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Abstract: Robust quantitative estimates of land use and land cover change are necessary to develop
policy solutions and interventions aimed towards sustainable land management. Here, we evaluated
the combination of Landsat and L-band Synthetic Aperture Radar (SAR) data to estimate land
use/cover change in the dynamic tropical landscape of Tanintharyi, southern Myanmar. We classified
Landsat and L-band SAR data, specifically Japan Earth Resources Satellite (JERS-1) and Advanced
Land Observing Satellite-2 Phased Array L-band Synthetic Aperture Radar-2 (ALOS-2/PALSAR-2),
using Random Forests classifier to map and quantify land use/cover change transitions between
1995 and 2015 in the Tanintharyi Region. We compared the classification accuracies of single versus
combined sensor data, and assessed contributions of optical and radar layers to classification accuracy.
Combined Landsat and L-band SAR data produced the best overall classification accuracies (92.96%
to 93.83%), outperforming individual sensor data (91.20% to 91.93% for Landsat-only; 56.01% to
71.43% for SAR-only). Radar layers, particularly SAR-derived textures, were influential predictors for
land cover classification, together with optical layers. Landscape change was extensive (16,490 km2;
39% of total area), as well as total forest conversion into agricultural plantations (3214 km2). Gross
forest loss (5133 km2) in 1995 was largely from conversion to shrubs/orchards and tree (oil palm,
rubber) plantations, and gross gains in oil palm (5471 km2) and rubber (4025 km2) plantations by
2015 were mainly from conversion of shrubs/orchards and forests. Analysis of combined Landsat
and L-band SAR data provides an improved understanding of the associated drivers of agricultural
plantation expansion and the dynamics of land use/cover change in tropical forest landscapes.

Keywords: agricultural plantation; ALOS-2 PALSAR-2; Google Earth Engine; JERS-1 SAR; land
change; Landsat; oil palm; rubber; tropical forest

1. Introduction

Human land use practices, especially those linked to agriculture, have profoundly modified
the Earth’s land surface, leading to adverse global environmental impacts through changes in
climate, biogeochemical cycles, ecosystem functions, and biodiversity [1–3]. By 2000, humans had
transformed 38% of the world’s terrestrial surface into croplands and pastures [4]. In Southeast Asia,
the expansion of tree-based agricultural plantations such as oil palm (Elaeis guineensis) and natural
rubber (Hevea brasiliensis) have been the largest contributors to land conversion [5–9], as approximately
89% and 75% of the world’s oil palm and natural rubber, respectively, were produced in Southeast
Asia [10]. (Hereafter, we refer to ‘tree-based agricultural plantations’ as ‘plantations’.) Policies and
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approaches that facilitate the sustainable and efficient production of tropical agricultural commodities,
development of decision support tools to improve management decisions, robust land use planning
in agricultural frontiers, and establishment of protected areas to safeguard key biodiversity areas are
needed [3,11,12].

Quantifying and predicting the complex dynamics and trajectories of land use and land cover
change are required to develop strategies for sustainable land management [13–15]. Earth observation
imagery from spaceborne sensors are the fundamental data required to quantify and assess changes in
land use and land cover from local to global scales given their synoptic coverage (e.g., [16–18]).

While it is longstanding practice to map and estimate land use and land cover change using optical
satellite data [19], recent attention has turned toward the fusion of optical and radar data as a more
effective method for building reliable forest monitoring systems or providing enhanced information
for characterizing and accurately determining land cover (e.g., [20,21]). Combining datasets from
optical and radar sensors, which detect different physical properties of land cover features, can provide
complementary information across the electromagnetic spectrum and can compensate for limitations
of using either sensor alone.

Recent studies that utilize combined optical Landsat and L-band SAR data (i.e., JERS-1,
PALSAR-1/2) for mapping land cover [22–25], forests [26–28], and rubber and/or oil palm
plantations [23,25,28–30] in tropical regions have clearly demonstrated improvements in mapping
accuracy. These studies implemented the combination of these datasets as either a step-wise
classification process, where PALSAR data is used first to map forests and broad land cover types
and then the PALSAR-derived forest layer is combined with Landsat time-series data to map rubber
plantations [28–30]; or fusion at the data level, where the optical and SAR images are merged into a
single dataset (or data cube) and used subsequently as input to single-date classification [22–25].

However, while fusion of optical and radar data has been shown to improve classification results
over individual sensor data [31], investigation into the application of synergistic optical and radar data
remains relatively limited geographically and/or temporally [20], and suffers from limited temporal
overlap, uncoordinated observation strategies, and varying data access policies between different
optical and radar satellite missions [27]. Studies combining Landsat and L-band SAR datasets that are
fused at the data level have either focused on one-time mapping of land cover and/or forests [22–25],
or in detecting deforestation [20,26,27], or urban sprawl [32]. Fewer studies have combined optical and
radar data to map temporal changes in land cover, or have evaluated which land cover types should
see the most improvement from data fusion [31].

Here, we combine Landsat and L-band SAR data for mapping changes in land cover. Also,
compared to studies using a step-wise classification process of combining Landsat and L-band SAR
data, we implement the combination of the datasets by data level fusion to ensure the temporal
consistency of the datasets for land cover change analysis. In this study, we evaluate the capability
of Landsat and L-band SAR data to estimate forest and land cover conversion. We pursued two
specific objectives. First, we compared the accuracy of land cover classification based on individual
sensor data (Landsat, L-band SAR), versus a combination of Landsat and L-band SAR. We assessed
the discrimination of expanding tree plantations (oil palm, rubber) from forest, and evaluated the
contributions of Landsat and L-band SAR layers to land cover classification accuracy. Second, we used
the combined Landsat and L-band SAR layers to identify transitions of land cover change, and to
specifically estimate the rate of forest conversion to plantations during the 1995–2015 period.

Our study system was the Tanintharyi Region of southern Myanmar, which is a tropical
biodiversity hotspot [33,34] undergoing rapid agricultural plantation development and forest
conversion. As Myanmar transitions towards a more open economy, a complex array of pressures to
convert its biologically diverse forests [35] is expected to intensify over at least the next decade [36–38].
Accurate detection of land cover types and estimates of change rates are critical to inform Myanmar’s
policymakers and conservation practitioners. The present study therefore fulfills the complementary
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objectives of (1) testing the efficacy of multi-sensor combination, and (2) quantifying transitions of
land cover change in an increasingly vulnerable, biodiverse tropical landscape.

2. Materials and Methods

2.1. Study Area

The Tanintharyi Region in southern Myanmar (from ~9◦ to 16◦N and ~97◦ to 100◦E) has a land
area of 43,345 km2 extending from north to south (Figure 1). The coastal areas border the Andaman
Sea to the west and the mountainous Tenasserim Hills (with highest elevation at 2072 m above sea
level) are located east along its border with Thailand. The region has a tropical monsoon climate (Am)
under the Köppen–Geiger climate classification system [39], and experiences three seasons including
summer (February to May), rainy (May to October), and winter (November to February). The mean
annual rainfall ranges from 3865 to 5594 mm with average annual temperatures from 26.5 to 26.9 ◦C
across the region [40], which supports tropical evergreen broadleaf forests in most upland (terra firma)
zones, mixed deciduous forests in parts of north and northeast Tanintharyi, and mangrove forests in
the coastal intertidal zone [41,42].
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still holds one of the largest remaining lowland forests in the Indochinese and Sundaic regions of 
Southeast Asia, having been largely spared due to armed conflict between the Karen ethnic group and 
the Burmese national government [43]. The forests of Tanintharyi are situated in the biologically rich 
transition zone of these two biogeographic regions, thereby supporting various globally important 
threatened species such as tiger (Panthera tigris), Gurney’s pitta (Pitta gurneyi), Sunda pangolin (Manis 
javanica), Asian elephant (Elephas maximus), and Malayan tapirs (Tapirus indicus) [43–47]. 

Figure 1. (a) Location of the Tanintharyi Region, southern Myanmar with regions of interest based on
ground truth data highlighted in red and interpreted from high resolution imagery in blue. The satellite
images shown are (b) 2015 Landsat 8 OLI (false color, RGB = 543); (c) 1995 JERS-1 SAR (grayscale, HH);
and (d) 2015 ALOS-2/PALSAR-2 (false colour, RGB = HH/HV/HH-HV).

Despite extensive deforestation experienced in peninsular Thailand and elsewhere, Tanintharyi
still holds one of the largest remaining lowland forests in the Indochinese and Sundaic regions of
Southeast Asia, having been largely spared due to armed conflict between the Karen ethnic group and
the Burmese national government [43]. The forests of Tanintharyi are situated in the biologically rich
transition zone of these two biogeographic regions, thereby supporting various globally important
threatened species such as tiger (Panthera tigris), Gurney’s pitta (Pitta gurneyi), Sunda pangolin (Manis
javanica), Asian elephant (Elephas maximus), and Malayan tapirs (Tapirus indicus) [43–47].
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In Myanmar, Tanintharyi is considered an important economic region for the expansion of
large-scale agribusiness concessions for crops such as oil palm and rubber, promoted as a dual
economic development and poverty alleviation strategy under the government’s 30-year Agricultural
Master Plan [48,49]. Of the almost 5400 km2 of intact forests converted into various plantations from
2002 to 2014 across Myanmar, Tanintharyi had an expansion of 754.40 km2 in plantations—the third
highest in the country—accounting for almost 41% of the total intact forest loss within Tanintharyi [50].
Commercial agriculture expansion, particularly from large-scale agro-industrial development, has
been identified therefore as a key driver of deforestation that is likely to lead to dramatic future
expansion into remaining forests (e.g., [35,38,43,51]).

2.2. Data

2.2.1. Satellite Data

In this study, we used a combination of optical and radar satellite data for land cover change
analysis. For optical data, we used the Landsat-5 Thematic Mapper (TM) and the Landsat-8 Operational
Land Imager (OLI), specifically the calibrated top-of-atmosphere (TOA) reflectance products available
through the Google Earth Engine (available online: https://earthengine.google.com, accessed on 15
September 2016) public data catalog. The Landsat datasets covering our study area were then imported
as image collections into Google Earth Engine, a cloud-based geospatial analysis platform [52], for
subsequent pre-processing tasks.

For radar data, we used freely available global L-band (long wavelength, ~23 cm) Synthetic
Aperture Radar (SAR) mosaic datasets, from the Japan Aerospace Exploration Agency’s (JAXA) Japan
Earth Resources Satellite (JERS-1) and the Advanced Land Observing Satellite-2 Phased Array L-band
Synthetic Aperture Radar-2 (ALOS-2/PALSAR-2), downloaded from the JAXA ALOS Research and
Application Project (available online: http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm,
accessed on 16 August 2016). The JERS-1 data were available from 1992-1998 and ALOS-2/PALSAR-2
was available from 2014 onwards [53,54]. Each 1 x 1-degree mosaic tile (4500× 4500 pixels), provided at
25 m spatial resolution, consists of the following data layers: backscattering coefficients (i.e., horizontal
transmit-horizontal receive (HH) polarization for JERS-1 data; HH and horizontal transmit-vertical
receive (HV) polarization for ALOS-2/PALSAR-2 data), observation date, local incidence angle, and
processing mask information [55]. The SAR backscattering coefficient layers were pre-processed
by JAXA using their Sigma-SAR processor, which involved radiometric and geometric calibration,
ortho-rectification, slope correction, co-registration, and intensity tuning of neighboring strip data [56].
Twenty-one mosaic tiles were collated to cover Tanintharyi Region at each time point, 1995 and 2015,
totaling 42 tiles. We did not observe any problems with the radar datasets (e.g., missing data, stripes)
after a visual inspection of the mosaic tiles.

2.2.2. Reference Data and Classification Scheme

We defined land cover classes through a combination of field verification and visual interpretation
of high-resolution imagery available from Google Earth Pro (available online: https://www.google.
com/earth/desktop/, accessed on 1 October 2016). Ground truth data from field verification were
collected in Tanintharyi in 2015 and 2016 by the Smithsonian Institution, Virginia, USA; Fauna & Flora
International, Yangon, Myanmar; and EcoDev/ALARM, Yangon, Myanmar. Visual interpretation of
reference imagery was based on elements that help to identify land cover features such as location,
size, shape, tone/color, shadow, texture, and pattern [57]. We identified land cover classes (Table 1)
that were delineated as regions of interest (ROI) for training and testing the classification algorithm.

https://earthengine.google.com
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
https://www.google.com/earth/desktop/
https://www.google.com/earth/desktop/
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Table 1. Description of the land cover classes of the Tanintharyi Region, Myanmar.

Code Land Cover Class Description

FOR Forest Forest with tree canopy cover >80%
MNG Mangrove Mangrove cover along coastal areas; tree canopy cover >80%
OPM Oil Palm Mature Plantation of mature oil palm with coverage >50%
RBM Rubber Mature Plantation of mature rubber trees with coverage >50%
SHB Shrub/Orchard Degraded woody vegetation; cultivated land such as cashew, betel nut
RPD Rice Paddy Paddy fields with planted rice
BUA Built-Up Area Developed land such as buildings, roads, human settlements
BSG Bare Soil/Ground Areas of exposed soil or ground; with grass or minimal vegetation
WTR Water Body Bodies of fresh/saltwater such as oceans, lakes, rivers; flooded areas

2.3. Overall Workflow and Data Organisation

Our overall workflow consisted of four stages: image pre-processing, image classification,
accuracy assessment, and change analysis (Figure 2). Image pre-processing consisted of two parts: for
Landsat data, pre-processing tasks involved creating the best-available-pixel image composites and
calculating indices; for SAR data, tasks included creating regional mosaics, speckle filtering, converting
to normalized radar cross-sections, and calculating texture measures and indices. Image classification
involved creating image stacks from the Landsat and SAR layers, delineating regions of interest, and
classifying images using a machine learning classifier. Accuracy assessments included calculating
standard accuracy metrics, uncertainty estimates, and statistical tests. Finally, change analysis of
single-date classifications for 1995 and 2015 included constructing cross-tabulation matrices and a
visualization diagram.
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We organized our image data stacks into two sets (Table 2). Under Set A, two time points (1995
and 2015) were used for analyzing land cover change over the study area across 20 years. Under Set
B, only one time point (2015) was used. For each set, three groups of images were put together for
evaluation: Landsat-only group, SAR-only group, and Landsat + SAR group. The Landsat-only group
consisted of 12 layers with seven image bands and five indices for both sets. For the SAR-only group,
Set A consisted of nine layers for each time point with only the HH polarization and eight derivative
texture measures, while Set B consisted of both the HH and HV polarizations, thereby increasing
the SAR data layers in Set B to 24 consisting of two polarization channels, six indices, and 16 texture
measures. For the Landsat + SAR group, a total of 21 and 36 data layers were used in Set A (at both
time points) and Set B, respectively. Note that in Set A, since the 1995 JERS-1 SAR data was originally
designed with only the HH polarization, we used only the HH polarization of the 2015 PALSAR-2 data
to ensure compatibility of both datasets for land cover change analysis. Then in Set B, we used both
HH and HV polarizations to evaluate whether the dual-polarized SAR data (with the additional SAR
layers generated from the inclusion of the HV polarization such as HV-derived textures and indices)
contribute to improving the classification accuracies and discrimination between land cover types
compared to Set A 2015, which only included the single-polarized SAR data (HH polarization and
HH-derived textures).

Table 2. Organization of datasets, layer composition for each sensor type in each dataset, and total
number of layers per data group.

Sensor Type Set A Set B

1995 2015 2015

Landsat

Landsat-5 TM

• 7 bands
• 5 indices
• 1994–1995

composite

Landsat-8 OLI

• 7 bands
• 5 indices
• 2015–2016 composite

Landsat-8 OLI

• 7 bands
• 5 indices
• 2015–2016 composite

L-band SAR

JERS-1 SAR

• HH polarization
• 8 GLCM textures
• 1995 composite

ALOS/PALSAR-2

• HH polarization
• 8 GLCM textures
• 2015 composite

ALOS/PALSAR-2

• HH and
HV polarization

• 16 GLCM textures
• 6 indices
• 2015 composite

Total number of layers per data group

Landsat data 12 12 12
SAR data 9 9 24
Landsat + SAR 21 21 36

2.4. Image Pre-Processing

2.4.1. Pre-Processing of Landsat Images

We generated Landsat image composites for 1995 and 2015 by extracting the best available
observations from multiple Landsat images using pixel-based image compositing, implemented
through a user-defined rule-based criteria (e.g., sensor preference, dates of acquisition, exclusion
of clouds and shadows) to generate the best-available-pixel image composites [58–61]. To generate
the best-available-pixel image composites using Landsat data, we adapted an image compositing
script within the Google Earth Engine environment from the contributions of its user community,
specifically the modified scripts by Mariano Gonzalez Roglich (Conservation International) and Juan
Doblas (Instituto Socioambiental) on the original Temporal Dark Outlier Mask Compositing script
developed by Carson Stam and Ian Housman (Red Castle Resources Inc., Salt Lake City, Utah, USA;
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United States Forest Service—Remote Sensing Applications Center, Salt Lake City, Utah, USA). The
image compositing script, including our minor modifications, executed user-defined criteria to select
the best-available-pixel in Landsat TOA images and exported the resulting composite images for
subsequent use in image classification. Our user-defined inputs included the extent of our study area
(Tanintharyi Region), the base year of the image composite (i.e., 1995, 2015), the number of years (n = 2)
and Julian date range (0 to 365 days, or from start to end of year) from where the image composite was
drawn, the thresholds for excluding or masking clouds (10% or less) and shadows (z-score = −1), and
the Landsat sensors used (i.e., Landsat 5 TM for 1995, Landsat 8 OLI for 2015). A median ee.Reducer
function was then applied to the collection of images with unmasked pixels to “reduce” the image
collection into a single output image representing the median of the images. The output was generated
pixel-wise such that at each pixel location in each band of the output image, the pixel value was the
median of all unmasked pixels in the image collection at that location [62]. Our scripts, including the
links to the original image compositing scripts, are provided in this paper as supplementary material
(see Supplementary Material S1 and S2).

From the Landsat image composites of each year, we calculated a set of five indices including the
Normalized Difference Vegetation Index (NDVI; Equation (1); [63,64]), the Enhanced Vegetation Index
(EVI; Equation (2); [65,66]), the Soil-Adjusted Total Vegetation Index (SATVI; Equation (3); [67,68]), the
Normalized Difference Tillage Index (NDTI; Equation (4); [69]), and the Land Surface Water Index
(LSWI; also referred to as Normalized Difference Water Index or modified NDVI; Equation (5); [70,71]).
These indices are defined as:

NDVI =
ρNIR − ρRED
ρNIR + ρRED

(1)

EVI = 2.5 ∗ ρNIR − ρRED
ρNIR + 6.0 ∗ ρRED − 7.5 ∗ ρBLUE + 1.0

(2)

SATVI =
ρSWIR1 − ρRED

ρSWIR1 + ρRED + 0.1
∗
(

1.1− ρSWIR2

2.0

)
(3)

NDTI =
ρSWIR1 − ρSWIR2

ρSWIR1 + ρSWIR2
(4)

LSWI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(5)

where NIR is near infrared band, RED is red band, BLUE is blue band, and SWIR is shortwave infrared
band. We used these optical indices owing to their demonstrated capability in forest and land cover
mapping. For example, combining NDVI and LSWI was shown to provide better separation of land
cover types, including croplands and forests [72]. Another study found that NDTI, SATVI, and LSWI
were influential predictors for discriminating between plantations and forests [25]. Lastly, several
studies investigating multi-temporal optical data combined with PALSAR data demonstrated the
utility of NDVI, EVI, and LSWI for mapping forests and deciduous rubber plantations (e.g., [28–30,73]).

2.4.2. Pre-Processing of JERS-1 SAR and ALOS-2/PALSAR-2 Mosaics

The geo-referenced SAR backscattering coefficient tiles were mosaicked together to form regional
mosaics for each year. The 1995 JERS-1 mosaic consisted of a single HH-polarized channel and the 2015
PALSAR-2 mosaic consisted of dual-polarized (HH and HV) channels. After mosaicking, a Refined
Lee filter was applied to every channel of the regional mosaics to reduce the effects of speckle apparent
in raw SAR imagery and to preserve edge information between adjacent land cover types [74]. The
digital numbers (DN) of HH and HV images were converted to sigma-naught values (σ0; units in
decibel, dB) using Equation (6):

σ0 = 10 · log10

(
DN2

)
+ CF (6)
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where σ0 is the radar backscatter per unit area, DN is the digital number, and CF is the calibration factor
with a given value of −84.66 dB for the JERS-1 mosaic and −83.0 dB for the PALSAR-2 mosaic [55].
The date and mask tiles corresponding to each regional raster image were also mosaicked to aid in
delineating regions of interest for the classification stage. All layers of the regional mosaics (TIFF file
format) were then uploaded as image assets in Google Earth Engine. Except for tile mosaicking and file
format conversion done in Quantum GIS v.2.18 (available online: http://www.qgis.org/, accessed on
16 August 2016), speckle filtering and conversion to normalized radar cross-section were implemented
using the European Space Agency Sentinel Application Platform Toolbox v.4.1 (ESA SNAP; available
online: http://step.esa.int/main/toolboxes/snap/, accessed on 16 August 2016).

A set of texture measures and indices were derived from the SAR regional mosaics to provide
additional information for land cover classification. The texture measures were calculated for both Sets
A and B, while indices were computed only for Set B to make use of both the HH and HV polarization
channels. For Set A, the texture measures were calculated from the HH-polarized channel of the 1995
and 2015 mosaics, resulting in eight additional image layers per year. For Set B, the texture measures
were calculated separately from the HH and HV polarization channels, resulting in 16 additional
image layers for the 2015 mosaic.

We calculated texture measures from SAR data to improve the classification accuracies of broad
land cover types [75–78]. We used second-order texture measures, which consider the spatial
relationships between groups of two neighboring pixels to a certain direction within a window.
Deriving these texture measures involved the calculation of Grey-Level Co-occurrence Matrices
(GLCM), a concept first described by Haralick et al. [79], which outline the distance and angular
relationships among a neighborhood of pixels [80]. In this study, we used eight texture measures
including contrast (CON), dissimilarity (DIS), and inverse difference moment (IDM), which describe the
degree of contrast between pixels; angular second moment (ASM) and entropy (ENT), which describe
regularity in the pixels within a neighborhood of pixels; and mean (AVG), correlation (COR), and
variance (VAR), which measure the statistics derived from the GLCM [76,80]. The textural attributes
were derived from the average of the directional bands within a 3 × 3 neighborhood size using the
glcmTexture function in Google Earth Engine (based on Equations (7)–(14); [79,81]):

ASM = ∑
i

∑
j
{p(i, j)}2 (7)

AVG =
2Ng

∑
i=2

(
ip(x+y)(i)

)
(8)

CON =
Ng−1

∑
n=0

n2

{ Ng

∑
i=1

Ng

∑
j=1

p(i, j)

}
, |i− j| = n (9)

COR =
∑i ∑j(i, j)p(i, j)− µxµy

σxσy
(10)

DIS =
Ng−1

∑
n=1

n

{ Ng

∑
i=1

Ng

∑
j=1

p(i, j)2

}
, |i− j| = n (11)

ENT = −∑
i

∑
j

p(i, j) log(p(i, j)) (12)

IDM = ∑
i

∑
j

(
1

1 + (i− j)2

)
· p(i, j) (13)

VAR = ∑
i

∑
j
(i− µ)2 · p(i, j) (14)

http://www.qgis.org/
http://step.esa.int/main/toolboxes/snap/
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where p(i,j) is the (i,j) entry in a normalized grey-level spatial dependence matrix; Ng is the number of
distinct grey levels in the quantized image; µx and µy are the means of px and py; and σx and σy are the
standard deviations of px and py.

We subsequently derived six additional indices from the raw SAR backscattering coefficient
mosaics, including simple ratios of the HH and HV polarization channels (RAT1, RAT2, Equations (15)
and (16)), the Average (AVE, Equation (17)), and Difference (DIF, Equation (18)), which in addition
to the HH and HV channels were demonstrated to yield good accuracies for discriminating forest,
non-forest, and coconut palms [82], and for mapping broad land cover types such as forest, cropland,
urban areas, and water [73,83–85]. The DIF image provided good separability among plantation
species such as oil palm and rubber [86]. We also calculated the Normalized Difference Index (NDI,
Equation (19)), which has been applied in detecting new fronts of deforestation [87]; and the NL Index
(Equation (20)), which was demonstrated to improve overall accuracies of L-band SAR data for land
cover classification [77]. The SAR indices are defined as:

RAT1 =
HH
HV

(15)

RAT2 =
HV
HH

(16)

AVE =
HH + HV

2
(17)

DIF = HH − HV (18)

NDI =
HH − HV
HH + HV

(19)

NLI =
HH ∗ HV
HH + HV

(20)

2.5. Image Classification

2.5.1. Creation of Image Stacks

Both Landsat and L-band SAR data products were generated with high geometric accuracy [56,88].
A good spatial alignment was observed between the two datasets; hence no further processing was
done on the final image stacks. The final Landsat-only image stacks for Sets A and B consisted of 12
layers, including seven bands (i.e., BLUE, GREEN, RED, NIR, SWIR1, SWIR2, TIR) and five indices
(i.e., NDVI, EVI, SATVI, NDTI, LSWI). The final SAR-only image stacks for Set A 1995 and Set A 2015
consisted of nine layers each (i.e., HH and derived HH textures including ASM, AVG, CON, COR, DIS,
ENT, IDM, VAR), and the final SAR-only image stack for Set B 2015 consisted of 24 layers in total (i.e.,
HH and HV plus their derived textures, RAT1, RAT2, AVE, DIF, NDI, NLI). The final Landsat + SAR
image stacks for Set A 1995 and Set A 2015 consisted of 21 layers each, and 36 layers in total comprised
the final Landsat + SAR image stack for Set B 2015 (Table 2).

2.5.2. Delineation of Regions of Interest

We separately digitized 1995 and 2015 polygons representing ROIs across the study area within
the Google Earth Engine scripting environment. The final set of ROIs consisted of 50 polygons
from each land cover class, totaling 450 polygons for nine land cover classes in each year. The 2015
ROI polygons were delineated based on ground truth data, the Landsat and SAR image stacks, and
high-resolution imagery available from Google Earth Pro. The polygons were examined by visual
interpretation using the time-series high-resolution images in Google Earth Pro and several image
composites, including natural color (Landsat-5 Bands 321; Landsat-8 Bands 432), false color (Landsat-5
Bands 432/543; Landsat-8 Bands 543/654; PALSAR-2 HH-HV-HH/HV; SAR RGB HH95-HH95-HH15),
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and vegetation indices (e.g., NDVI) to check the consistency between polygons and imagery and to
develop a robust training/testing dataset.

We implemented a different scheme for delineating 1995 ROI polygons. Due to the absence of
ground truth data and high-resolution imagery for 1995, we developed individual mask layers for
specific land cover classes to aid in delineating ROIs for classifying the 1995 image stacks. These masks
were generated specifically for Oil Palm Mature, Rubber Mature, and Shrub/Orchard classes such that
a mask layer would consist of two values: 1 for pixels where ROI polygons can be digitized, and 0
for excluded pixels. To generate the masks, we first extracted the image statistics based from the 2015
Landsat and SAR image stacks using the corresponding 2015 ROIs. From the image statistics, we then
constructed box-whisker plots to visualize the distributions of reflectance/backscatter values per land
cover type against each optical band/radar channel (predictor variables). Predictor variables deemed
capable of discriminating these land cover classes were chosen based on visual assessment of the plots
where the classes were separable based on their distributions (see Supplementary Material S3). We
subsequently implemented a decision tree classifier to determine thresholds in these chosen optical
bands/radar channels from which the masks were calculated. These masks together with the 1995
image stacks were used to delineate ROIs for these classes. The box-whisker plots and decision
trees were generated using ggplot2 and tree packages [89,90], respectively, in R Software for Statistical
Computing v.3.3.2 ([91]; available online: http://www.R-project.org/, accessed on 15 February 2017).
For the remaining land cover classes Forest, Mangrove, Rice Paddy, Built-Up Area, Bare Soil/Ground,
and Water Body, we delineated the 1995 ROIs by visually interpreting the 1995 image stacks and
contextually examining the 2015 ground truth data and available images. The final polygons were
imported as feature collections in Google Earth Engine scripting environment.

2.5.3. Sampling Design

We adopted a simple random sampling design to achieve our accuracy assessment objectives,
which involves calculating unbiased accuracy and uncertainty estimates. To calculate the required
sample size, we used Equation (21) [92]:

n =
z2O(1−O)

d2 (21)

where O is the overall accuracy expressed as a proportion, z is a percentile from the standard normal
distribution, and d is the desired half-width of the confidence interval or margin of error. Aiming
for an overall accuracy of 0.90, z = 1.96 for a 95% confidence interval, and a 2.5% margin of error, we
obtained a total sample size of n = 553.

A 30-m spatial resolution was used as the scale of the ROIs used to classify the Landsat-only
and Landsat + SAR image stacks while a 25-m spatial resolution was used as the scale of the ROIs
used to classify the SAR-only image stacks. The ROIs were then partitioned into training and testing
polygons. Each polygon was assigned a random number between 0 and 1 using the randomColumn
and sampleRegions functions in Google Earth Engine, then polygons with assigned values ≤0.70 were
segregated as training data and polygons with values >0.70 as testing data. After splitting the ROIs into
training and testing polygons, we independently assigned a random number between 0 and 1 to each
pixel within each of the training polygons and in each of the testing polygons using the same Google
Earth Engine functions. Pixels within training polygons with assigned values ≤0.70 were selected
as training pixels, and pixels within testing polygons with assigned values ≤0.70 were selected as
testing pixels. We implemented this sampling design to avoid potential bias from having spatially
dependent training and testing data [93]. The total number of pixels used for training and testing the
Landsat-only, SAR-only, and Landsat + SAR image stacks for each set are presented in Table 3.

http://www.R-project.org/
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Table 3. Number of pixels used as training and testing pixels for classification. Note that L = Landsat;
J = JERS; P = PALSAR; and L + J and L + P indicate combined Landsat and SAR data.

Set A 1995 Set A 2015; Set B 2015

L J L + J L P L + P

Training 1490 2112 1490 1441 2065 1426
Testing 632 906 632 606 868 606

Total 2122 3018 2122 2047 2933 2032

2.5.4. Classification Using Random Forests

We employed Random Forests, an ensemble, non-parametric, machine learning classifier [94], for
supervised land cover classification. Random Forests was chosen due to its improved performance in
accurately classifying land cover (e.g., [95,96]) and discriminating plantations such as oil palm and
rubber (e.g., [25,97]), its computational efficiency and ability to handle high-dimensional, multi-source
datasets (e.g., [98,99]), and its robustness against overfitting [94,99]. Random Forests emerged as
the best family of classifiers in a study evaluating 179 classifiers from 17 families (e.g., support
vector machines, neural networks, discriminant analysis, Bayesian, decision trees, among others) for
classifying hundreds of different real world datasets [100]. In this study, the Random Forests classifier
in Google Earth Engine was trained using the training data extracted from the sets of image stacks
(Table 3) based on the following parameters: 100 decision trees created per class, the square root of the
number of variables as the number of variables used for each node split, 10 as the minimum size of a
terminal node, and a 0.50 fraction of the input to bag per tree.

We were also interested in variable importance, a feature of Random Forests [94], to determine
the important variables used in the classification of the sets of image stacks. To implement the variable
importance feature, we first extracted the image statistics based on the sets of image stacks (i.e.,
Sets A and B; Landsat-only, SAR-only, and Landsat + SAR), and the ROI polygons (i.e., 1995, 2015)
corresponding to a specific image stack. Using the image statistics from the training pixels, we then
determined the important predictor variables used in the classification of the sets of image stacks
using the randomForest package [101] in R software, particularly using the mean decrease in accuracy
(permutation importance) as the measure of variable importance.

2.6. Accuracy Assessment

Using the testing data to evaluate the land cover maps from each set, we evaluated the
classification results using standard accuracy assessment metrics including error matrix, overall
accuracy, and user’s and producer’s accuracies [102], following the good practice recommendations for
assessing classification accuracies [103]. For simple random sampling, we used the equations from [104]
to calculate the unbiased accuracy estimates and confidence intervals. As recommended, the error
matrix should be reported in terms of estimated area proportions and not in terms of sample counts.

To do this, we first calculated for the map marginal proportions, Wi, or the proportion of the
map within each map class, by dividing the area of each class by the total area of the classified map.
From the error matrix, we then calculated the individual cell probabilities, p̂ij, which represents the
proportion of area of the entire classified map that has a map class i, a reference class j, and sample
counts nij using Equation (22):

p̂ij = Wi
nij

ni·
(22)

We subsequently calculated the true marginal proportions, p̂·k, the post-stratified estimator for
simple random sampling, which represents the proportion of area of class k (of q classes) as determined
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from the reference classification, and where nik is the sample count at cell (i,k) in the error matrix, Wi is
the area proportion of map class i using Equation (23):

p̂·k =
q

∑
i=1

Wi
nik
ni·

(23)

Using these true marginal proportions, we then calculated the unbiased overall, user’s, and
producer’s accuracies using the respective formulas of these accuracy metrics. Finally, we calculated
the sampling variability associated with the accuracy estimates, particularly of the overall, user’s, and
producer’s accuracies using Equations (24)–(26) for the variances, and Equation (27) for the confidence
intervals where V

(
Ô
)
, V
(
Ûi
)
, and V

(
P̂j
)
, are the variance estimators of the unbiased overall (Ô),

user’s (Ûi), and producer’s (P̂j) accuracies, respectively:

V
(
Ô
)
=

q

∑
i=1

pii
(Wi − pii)

Winij
(24)

V
(
Ûi
)
= pii

(Wi − pii)

W2
i nij

(25)

V
(

P̂j
)
= pii p−4

j

[
pii

q

∑
j 6=1

pij
(Wi − pij)

Winij
+

(Wj − pii)(pj − pii)
2

Wjnij

]
(26)

Ô± 2
[
V
(
Ô
)] 1

2 , Ûi ± 2
[
V
(
Ûi
)] 1

2 , P̂j ± 2
[
V
(

P̂j
)]1/2 (27)

We calculated the F-score of each land cover class for all image stacks in both sets to determine the
degree of discrimination of a given land cover class given a particular image stack (i.e., Landsat-only,
SAR-only, Landsat + SAR). The F-score is calculated using Equation (28):

f 1 =
2 ∗ (UAC ∗ PAC)

UAC + PAC
(28)

where UAc and PAc is the user’s and producer’s accuracy of a particular land cover class [105,106]. To
evaluate the statistical significance of the difference between the overall accuracies of classification
results, we used the McNemar’s test following Equation (29):

z =
f12 − f21√

f12 + f21
(29)

where f 12 represents the number of samples correctly classified in the first classification, but incorrectly
in the second classification, and f 21 represents the number of samples correctly classified in the
second classification, but incorrectly in the first classification [107]. We assessed the results at α = 0.05
significance level with a z = 1.96 critical value. We computed the standard accuracy assessment metrics
and the F-score in Google Earth Engine, the unbiased accuracy and uncertainty estimates in Microsoft
Excel, and the McNemar’s tests using the exact2x2 package [108] in R software.

2.7. Change Analysis

Each classified image was post-processed with a 3 × 3 mode filter using the reduceNeighborhood
function in Google Earth Engine to smooth isolated pixels. We then used these images for constructing
cross-tabulation matrices to summarize the area and percentage of land cover change from 1995 to 2015
using the Land Cover Change function of the Semi-Automatic Classification Plugin in Quantum GIS, which
implements map comparison to calculate the difference between a reference and a new classification
raster map [109,110]. To complement the cross-tabulation matrices, we plotted the change values in the
form of a Sankey diagram using an online generator (available online: https://sankey.csaladen.es/#,

https://sankey.csaladen.es/#
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accessed on 11 January 2018). Sankey diagrams, traditionally applied in the analysis of flows of energy,
materials, and other system processes, have been recently employed in land use/cover change studies
for visualizing land cover change transitions [111].

3. Results

3.1. Comparison of Combined versus Individual Sensor Data for Land Cover Classification

For both Sets A and B, the Landsat + SAR data produced the highest unbiased overall accuracies
(92.96% to 93.83%), followed by Landsat-only data (91.20% to 91.93%) (Table 4, z = 2.00 to 34.78;
p = 4.0 × 10−9 to 0.1573). As expected, accuracies from SAR-only data were substantially lower
(56.01% to 71.43%); we evaluated SAR-only data for classifying nine land cover classes for completeness
although cognizant that the data would achieve low accuracies. The Landsat + SAR data in Set B (with
its additional SAR layers) improved accuracy from 92.96% to 93.79%, but the increase in accuracy was
not significantly higher than Set A (z = 3.00; p = 0.08326). From this point forward, we focus on the
Landsat + SAR data owing to its better overall accuracies compared to individual sensors, although
we note that in Set A 1995 the overall accuracies of Landsat + SAR was not significantly higher than
Landsat-only data.

Table 4. Overall accuracies (%) from the classification results for each set and each image group, and
results of the McNemar’s tests for (a) Landsat-only vs. Landsat + SAR data for each set, and for (b) Set
A vs. Set B data for the 2015 Landsat + SAR data. Results of the McNemar’s tests show the z-scores
and p-values (in parentheses).

Image Group Set A Set B

1995 2015 2015

Overall accuracies

Landsat-only 91.20 91.93 91.93
SAR-only 64.78 56.01 71.43
Landsat + SAR 93.83 92.96 93.79

McNemar's tests

(a) Landsat-only vs. Landsat + SAR within
each year

2.00
(0.1573)

28.90
(0.00000008)

34.78
(0.000000004)

(b) Landsat + SAR, Set A vs. Set B 3.00 (0.08326)

A total of 30 table cells (56%) showed improvement in either UA or PA with Landsat + SAR
compared to Landsat-only data, whereas only 11 cells (20%) showed that Landsat-only was better
than Landsat + SAR data; 13 cells (24%) showed no difference (Table 5). The Landsat + SAR data
produced at least 10% improvement over Landsat-only data in either UA or PA of Built-Up Area,
Bare Soil/Ground, and Shrub/Orchard. However, for land cover classes in which UA or PA did not
improve at least 10% (e.g., Forest, Mangrove, Oil Palm Mature, Rubber Mature, Rice Paddy), accuracies
were generally high (>80%). Lower UA or PA with Landsat + SAR data was observed for Mangrove
(UA = 66.16%), Oil Palm Mature (UA = 68.51%), Rubber Mature (UA = 66% to 67.96%), Shrub/Orchard
(PA = 71.43% to 77.78%), and Rice Paddy (UA = 69.05%). The unbiased UA and PA estimates and the
error matrices expressed in terms of estimated area proportions of all classification results are reported
in this paper as supplementary material (Supplementary Materials S4 and S5).
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Table 5. User’s (UA) and producer’s (PA) accuracies of land cover classes from the classification results
of Landsat + SAR data, and the difference of UA and PA between Landsat + SAR vs. Landsat-only
data. Numbers in bold indicate an improvement of at least 10% over Landsat-only data, and negative
values indicate lower UA and PA for Landsat + SAR compared to Landsat-only data.

Land Cover Type

Set A Set B

1995 2015 2015

UA PA UA PA UA PA

Landsat + SAR

Forest 0.9898 0.9661 0.9909 0.9375 0.9928 0.9000
Mangrove 0.6616 1.0000 1.0000 1.0000 1.0000 1.0000
Oil Palm Mature 1.0000 0.9136 0.7012 0.8393 0.6851 0.8545
Rubber Mature 1.0000 1.0000 0.6600 0.9184 0.6796 0.9375
Shrub/Orchard 0.9722 0.7778 0.8282 0.7143 0.8618 0.7714
Rice Paddy 0.6905 0.7465 0.9731 0.8553 0.9334 0.9041
Built-Up Area 0.8603 0.9348 1.0000 1.0000 1.0000 1.0000
Bare Soil/Ground 0.6963 0.9239 0.8765 0.9518 0.9453 0.9625
Water Body 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Difference (Landsat + SAR - Landsat-only)

Forest 0.0006 0.0317 –0.0091 –0.0208 –0.0072 –0.0583
Mangrove 0.0682 0 0.0597 0 0.0597 0
Oil Palm Mature 0 0 0.0460 0.0029 0.0299 0.0182
Rubber Mature 0 0 –0.0131 0.0093 0.0065 0.0284
Shrub/Orchard –0.0157 0.1256 0.0689 0.0621 0.1025 0.1193
Rice Paddy 0.0646 –0.0414 –0.0232 0.0504 –0.0629 0.0992
Built-Up Area 0.2987 0.0098 0.0995 0.4921 0.0995 0.4921
Bare Soil/Ground 0.1098 0.0552 0.1719 –0.0112 0.2407 –0.0005
Water Body 0 0 0 0 0 0

Although SAR-only data were ineffective in classification, the SAR layers contributed to the most
important predictor variables in Landsat + SAR data (Table 6). All optical indices were important
variables for Landsat-only data. For Landsat + SAR data, HH AVG, SATVI, NIR, EVI, SWIR1, NDVI,
LSWI, and SWIR2 were consistently the most important variables in Set A. In Set B, among 36 layers,
the most important variables included HV AVG sum average (mean) texture for the SAR layers; and
SWIR1 and SWIR2, four optical indices (SATVI, NDVI, EVI, and NDTI), GREEN, TIR, and NIR for
optical layers. For Landsat-only data, SATVI, TIR, NIR, EVI, NDVI, SWIR1, SWIR2, and LSWI were
consistently the most important variables in both Sets A and B.

F-scores from both Landsat + SAR and Landsat-only data showed comparatively good
discriminative capabilities for classifying Forest and Mangrove (>0.80), except for Mangrove in Set
A 1995 (Table 7). For Oil Palm Mature and Rubber Mature, discriminative capabilities of Landsat+
SAR and Landsat-only data were high for Set A 1995 (>0.95), but lower in Set A 2015 and Set B 2015
(between 0.73 to 0.79). For most land cover classes, the difference in F-scores between Landsat + SAR
and Landsat-only data were less than 0.05, except Shrub/Orchard (by 0.06 to 0.11), Built-Up Area (by
0.19 to 0.35), and Bare Soil/Ground (by 0.09 to 0.14) where Landsat + SAR data had higher F-scores
than Landsat-only data.
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Table 6. Ten most important predictor variables from the classification results of Landsat-only (L),
SAR-only (J or P), and Landsat + SAR (L + J or L + P) data. Numbers in parentheses below each variable
indicate variable importance scores based on mean decrease in accuracy (permutation importance).

Set A Set B

1995 2015 2015

L J L + J L P L + P L P L + P

SATVI
(17.09)

HH AVG
(38.63)

HH AVG
(18.05)

SATVI
(15.75)

HH AVG
(40.31)

SATVI
(13.85)

SATVI
(16.18)

HV
(21.01)

SWIR1
(12.93)

NIR
(16.77)

HH
(22.57)

NIR
(13.18)

TIR
(15.28)

HH
(21.28)

GREEN
(13.82)

TIR
(13.81)

HH AVG
(15.47)

GREEN
(10.79)

TIR
(15.79)

HH VAR
(15.25)

EVI
(12.42)

EVI
(13.39)

HH VAR
(19.28)

HH AVG
(12.53)

NDVI
(13.79)

HV AVG
(14.59)

TIR
(10.57)

EVI
(14.98)

HH DIS
(13.83)

SATVI
(12.41)

NDVI
(13.20)

HH DIS
(15.62)

SWIR1
(11.71)

EVI
(13.73)

HH VAR
(13.39)

SATVI
(10.05)

SWIR1
(14.88)

HH IDM
(13.58)

SWIR1
(11.46)

RED
(12.30)

HH CON
(15.31)

EVI
(11.28)

GREEN
(12.89)

NLI
(13.28)

SWIR2
(9.74)

NDVI
(14.28)

HH CON
(13.33)

HH
(11.17)

SWIR1
(11.96)

HH IDM
(11.85)

NDVI
(10.63)

NIR
(12.01)

AVE
(12.84)

NDVI
(9.63)

SWIR2
(11.81)

HH COR
(6.48)

HH CON
(10.97)

LSWI
(11.85)

HH COR
(6.71)

TIR
(10.59)

SWIR1
(11.39)

NDI
(12.75)

HV AVG
(9.07)

BLUE
(11.67)

HH ENT
(1.87)

NDVI
(10.59)

NDTI
(10.78)

HH ENT
(0.04)

SWIR2
(10.39)

SWIR2
(11.03)

HH
(12.54)

EVI
(9.04)

LSWI
(11.22)

HH ASM
(0.52)

LSWI
(10.00)

SWIR2
(10.42)

HH ASM
(0.00)

LSWI
(10.08)

NDTI
(10.42)

DIF
(11.68)

NDTI
(8.41)

GREEN
(10.70)

SWIR2
(9.89)

NIR
(9.79)

NIR
(9.77)

LSWI
(10.19)

HH VAR
(11.63)

NIR
(8.38)

Table 7. F-scores of land cover classes from the classification results of the Landsat-only (L), SAR-only
(J or P), and Landsat + SAR (L + J or L + P) data.

Land Cover Class

Set A Set B

1995 2015 2015

L J L + J L P L + P L P L + P

Forest 0.9610 0.4690 0.9778 0.9787 0.2733 0.9635 0.9787 0.6527 0.9441
Mangrove 0.7448 0.0120 0.7963 0.9692 0.5937 1.0000 0.9692 0.6247 1.0000
Oil Palm Mature 0.9548 0.3081 0.9548 0.7348 0.4536 0.7641 0.7348 0.5781 0.7605
Rubber Mature 1.0000 0.1888 1.0000 0.7735 0.6226 0.7681 0.7735 0.6833 0.7880
Shrub/Orchard 0.7857 0.0254 0.8642 0.7017 0.2485 0.7670 0.7017 - 0.8141
Rice Paddy 0.6976 0.4191 0.7174 0.8904 0.2597 0.9104 0.8904 0.2097 0.9185
Built-Up Area 0.6989 0.8182 0.8960 0.6495 0.7706 1.0000 0.6495 0.7975 1.0000
Bare Soil/Ground 0.7002 0.2784 0.7941 0.8137 0.3033 0.9126 0.8137 0.5328 0.9538
Water Body 1.0000 0.9553 1.0000 1.0000 0.8278 1.0000 1.0000 0.9219 1.0000

3.2. Land Cover Change in Tanintharyi Region, 1995–2015

Land cover change in the Tanintharyi Region from 1995–2015 was extensive (Figure 3). A total of
16,490 km2 (39% of the total landscape) experienced change from 1995–2015. Land cover maps from the
Landsat + SAR data further demonstrated the spatially-explicit nature of land cover change dynamics
(Figure 3). The major landscape changes included the expansion of rubber and oil palm plantations in
the north and south, respectively; and deforestation and forest fragmentation in the south.
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For Forest, 76% remained unchanged (16,112/21,245 km2); likewise 67% of Mangrove remained
unchanged. Large area changes were observed in Forest, Oil Palm Mature, Rubber Mature, and
Shrub/Orchard from 1995 to 2015 (Table 8). Forest decreased from 21,245 km2 to 18,479 km2 (49.97% to
43.47% of total area). Plantations expanded within this 20-year period with Oil Palm Mature increasing
from 1436 km2 to 6209 km2 (3.38% to 14.61% of total area) and Rubber Mature increasing from
1726 km2 to 4457 km2 (4.06% to 10.48% of total land area). Shrub/Orchard decreased from 12,413 km2

to 8482 km2 (29.20% to 19.95% of total area). To a lesser extent, changes in Bare Soil/Ground decreased
from 1089 to 280 (2.56% to 0.66% of total area); Mangrove decreased from 3511 km2 to 3428 km2

(8.26% to 8.06% of total area); and Rice Paddy increased from 782 km2 to 901 km2 (1.84% to 2.12% of
total area).

Table 8. Land cover change matrix from 1995 (rows) to 2015 (columns) based on Landsat + SAR
data showing land area (km2) and percentage of total area (%) of land cover classes in Tanintharyi
Region, Myanmar.

2015

1995 FOR MNG OPM RBM SHB RPD BUA BSG WTR Total

Land area (km2)

FOR 16,112 538 2044 1170 1361 15 2 3 0 21,245
MNG 535 2345 432 20 114 34 3 24 5 3511
OPM 441 3 738 124 128 2 0 1 0 1436
RBM 156 1 381 431 751 5 0 0 0 1726
SHB 1210 138 2564 2653 5683 137 4 20 3 12,413
RPD 4 48 24 44 312 337 2 17 0 782
BUA 1 11 3 1 24 6 6 3 0 55
BSG 16 323 21 13 107 364 11 183 51 1089
WTR 4 30 1 0 1 1 1 29 188 255

Total 18,479 3428 6209 4547 8482 901 29 280 247 42,512

Percentage (%)

FOR MNG OPM RBM SHB RPD BUA BSG WTR Total

FOR 37.90 1.26 4.81 2.75 3.20 0.04 0.00 0.01 0.00 49.97
MNG 1.26 5.52 1.02 0.05 0.27 0.08 0.01 0.06 0.01 8.26
OPM 1.04 0.01 1.74 0.29 0.30 0.00 0.00 0.00 0.00 3.38
RBM 0.37 0.00 0.90 1.01 1.77 0.01 0.00 0.00 0.00 4.06
SHB 2.85 0.33 6.03 6.24 13.37 0.32 0.01 0.05 0.01 29.20
RPD 0.01 0.10 0.06 0.10 0.73 0.79 0.01 0.04 0.00 1.84
BUA 0.00 0.03 0.01 0.00 0.06 0.01 0.01 0.01 0.00 0.13
BSG 0.04 0.76 0.05 0.03 0.25 0.86 0.03 0.43 0.12 2.56
WTR 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.07 0.44 0.60

Total 43.47 8.06 14.61 10.48 19.95 2.12 0.07 0.66 0.58 100.00

The gross losses/gains between land cover classes showed that transitions between land cover
classes were dynamic (Table 8; Figure 4). Focusing on forest conversion and plantation expansion,
Forest showed a total net loss of 2766 km2 while Oil Palm Mature and Rubber Mature showed a total
net gain of 4773 km2 and 2731 km2, respectively, within the 20-year study period. However, the total
gross loss of Forest in 1995 was 5133 km2 (i.e., 86% above the total net loss) through conversion to
Oil Palm Mature (2044 km2); Shrub/Orchard (1361 km2), Rubber Mature (1170 km2), and; the total
gross gain of Forest in 2015 was 2367 km2, attributed to the conversion of Shrub/Orchard (1210 km2),
Mangrove (535 km2), and Oil Palm Mature (441 km2). The total gross gain of Oil Palm Mature in
2015 was 5471 km2, attributed to the conversion of Shrub/Orchard (2564 km2), Forest (2044 km2), and
Mangrove (432 km2) into oil palm plantations. The total gross gain of Rubber Mature in 2015 was
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4025 km2, attributed to the conversion of Shrub/Orchard (2653 km2), Forest (1170 km2), and Oil Palm
Mature (124 km2) into rubber plantations.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 28 
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Shrub/Orchard largely contributed to the changes in forest and plantation expansion (Table 8;
Figure 4). Shrub/Orchard showed total net loss of 3931 km2 within the same period, and its total gross
loss was 6730 km2, which were largely conversion into Rubber Mature (2653 km2), Oil Palm Mature
(2564 km2), and Forest (1210 km2), and its total gross gain was 2799 km2, mainly from the conversion
of Forest (1361 km2), Rubber Mature (751 km2), and Rice Paddy (312 km2).

4. Discussion

4.1. Twenty-Year Land and Forest Cover Change in Tanintharyi Region

The Tanintharyi Region is a dynamic landscape, that recently experienced rapid and extensive
land use and land cover change over a 20-year period. Despite retaining one of the largest contiguous
areas of intact forests in Myanmar [50], Tanintharyi’s biodiverse lowland forests and mangroves have
limited geographic extents and are more heavily degraded than upland evergreen forests that are
widely distributed in the mountains along the Thailand border [42]. Our results corroborated previous
remote sensing-based studies on Tanintharyi that found oil palm and/or rubber plantation expansion
leading to widespread forest loss, particularly of lowland forests [43,50,112,113]. Compared to official
statistics, our estimate of the total area of oil palm and rubber plantations (10,666 km2) in 2015 was
more than four times the reported total area of planted oil palm and rubber (2662 km2) in Tanintharyi
in 2012/2013 ([51] citing Ministry of Agriculture and Irrigation). However, a direct comparison is not
feasible due to differences in data sources and the lack of transparent and robust government data.

Our results further align with research in other tropical landscapes where commercial tree-based
plantations have led to forest conversion, such as Peninsular Malaysia [114], Indonesia [114–116], Latin
America [117], and Africa [9,118] for oil palm; and China [119–122] and Cambodia [123] for rubber. The
expansion of these plantations in many tropical landscapes has been made possible due to the global
demand for agricultural commodities, foreign direct investment, supportive government policies and
programs, and the need to secure socio-economic benefits for local communities (e.g., [119,124–127]).
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Landscape change due to agricultural expansion of rice, agricultural boom crops such as oil
palm and rubber, and timber/wood extraction and infrastructure development has been widely
acknowledged to drive deforestation in Myanmar [35,37,51]. The expansion of agricultural plantations
is likely a direct outcome of the Myanmar national government’s policy reforms that liberalized markets
and encouraged private sector investments in agriculture [35,48]. Weak land tenure and armed conflict
in disputed territories, in addition to formal concessions and economic investment, present a complex
interplay of underlying factors that further situates the role of agribusiness concessions in deforestation
in Myanmar [35]. It is projected that large-scale, agro-industrial development could potentially lead to
widespread future deforestation due to the combined effects of land suitability for crops in remaining
large tracts of forests, economic liberalization, unclear land classification, governance challenges, and
legal system dysfunctions [36–38]. And as observed elsewhere, agricultural plantation expansion
in Myanmar could similarly result in negative environmental impacts (e.g., [5,8,12,128–130]). Our
analysis can be useful to policymakers and planners for evaluating the impacts of the Myanmar
government’s agricultural modernization policy.

4.2. Comparison of Combined Landsat and SAR Sensors versus Individual Sensors

Although our results align with previous research on plantations-deforestation in Tanintharyi,
our technical approach differed mainly in two ways that improve land cover detection and change
observations compared to previous studies in Myanmar. First, we implemented pixel-based image
compositing of Landsat imageries for our analysis; thereby creating seamless, cloud-free image
composites using the best-available pixel observations [58–61]. Second, we combined Landsat and
L-band SAR data, thereby maximizing the unique range of information detected by these sensors
across the electromagnetic spectrum for discriminating various land cover types. Moreover, our
results highlighted the dynamic landscape changes occurring in the Tanintharyi Region, such as the
degradation and regrowth of forests, the conversion and expansion of oil palm and rubber plantations,
and transitions to and from shrub/orchards.

Our study demonstrated that combining Landsat and L-band SAR data outperformed data solely
from either sensor alone for land cover classification and change analysis, as shown by improvements
in overall accuracies and better user’s and producer’s accuracies for most land cover types. Previous
studies investigating sensor synergies of Landsat and L-band SAR at the data level for land cover
mapping in tropical areas such as in West Africa [23], and Kalimantan and Riau in Indonesia [22,24]
produced similar results yielding the best overall classification accuracies for combined optical and
radar sensors over individual sensors. These studies, however, evaluated the combination of Landsat
and L-band SAR data for land cover classification at smaller scales (<900 km2 for Indonesia; <8000 km2

for West Africa) compared to the much larger landscape-scale investigation that we have done. Further,
our study evaluated which land cover types the combined optical and radar dataset was most effective,
in particular towards the discrimination of tree-based plantations (i.e., oil palm and rubber) and other
non-vegetated cover types (i.e., built-up area, bare soil/ground).

We note that our results corroborated the study by Torbick et al. [25], which investigated the
fusion of multiple new sensors (i.e., Landsat-8, PALSAR-2, and Sentinel-1A) for mapping tree-based
plantation extent in Tanintharyi and West Kalimantan, that showed multi-sensor combination was
useful for distinguishing plantations from other land cover types. However, our study did not include
C-band SAR data since there was insufficient spatial coverage of historical C-band SAR imagery in
1995 over our study area, and we focused on utilizing combined Landsat and L-band SAR data for
identifying patterns of land cover change, specifically estimating forest conversion and plantation
expansion, and on comparing classification accuracies based on individual versus combined optical
and SAR sensor data.

L-band SAR data proved to be useful owing to its contribution to the most important predictor
variables. In our study, texture measures from both co- and cross-polarized channels such as the
sum average (mean) and contrast were consistently among the top predictor variables contributing
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to overall performance of the combined Landsat and SAR data. The HH-polarized backscatter is
known to be correlated to the large crown canopies of oil palm although not to trunk height, while for
rubber the HH-polarized backscatter is correlated to trunk, branches, and twigs; hence allowing the
discrimination between mature oil palm and rubber plantations owing to the difference in scattering
mechanisms involved [131]. In our study, the influence of other SAR layers may have been less
prominent for identifying oil palm and rubber due to the presence of the additional optical layers, but
then had compensated elsewhere in classifying other land cover classes such as built-up areas and
bare soil/ground where optical layers had been less effective.

Adding SAR texture attributes contributed to improved classification accuracies of combined
optical and SAR datasets, which was similarly observed by Vaglio Laurin et al. [23], albeit less effective
and with minimal improvement compared to when added to SAR-only data where the margins of
improvement were more significant. Except for the sum average and contrast textures, our study
found that other texture attributes were less influential for land cover classification of combined sensor
data, which contrasted with other studies that found homogeneity and entropy textures as relevant
for improving classification accuracies and for discriminating various land cover classes [22,76]. This
difference is likely due to the larger kernel sizes (5 × 5 and above) applied to calculate textures in
other studies, which compared to our case was a small kernel size (3 × 3) owing to the computational
limitations we experienced in calculating textures of larger neighborhood sizes at landscape scales.
Although we opted to use a smaller kernel for this study, we suggest that future work explore the
impact of larger kernels for classifying land cover at landscape scales, should computational resources
be available.

Some studies conducted in South America (e.g., Ecuador, Peru) have found that Landsat had
limited ability to distinguish oil palm from other land cover, which was due to dense palm canopies
that rendered optical reflectance bands insensitive to structural geometric characteristics and to spectral
differences with other land cover types (e.g., secondary vegetation) [132,133]. In contrast, our results
showed that Landsat-only data had good discriminative capability of oil palm (F-scores > 0.95 for 1995
and >0.73 for 2015), which may be due to the combined influence of optical indices and shortwave and
thermal infrared bands, which all came to the fore of predictor variables used for identifying most land
cover classes. Our findings also corroborated Connette et al. [42], which showed good classification
accuracies for mapping oil palm plantations using Landsat, specifically in Tanintharyi Region.

Discriminating nine land cover types in our study area was challenging for L-band SAR-only
data [23,134]. Our results therefore clearly suggest that the way to maximize the utility of L-band SAR
sensors, at least of single- or dual-polarized SAR products, for detailed mapping and monitoring of
land cover in tropical landscapes is through an integrated classification approach of optical and radar
data, such as what we have done here. Combining optical and radar data is beneficial to maximize
their complementarity, in particular Landsat’s and L-band SAR’s sensitivities to the spectral and
geometric/structural characteristics, respectively, of various land cover features [23].

4.3. Potential Applications and Future Work

Government planners and policymakers can use the findings and maps presented in this study to
evaluate the impact of the government’s 30-year Agricultural Master Plan initiated in 2000, in particular
the expansion of plantations. Our study can potentially be used for further analysis of land cover
dynamics to assess the efficiency of the protected areas network in safeguarding important biodiversity
and their habitats in the Tanintharyi Region, and testing the potential for mapping plantations of other
species (such as teak, eucalyptus, banana, cassava) that are grown in Myanmar and elsewhere. Our
results on land use/cover change transitions become essential towards developing some of the future
work we envision that will explore understanding spatial determinants and landscape patterns of land
use/cover change, simulating spatially explicit future land use/cover change, and assessing historic
and future projected wildlife habitat given different development scenarios, of which the results can
inform government planning and policy formation.



Remote Sens. 2018, 10, 306 21 of 28

Leveraging optical Landsat data with full-polarimetric (HH, HV, VH, VV) L-band SAR data, or
with multi-frequency (e.g., X-, C-, L-, and P-bands) SAR datasets, can be promising next steps as
Earth observation data become more widely accessible, relevant, and integrated in many applications.
An emerging opportunity for land change science studies is the growing utility of cloud computing
geospatial analysis platforms, combined with the ever-increasing availability of Earth observation
data products, which are expected to facilitate multi-scale investigations of land system changes.
Exploiting valuable information also becomes challenging as large-scale remote sensing datasets
become more available. Hence, incipient developments in deep machine learning approaches such
as convolutional neural networks (e.g., [135–138]) are gaining attention due to their promising
capability for automatically extracting valuable contextual information from remote sensing data
such as for large-scale land cover classification. Finally, our study can be applied in similar geographic
contexts that can help to better understand the associated drivers of ongoing expansion of agricultural
plantations and the dynamics of land use/cover change across tropical forest landscapes globally,
making our contribution relevant in this growing era of Big Data.

5. Conclusions

Commercial agriculture is considered the leading driver of tropical deforestation globally. In
Myanmar, the expansion of agro-industrial plantation development is expected, which can have
profound effects on the environment and to local communities. In our study, we set out to evaluate
the capability of Landsat and L-band SAR data to estimate forest and land cover conversion cover in
Tanintharyi Region over two decades. We found that the combination of Landsat and L-band SAR
data was better than individual sensor data through robust and reliable accuracy metrics. Optical
indices and texture measures derived from SAR data were prominent predictors for various land
cover types within the region, and discriminated tree-based agricultural plantations (oil palm, rubber)
from forest and other land cover types. Moreover, we showed that using synergistic optical and radar
data provided reliable information on land cover change, particularly forest conversion, plantation
expansion, and transitions among various land cover in Tanintharyi Region over two decades. This
spatially explicit approach for analyzing landscape changes, when interpreted together with an
in-depth understanding of the complex proximate and underlying factors driving these changes, can
be used to inform evidence-based spatial planning, policy interventions, and decision-making. Using
multiple Earth observation sensors proved useful in generating land cover change information that
help to understand dynamic landscape changes in the tropics, and potentially can also support the
assessments of the impacts of land use policies and the development of viable solutions for sustainably
managing land resources.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/2/306/s1.
Supplementary materials include: (1) Scripts for Landsat image compositing; (2) scripts for image pre-processing,
classification, accuracy assessment; (3) box-whisker plots of reflectance/backscatter values for each land cover type
and decision trees used for delineation of 1995 ROI polygons; (4) user’s and producer’s accuracies of Landsat-only
and SAR-only data; and (5) error matrices for all classification results (Landsat-only, SAR-only data, Landsat +
SAR data).
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