nanjing, SRMIS generated better classified image quality of impervious surfaces
and greater accuracy with the complementary information from POIs than both the SVM hard
classifier and PSSD. However, the uncertainty of POIs would affect the performance of SRMIS. First,
POIs are points that only mark impervious surfaces with human activity; therefore, SRMIS cannot
improve the mapping performance of the impervious surfaces without POIs and the result of these
impervious surfaces is same as PSSD. Second, the acquisition time between remote sensing images
and POIs is different and there may be inter-conversions between some impervious and pervious
surfaces during the acquisition time period; additionally, SRMIS cannot enhance the performance of
impervious surfaces in these areas. POIs usually appear after the presence of impervious surfaces
because impervious surfaces are the basic conditions attracting human activities. Thus, POIs are better
acquired after the remote sensing image acquisition. Third, although POIs can provide the location
of some impervious surfaces, POIs cannot provide the extent of a POI. If the extent of a POI can be
obtained, the performance of SRMIS would be improved. The extent of a POI can be characterized
by the boundary of buildings. Some geospatial data companies can provide this service; however,
the price of the boundary data of buildings is expensive. If the case study area is not too large, it is a
good choice to buy the boundary data of buildings to improve the accuracy of impervious surfaces.
An alternative method for obtaining the extent of a POI is an image recognition method that can be
developed to recognize the boundary of buildings from online maps. Some online maps of China (e.g.,
http://map.qq.com/) provide tiles of online maps when an area is searched. Each tile is an image with
a fixed size (e.g., 256 × 256 pixels) and may contain the boundary of POIs or buildings. In addition,
SRMIS only used POIs related to impervious surfaces while other complementary data (e.g., water and
scenic spots) related to pervious surfaces may have useful information to reduce the uncertainty in
mapping impervious surfaces by SRM methods. Therefore, it is worthwhile considering these issues
in future work.

5. Conclusions

This study presents a novel solution (i.e., SRMIS method) for extracting impervious surfaces at
subpixel scales. The proposed SRMIS can take advantages of both SRM technique and the relatively
new big (geo)data (i.e., POIs) to produce hard-classified impervious surface maps at subpixel
scales according to the inputs of POIs and the proportion image derived from soft classification.
The effectiveness of the proposed SRMIS was validated using two different remote sensing images
of a Sentinel-2 image and a Landsat 8 OLI image of Nanjing city, China. The experimental results
show that the overall accuracy (OA) increase of the proposed SRMIS is from 2.34% to 5.59% compared
with the SVM hard classifier and two existing SRM methods in the first experiment; the OA of
SRMIS is 1.34–3.09% higher than that of the compared methods in the second experiment. Meanwhile,
the classification image quality of SRMIS outperforms the SVM hard classifier and two existing SRM
methods in terms of visual evaluation. Hence, SRMIS provides a valuable way to combine SRM
technique and POIs to extract impervious surface maps with a higher spatial resolution than that of
the input remote sensing images for urban study.
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