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Abstract: Droughts can severely reduce the productivity of agricultural lands and forests. The United
States Department of Agriculture (USDA) Southeast Regional Climate Hub (SERCH) has launched
the Lately Identified Geospecific Heightened Threat System (LIGHTS) to inform its users of potential
water deficiency threats. The system identifies droughts and other climate anomalies such as extreme
precipitation and heat stress. However, the LIGHTS model lacks input from soil moisture observations.
This research aims to develop a simple and easy-to-interpret soil moisture and drought warning
index—standardized soil moisture index (SSI)—by fusing the space-borne Soil Moisture Active
Passive (SMAP) soil moisture data with the North American Land Data Assimilation System (NLDAS)
Noah land surface model (LSM) output. Ground truth soil moisture data from the Soil Climate
Analysis Network (SCAN) were collected for validation. As a result, the accuracy of using SMAP to
monitor soil moisture content generally displayed a good statistical correlation with the SCAN data.
The validation through the Palmer drought severity index (PDSI) and normalized difference water
index (NDWI) suggested that SSI was effective and sensitive for short-term drought monitoring
across large areas.

Keywords: remote sensing; Soil Moisture Active Passive; North American Land Data Assimilation
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1. Introduction

Climate variability in the southeastern United States can bring regional-scale droughts.
According to the National Climate Assessment for the Southeast, extreme heat and soil water deficiency
are two of the four major stressors for the region [1] because a large part of the southeast’s landscape is
occupied by agriculture, forests, and rangelands [2]. Drought is especially a concern for agricultural
and forestry management. For the agricultural sector, water deficiency during droughts has led to a
reduction in crop and livestock production [3,4]. For the forestry sector, water shortage could affect
growth of the trees and also increase their vulnerability to wildfires [5]. A monitoring system that is
able to deliver timely warnings of droughts can play a vital role in regional water resource management
and economy development. The United States Department of Agriculture (USDA) and the Southeast

Remote Sens. 2018, 10, 301; doi:10.3390/rs10020301 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-1298-4839
https://orcid.org/0000-0002-6381-5894
http://dx.doi.org/10.3390/rs10020301
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 301 2 of 13

Regional Climate Hub (SERCH) delivers science-based knowledge on climate to farmers, ranchers,
and foresters to cope with climate issues such as extreme precipitation, heat stress, and drought in the
southeast United States [6]. SERCH uses a drought mitigation tool, the Lately Identified Geospecific
Heightened Threat System (LIGHTS), which is a prediction model driven by NOAA’s Climate
Prediction Center’s Monthly Drought Outlook, Monthly Temperature and Precipitation Outlook,
and Risk of Seasonal Climate Extremes in the US related to El Niño–Southern Oscillation (ENSO).
Subscribers will receive a notification when the system predicts a drought condition in their area.
With the assistance of this system, farmers and foresters can better cope with climate issues efficiently
and timely. The SERCH LIGHTS services are available in eleven States: Alabama, Arkansas, Georgia,
Florida, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia.

Current implementation of LIGHTS does not include any soil moisture indices in their prediction
model. Adding soil moisture data sampled by geospatial technologies can greatly improve the
reliability and accuracy of the prediction model [7]. Several methods and indices for soil moisture
retrieval were proposed in the past research [8,9]. The palmer drought severity index (PDSI) is one of
the most popular indices of drought. The PDSI measures the cumulative departure of moisture supply
across space and time [10]. It uses the Thornthwaite method to estimate potential evapotranspiration
(PET). However, due to the complexity and uncertainty of PET estimation, the model has limitation
in accuracy and application, especially in extreme climate conditions and mountainous terrain [11].
The relative soil moisture index (RSMI) was designed to estimate the amount of water available in soil
for crops [12]. This model requires data of a variety of factors such as climate (rainfall rates, potential
evapotranspiration), plant (vegetation type, leaf area, management practices, crop sensitivity to water
stress, and crop water requirement for each phenological phase), and soil characteristics (soil water
capacity, soil proximity to the water table) [12,13]. Nevertheless, it is difficult to accurately measure
these variables with sufficient space and time coverage [14]. In addition, these variables are defined
in different spatial scales and context. How to remedy the scale difference is another challenge and
obstacle to use RSMI [15–17]. Another meteorological drought index was designed as calculating
the percent of precipitation from the normal [11]. The main advantage of this index is its simplicity
and transparency [18]. However, the statistical construct has been criticized because the distributions
for seasons and regions are different. For this reason, this index cannot be used to compare drought
across seasons and regions [19]. The Palmer Z-index is a monthly standardized anomaly of available
moisture [11]. The Palmer Z-index was found most suitable to monitor agriculture drought in Canadian
prairies [20]. The standardized precipitation index (SPI) [21] is a popular meteorological drought index
solely derived from precipitation data. SPI is expressed as deviations from the long-term mean of a
normal distribution fitted on the precipitation data [22]. If the SPI value falls below zero for a certain
period or the value is lower than −1, a drought is said to have occurred [21]. The advantages of SPI
include the simplicity of its definition, ability to generalize to different time scales and climate regions,
as well as the ability to provide early warning of drought [11].

The abovementioned meteorological drought indices, including PDSI, SPI, and percent of
precipitation, do not consider soil moisture data as an input except that the Palmer Z-index may
consider soil moisture as additional input to precipitation and temperature [23]. Furthermore, to
calculate these indices, it usually takes at least one month as the monitoring period, which does not
meet SERCH LIGHTS’s requirement for quick responses to drought conditions. The U.S. Drought
Monitor (USDM) can provide a week’s drought summary based on the abovementioned indices plus
soil moisture from data assimilation systems and other models [24], even though the weekly drought
monitoring cannot meet SERCH LIGHTS’s requirement for quick responses to drought conditions.
Satellite-based observation data could greatly enhance the extent and accuracy of drought prediction
models. Therefore, in this research, we make the use of Soil Moisture Active Passive (SMAP) satellite
data and North American Land Data Assimilation System (NLDAS) soil moisture data to calculate a
soil moisture index for drought warning called the standardized soil moisture index (SSI). SSI is based
on the concept of percent of normal precipitation and Palmer Z-index, as well as the statistical construct
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of SPI. SSI essentially utilizes the z-score to explain how many standard deviations the soil moisture
deviates from the historical mean soil moisture, and thus identifies droughts as statistical outliers in
the time series. Previous studies revealed both the SMAP and NLDAS data are reliable soil moisture
measurements. An intercomparison against SCAN in situ soil moisture measurements showed that
SMAP Level 3 product outperformed soil moisture and ocean salinity (SMOS) Level 3 product [25].
The correlation between daily NLDAS data and in situ soil moisture at multiple soil depths are
strong in the southeastern United States [26]. Our goal is to incorporate SMAP data and NLDAS
data for the southeastern states for updating the prediction power of the drought monitoring system,
LIGHTS. We believe integration of SMAP data into SERCH LIGHTS will increase the end-user’s water
management capabilities in response to drought conditions. For further introduction about SERCH
LIGHTS and the project, please refer to the Supplementary Materials.

2. Materials and Methods

2.1. Data Acquisition

We used the Level 3 soil moisture data from L-Band Radiometer (SMAP L3_SM_P) on board the
NASA satellite Soil Moisture Active Passive (SMAP). The SMAP Level 3 product is a daily global
radiometer-only soil moisture product, which provides direct soil moisture measurement at 6 AM
local solar time in the top 5-cm layer of the soil column in units of m3/m3 [27]. We obtained the data
from NASA’s Earth Observing System Data and Information System (EOSDIS) Reverb Echo portal on
EARTHDATA, and requested to transform NetCDF files into GeoTIFFs with the WGS 1984 Geographic
Coordinate System.

The second dataset is the soil moisture data from NASA NLDAS. The NLDAS Noah Land Surface
Model (LSM) L4 Hourly 0.125 × 0.125 degree V002 data that measure the top 10-cm soil moisture
were downloaded from Goddard Earth Sciences (GES) Data and Information Center data portal,
Mirador [28]. The NLDAS data time zone was Coordinated Universal Time (UTC), which has an
overall six-hour time difference compared with the SMAP local solar time. Therefore, 1200 UTC data
were collected for each day over the 36 years.

The third dataset is from the Soil Climate Analysis Network (SCAN). SCAN stations use probes to
collect soil moisture data across the United States [29]. The probes were dielectric constant measuring
devices placed at 5.08 cm depth [29]. The USDA National Resources Conservation Service (NRCS)
provides the SCAN dataset as downloadable .csv tables. Table 1 shows the parameters and the uses of
the data.

Table 1. Data description.

Platform & Sensor Parameter Use

SMAP
Passive Radiometer Soil moisture, Level-3, 36 km resolution Daily measurement of soil moisture

NLDAS Soil moisture, Noah model Historical mean and standard deviation
of soil moisture

USDA SCAN Soil moisture Validation

2.2. Data Processing

SMAP reached its orbit in January 2015, and the data were available since 1 April 2015. Therefore,
only less than two years of data have been recorded at the time of this study. A pre-processing of the
SMAP data removed invalid values and outliers. The units of SMAP and NLDAS soil moisture do not
match. SMAP measures volume of water per unit volume of soil. NLDAS measures soil moisture in
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units of kilogram per square meter of soil over variable thicknesses. Equation (1) converts the unit of
NLDAS to the volume ratio that is similar to SMAP units.

SMNLDAS
(
kg/m2)

W × T

where SMNLDAS represents the original soil moisture value and W is the density of water,
or 1000 kilograms per cubic meter. T is the thickness of soil measured by NLDAS; in this case T
is 0.1 m because NLDAS measures top 10-cm soil moisture.

We also notice the inconsistency of the soil depth measured by NLDAS and SMAP. The NLDAS
measures the top 10 cm of the soil, 5 cm deeper than that of SMAP. Even though, according to
Velpuri et al., SMAP shows a strong relationship with most soil moisture measurements at less than
20 cm depth [30]. We used a linear transformation to calibrate the two datasets. An example of the
calibration on the NLDAS data is in Appendix A. Table A1 lists the calibration coefficients between
NLDAS and SMAP.

2.3. Data Analysis

For each Julian day, there are 36 NLDAS observations from the past 36 years. Therefore, we were
able to calculate the mean (µNLDAS) and standard deviation (σNLDAS) of each day. The daily SSI was
calculated with Equation (2):

SSI =
xSMAP − µNLDAS

σNLDAS

where xSMAP is the soil moisture content from SMAP Level 3 data for a single day, µNLDAS is the
mean value of soil moisture content for the corresponding day from NLDAS, and σNLDAS is the
standard deviation.

2.4. Validation

The SMAP mission specifies the accuracy of soil moisture to be within 0.04 (4%) m3/m3 volumetric
in low or moderately vegetated areas in the following conditions [31]:

• Vegetation water content ≤ 5 kg/m2

• Urban fraction ≤ 0.25
• Water fraction ≤ 0.1
• Digital Elevation Model (DEM) slope standard deviation ≤ 3 degrees

Unfortunately, the southeast United States is not in the area where those accuracies are coherent.
Therefore, we need to use other data sources to validate the soil moisture product. The validation was
performed by comparing the soil moisture daily data from SMAP and NLDAS to daily soil moisture
data retrieved from USDA SCAN stations. Table 2 lists the selected seven SCAN stations across the
southeastern U.S. We selected the stations with a long-term collection of data, located in agricultural
lands, plains, or grasslands, and reprehensive of diverse weather conditions. The comparison between
SMAP and SCAN was on a daily basis, from 31 March 2015 to 16 July 2016. We also compared SCAN
data and NLDAS data for 12 months, starting in January 2015 and ending in December 2015.

Table 2. Soil Climate Analysis Network (SCAN) stations used for validation.

Station ID State Code Station Name

2013 GA Watkinsville #1
2024 MS Goodwin Ck Pasture
2053 AL Wtars
2039 VA N Piedmont Arec
2005 KY Princeton #1
2012 FL Sellers Lake #1
2085 AR Uapb-Earle
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SSI was validated by several soil moisture products, including PDSI and MODIS data. PDSI data
for April 2015 were downloaded as NetCDF files in the WGS 1984 Geographic Coordinate System
from the National Integrated Drought Information System on the U.S. Drought Portal. We derived a
normalized difference water index (NDWI) from MODIS surface reflectance data [11,32,33]:

NDWI =
NIR − SWIR
NIR + SWIR

where NIR is the near infrared reflectance and SWIR is the short-wave infrared reflectance of the
MODIS data. Both PDSI and NDWI data were resampled to 36 km for the SSI validation.

3. Results

3.1. SSI Spatial Analysis

The first SMAP record was on 1 April 2015, when the SMAP radiometer started collecting routine
science data. As SMAP requires a minimum of three consecutive days to cover the globe, the SSI
results for each of the three consecutive days were mosaicked to cover the study area (Figure 1a).
The standardized SSI is a z-score, indicating how many standard deviations that a SMAP value is from
the historic mean. The yellow to red colors indicate negative z-scores, which means the values are
lower than the historic soil moisture mean for those pixels. The green to blue colors indicate positive
z-scores, which means the values are higher than the historic soil moisture average for those pixels.
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Figure 1. (a) Mosaic of the three consecutive standardized soil moisture index (SSI) maps from 1 to 3
April 2015. Areas in yellow to red represent areas that are experiencing very dry conditions, indicating
drought. (b) SSI map for the whole month of April 2015.

Figure 1a reveals the regional climate variability for 1 to 3 April 2015 in the southeastern United
States. Along the southeast coastal area ranging from North Carolina to Florid, the soil moisture values
were significantly above their historic means. This pattern diminishes as the distance off the coast
increased. The high SSI values in the southern North Carolina and western Florida indicated a wet soil
condition compared to the past 36 years. On the contrary, the western Virginia and eastern Tennessee
observed a below-average SSI, which indicated a dry soil condition compared to the past 36 years.
Western Kentucky and Northwestern Tennessee observed severe dry soil conditions. The remaining
states, including Louisiana, Mississippi, Alabama, and most of Arkansas, Georgia, and part of Virginia,
North Carolina, and South Carolina were in an average condition. Arkansas and western Louisiana
generally observed average soil moisture, with several lower values along the western border, and one
pixel of higher value in northwestern Louisiana. SSI for April 2015, in contrast, shows the soil
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is generally wetter, except southern Mississippi, southern Alabama, Georgia, North Carolina and
southern Florida (Figure 1b).

3.2. Validation Result

3.2.1. SMAP Validation

The correlations between SMAP soil moisture data and the SCAN data were between 0.1506 and
0.9177. The correlations between SCAN and NLDAS data were between 0.376 and 0.7742. The RMSEs
for SMAP were between 0.0428 and 0.1379, which do not meet SMAP mission’s specification (0.04 or
4% m3/m3) for low or moderately vegetated areas. Given that the southeast United States are mostly
covered by high vegetation, the validation result is still acceptable for drought monitoring. Table 3
shows the R-squared and RMSE for SMAP in 2015 and 2016. Note that the correlation for station
Uapb-Earle in 2016 was invalid due to missing SCAN data.

Table 3. Soil Moisture Active Passive (SMAP) validation with SCAN stations.

Station ID Station Name R2 for 2015 R2 for 2016 RMSE for 2015 RMSE for 2016

2013 Watkinsville #1 0.6802 0.9124 0.0567 0.0791
2024 Goodwin Ck Pasture 0.7634 0.6817 0.0795 0.0591
2053 Wtars 0.4612 0.9177 0.0624 0.0428
2039 N Piedmont Arec 0.5783 0.2499 0.0712 0.0774
2005 Princeton #1 0.3115 0.5144 0.0762 0.0526
2012 Sellers Lake #1 0.2827 0.468 0.1288 0.1379
2085 Uapb-Earle 0.1506 N/A 0.0983 N/A

Average 0.4611 0.6240 0.0819 0.0748

3.2.2. Validation with PDSI and NDWI

PDSI is a standardized index that spans −10 (dry) to +10 (wet) [34]. Figure 2a shows the reference
image of PDSI for April 2015. Compare to the SSI result for April 2015 (Figure 1b), the drought patterns
are generally consistent. The scatter plot shows the correlation between SSI and PDSI is moderate: the
correlation coefficient (r) was 0.52 (Figure 3a). PDSI is effective in determining long-term drought [34],
but not for short time periods such as daily soil moisture deficiency. For daily comparison, MODIS
NDWI was used to test the accuracy of short-term SSI.
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Figure 2. (a) Palmer drought severity index (PDSI) for April 2015. Areas in yellow and red represent
areas that are experiencing dry conditions; (b) Normalized difference water index (NDWI) calculated
for 01 to 03 April 2015. Likewise, areas in yellow and red represent areas that are experiencing low
vegetation water content and therefore a dry condition.
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NDWI is dimensionless and ranges between −1 (low vegetation water content) to +1
(high vegetation water content) [33]. Figure 2b shows that the NDWI calculated for 1 to 3 April
2015 has a quite different pattern from the PDSI for April 2015 (Figure 2a), but has a very similar spatial
pattern compared with the SSI for 1 to 3 April 2015 (Figure 1a). The dry condition monitored through
NDWI in western Kentucky and western Tennessee matches the low-value areas by SSI. The wet
condition in Florida from NDWI was also observed from SSI. This suggests that SSI is more sensitive
than PDSI for short-term drought monitoring. Scatter plot shows the correlation between SSI and
NDWI is strong: the correlation coefficient (r) value was 0.56 (Figure 3b).
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Figure 3. (a) Scatter plot for April 2015. The correlation between SSI and PDSI is moderate (r = 0.52);
(b) Scatter plot for 1 to 3 April 2015. The correlation between SSI and NDWI is strong (r = 0.56).

4. Discussion

The SMAP validation revealed that the average correlation between SMAP data and SCAN data
were 0.4611 for 2015 and 0.6240 for 2016. Four low R-squared values suggested some discrepancy
between SMAP and SCAN data. The R-squared at the Uapb-Earle station in Arkansas for the year 2015
was exceptionally low (0.1506). Low R-squared values were also found at the N Piedmont Arec station
in Virginia (for 2016), the Sellers Lake #1 station in Florida (for 2015), and the Princeton #1 station in
Kentucky (for 2015). Figure 4 shows the correlations between SCAN values and SMAP values for the
four stations.

To discover what caused these significantly low accuracies in the abovementioned stations, we
created time-series plots to identify the outliers between SMAP and SCAN (Figure 5).
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Figure 4. Scatter plot between SCAN values and SMAP values for the four anomaly stations with the
R-squared values: Uapb-Earle station in Arkansas (for the year 2015), R-squared value was 0.1506;
N Piedmont Arec station in Virginia (for 2016), R-square value was 0.2499; the Sellers Lake #1 station
in Florida (for 2015), R-square value was 0.2827; and the Princeton #1 station in Kentucky (for 2015),
R-square value was 0.3115.
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Figure 5. SMAP and SCAN time plot comparison to identify the anomaly: (a) Uapb-Earle station in
Arkansas (2085); (b) Sellers Lake #1 station in Florida (2012); (c) Princeton #1 station in Kentucky (2005);
and (d) N Piedmont Arec station in Virginia (2039).
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Figure 5a shows that at the Uapb-Earle station, the SMAP data and SCAN data are generally
correlated, but the correlation drastically changed from around 4 June to 25 June, and then from
13 August to 10 September. Figure 5b shows the large disagreement at the Sellers Lake station.
SCAN soil moisture values remained below 0.1 while SMAP abruptly jumped above 0.25 from August
21 to September 30. Figure 5c shows that at Princeton station, the agreement between SMAP and
SCAN was good from April 2015 to May. Nevertheless, this harmony was broken on 5 June until 27
June. In these days, SCAN observations were between 0.1 and 0.2, while SMAP data were between
0.2 to 0.3. From 6 August to 15 November, SMAP data were consistently lower than the SCAN data.
Figure 5d shows that at N Piedmont Arec station there was a reverse trend between SMAP and
SCAN from 18 January to 1 February, then 5 March to 18 March, and then from 8 April to 14 April.
One of the major limitations of using SCAN data for satellite data validation is that the scales are
different. The station observations are from precise sensors buried in soil, which only see a few inches
of soil volume, while satellite sensors collect surface radiance from a large footprint (e.g., SMAP
~36 × 36 km) [15]. The satellite data are complex averages of the surface conditions and environments.
Therefore, although direct comparison between the two datasets has been a common approach, it may
not offer sufficient accuracy assessment of the satellite data.

Another limitation is the high SSI scores along the coastal areas in Figure 1. It has been reported
in the literature that open water might lead to considerably biased soil moisture retrievals [35].
Make corrections of the coastal soil moisture data would require huge amount of efforts and additional
data, including detailed land cover data and in-situ observations at much finer resolutions.

The last limitation of the SSI is that the calculation was based on the normality assumption of
the historical data. The outliers (droughts) detected by the deviation from means are only valid if the
assumption holds. Therefore, this approach is sensitive to data noise. Although we used 36 years of
data to calculate the means and standard deviations, the SSI model will benefit from including longer
periods if possible.

5. Conclusions

This research proposes a climate index called the standardized soil moisture index (SSI) to detect
droughts. SSI was derived from satellite soil moisture data of SMAP and the long-term land surface
model NLDAS data to facilitate drought detection in short terms such as three days. By doing so,
drought warnings can reach the farmers and foresters at a timely fashion.

We first validated the accuracies of the input data. The SMAP soil moisture data displayed good
statistical correlations (R2 = 0.4611 for 2015 and 0.6240 for 2016) with in-situ SCAN data and with
acceptable RMSEs (0.0819 for 2015 and 0.0748 for 2016). However, we found large inconsistency in
areas that are not friendly for satellite observations such as vegetation, water bodies, urban, and high
slope terrains.

The validation of SSI through PDSI and NDWI suggested SSI was an effective measure of soil
moisture conditions. The correlation between SSI and PDSI for April 2015 is acceptable (r = 0.52),
and the correlation between SSI and NDWI is slightly better (r = 0.56). PDSI is a monthly index.
Therefore, SSI could provide shorter-term warnings than PDSI. Thus, SSI is a favorable index over
PDSI for drought detection.

In summary, our SSI is a new climate index for drought detection. It is computed from daily
satellite data and statistics from long-term soil moisture data, and therefore can provide short-term
warning of drought conditions. Moreover, SSI is easy to interpret for farmers and foresters due to its
simple and transparent statistical construct. Our research validated the SSI using multiple external
sources of soil moisture data. The inconsistency of satellite observations with ground data could be
solved by downscaling satellite data in the future work.



Remote Sens. 2018, 10, 301 11 of 13

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/2/301/s1,
Video: Southeast U.S. Agriculture-NASA DEVELOP Summer 2016 @ Wise County.

Acknowledgments: This material is based upon work supported by NASA through contract NNL11AA00B and
cooperative agreement NNX14AB60A. We would like to thank DeWayne Cecil, Michael Bender, Michael Brooke,
and Bob VanGundy for their help on this project. Thank Yousra Benchekroun, and Grant Bloomer for their
help with the data and material processing. Thank Robert Rohli for the help with experimental design and
paper revision.

Author Contributions: Yaping Xu and Kenton W. Ross conceived and designed the experiments; Yaping Xu and
Kimberly Berry processed the data; Cuiling Liu and Yaping Xu analyzed the data and made the maps; Yaping Xu
and Lei Wang wrote the paper; Lei Wang and Kimberly Berry revised the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

Appendix A

The calibration of NLDAS data for calculation SSI.
Table A1 shows the statistic information obtained from ArcGIS.
Take April 01, 2015 as an example,
Mean (NLDAS) = 23.705
STD (NLDAS) = 5.5943
Mean (SMAP) = 0.35731
STD (SMAP) = 0.11158
Therefore,
Mean (NLDAS) = 66.343 × Mean(SMAP)
STD (NLDAS) = 50.137 × STD(SMAP)
in which NLDAS Value = 100 times of SMAP Value because of the unit difference.
Therefore, in the equation of SSI, we should divide the mean of NLDAS by 66.343, and divide the

STD by 50.137 to get a predicted SMAP value.

Table A1. NLDAS calibration.

Date NLDAS Mean SMAP Mean N/S NLDAS Std SMAP Std N/S

1 April 1 2015 23.705 0.35731 66.34 5.5943 0.11158 50.13
2 April 2 2015 23.413 0.35734 65.52 5.7149 0.08671 65.91
3 April 3 2015 23.912 0.40322 59.30 6.6633 0.09153 72.80
1 April 2016 26.860 0.38171 70.37 6.5042 0.08346 77.93
2 April 2016 26.087 0.44331 58.84 5.4096 0.07346 73.64
3 April 2016 24.792 0.41021 60.44 5.4099 0.08887 60.88
1 April 2017 23.829 0.36315 65.62 6.6062 0.10416 63.43
2 April 2017 23.036 N/A1 N/A 1 6.4982 N/A 1 N/A 1

3 April 2017 25.442 0.36161 70.36 8.3495 0.12412 67.27
1 2 April 2017 calibration was not available due to the missing data for SMAP.
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