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Abstract: Feature-based matching methods have been widely used in remote sensing image 

matching given their capability to achieve excellent performance despite image geometric and 

radiometric distortions. However, most of the feature-based methods are unreliable for complex 

background variations, because the gradient or other image grayscale information used to 

construct the feature descriptor is sensitive to image background variations. Recently, deep 

learning-based methods have been proven suitable for high-level feature representation and 

comparison in image matching. Inspired by the progresses made in deep learning, a new technical 

framework for remote sensing image matching based on the Siamese convolutional neural 

network is presented in this paper. First, a Siamese-type network architecture is designed to 

simultaneously learn the features and the corresponding similarity metric from labeled training 

examples of matching and non-matching true-color patch pairs. In the proposed network, two 

streams of convolutional and pooling layers sharing identical weights are arranged without the 

manually designed features. The number of convolutional layers is determined based on the 

factors that affect image matching. The sigmoid function is employed to compute the matching 

and non-matching probabilities in the output layer. Second, a gridding sub-pixel Harris algorithm 

is used to obtain the accurate localization of candidate matches. Third, a Gaussian pyramid 

coupling quadtree is adopted to gradually narrow down the searching space of the candidate 

matches, and multiscale patches are compared synchronously. Subsequently, a similarity measure 

based on the output of the sigmoid is adopted to find the initial matches. Finally, the random 

sample consensus algorithm and the whole-to-local quadratic polynomial constraints are used to 

remove false matches. In the experiments, different types of satellite datasets, such as ZY3, GF1, 

IKONOS, and Google Earth images, with complex background variations are used to evaluate the 

performance of the proposed method. The experimental results demonstrate that the proposed 

method, which can significantly improve the matching performance of multi-temporal remote 

sensing images with complex background variations, is better than the state-of-the-art matching 

methods. In our experiments, the proposed method obtained a large number of evenly distributed 

matches (at least 10 times more than other methods) and achieved a high accuracy (less than 1 

pixel in terms of root mean square error). 
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1. Introduction 

Image matching refers to a fundamental task of establishing correspondences between two or 

more images of the same scene taken at different times, from different sensors, or from different 

viewpoints. It is widely used in various applications of computer vision and remote sensing, such as 

image registration and fusion, change detection, and environment monitoring. Automatic image 

matching technology has been widely studied in the fields of computer vision and remote sensing 

in the past decades [1–4]. Unlike those in computer vision applications, the images in remote 

sensing (multi-temporal and multi-source images) are usually affected by complex background 

variations, such as noise caused by cloud and haze weather conditions and land cover changes 

caused by human construction activities and disasters (earthquakes and floods) [5]. These 

variations make image matching difficult. 

Existing matching methods are mainly divided into area-based and feature-based methods [3]. 

The second group is more popular than the first one due to the robustness and reliability of those 

methods against image geometric distortion and radiometric difference [6,7]. Feature-based 

methods generally consist of three steps: feature detection, description, and matching. 

Scale-invariant feature transform (SIFT) is one of the popular feature-based matching methods [8]. 

Considering the success of the SIFT algorithm, many improved versions have been proposed to 

enhance the performance of feature detection, description, and matching. The improved algorithms 

for feature detection include speeded-up robust features (SURF) [9] and complex SIFT (CSIFT) [10], 

among others. SURF can accelerate feature detection using FAST-Hessian and Haar wavelets, and 

CSIFT can detect features of complex-valued images. Many improved descriptors, such as principal 

component analysis–SIFT [11], gradient location and orientation histogram [12], and Affine–SIFT [13], 

have been investigated to make the SIFT features distinctive in image deformation. Feature 

descriptors are combined with several similarity metrics or constraints, such as scale-orientation 

joint restriction criteria [14], weight-based topological map-matching algorithm [15], normalized 

cross correlation and least square matching [16], perspective scale invariant feature [17], 

𝑙𝑞 -estimator [18], and L2-minimizing estimation [6], to match remote sensing images. Despite 

significant improvements to the feature-based matching method, the manually designed methods 

(e.g., SIFT) cannot fully obtain the invariant descriptors with the appearance of nonlinear 

illumination changes, shadows, and occlusions [19]. Unfortunately, the aforementioned issues are 

common in high-resolution remote sensing images with background variations. Traditional image 

matching methods do not work well for these kinds of images. 

To improve matching performance in the context of image background variations, the 

multiscale edge features-based rotation and scale invariant shape context are proposed [5]. In the 

method, the multiscale morphological operator is used to detect local scale invariant features and 

the descriptor in the rotation-invariant shape context is designed to match the images. However, 

this method does not match with high-resolution remote sensing images because unreliable edge 

gradient information exists in these kinds of images. A line segment-based method is proposed to 

match remote sensing images with large background variations [20]. In this method, line segments 

are extracted by using an edge drawing line (EDLines [20]) detector. Line validation is performed to 

obtain the main shape contour, and histogram binning shape-based descriptors are used to match 

the line segments. The line segment-based matching methods are robust against global geometrical 

distortions and can achieve high accuracy. However, line segment-based methods strongly depend 

on relatively stable linear objects, such as coastlines, riverside lines, and mountain ridges. In actual 

scenarios, the shape of linear objects may be changed significantly for remote sensing images with 

complex background variations. For example, the shapes of coastlines are inconsistent in long-term 

multi-temporal images for human construction activities or sea inundation, and the corresponding 

lines extracted by edge detectors do not correspond to the conjugated locations. Therefore, complex 

background variations between two multi-temporal remote sensing images may significantly 

disrupt the feature detection and representation of conjugated regions and lead to unsatisfactory 

matching results using the traditional feature-based methods. 
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In recent years, several image matching methods based on deep learning have been proposed 

[19,21,22]. Deep networks determine the similarity between image patches, and this is achieved by 

learning directly from the training examples without having to consider manually designed 

features. High-level features, rather than the low-level point, line, and region features, are learned 

in matching. The Siamese-type architecture with two-stream network is commonly used to learn 

similarities in image matching [19,23–25]. The two-stream Siamese-type network is regarded an 

effective deep network because of its capability for high-level feature representation. It can improve 

performance in terms of viewpoint, illumination changes, and background variations. However, the 

Siamese-type architecture mainly focused on image matching in computer vision, and it does not 

work well for remote sensing images with complex background variations (complex spatial 

structures and severe intensity changes). In addition, the benefits of multiscale patch comparison 

and searching efficiency are difficult to balance due to the large size of remote sensing images. 

In this study, we focus on learning how to match remote sensing images with complex 

background variations. This study aims to design a new technical framework based on the 

Siamese-type network to directly determine the similarity between remote sensing image patches 

without manually designed features and descriptors. Currently, no generic rule is applied when 

determining the architecture of deep learning. Generally, the architecture and parameters are 

determined through many repeated trials. Thus, the integrated multiple factors of nonlinear 

transformations between reference and sensed images are difficult to analyze. In this study, we 

considered each of the factors that may be involved in the remote sensing of images with complex 

background variations, such as geometric deformation and quality degradation. Then, the number 

of convolutional layers is determined on the basis of the factors rather than the architecture of deep 

network by blind repeated trials. In the proposed Siamese-type architecture, the convolutional 

layers with rectified linear unit (ReLU) activation and one max-pooling layer are arranged to learn 

abstract feature representations. Subsequently, two streams of convolutional layers share identical 

weights. In the output layer, the sigmoid function is employed to compute the positive and negative 

probabilities. The similarity of patch pairs is learned from the labeled training examples of 

matching and non-matching true color patches. To achieve high accuracy and efficiency of patch 

matching, sub-pixel Harris algorithm (S-Harris) and Gaussian pyramid coupling quadtree (GPCQ) 

are performed to obtain accurate localization. The searching space of candidate matches is 

narrowed, and multiscale patches are used to synchronously capture the matches. After initial 

matching, the false matches are removed by the random sample consensus (RANSAC) algorithm [26] 

and whole-to-local quadratic polynomial constraints.  

The main contribution of this study centers on the design of the deep network for multiscale 

patch comparison, which, when combined with the S-Harris corner detector, can improve the 

matching performance for remote sensing images with complex background variations. 

The remainder of this paper is organized as follows: Section 2 describes, in detail, the proposed 

method. Section 3 presents the comparative experimental results in combination with detailed 

analysis and discussion. Section 4 concludes this paper and provides our possible future work. 

2. Methodology  

The proposed matching framework mainly includes three steps: Siamese-type network 

training, S-Harris corner detection, and patch matching. At the training phase, the Siamese-type 

network (i.e., see Figure 1) is trained by the labeled examples of matching and non-matching true 

color patches. Then, in the matching phase with the trained network, the reference and sensed 

images are divided into grids with fixed sizes, and a number of sub-pixel Harris corners are 

extracted from each grid. Subsequently, GPCQ is established, deep features are extracted through 

the Siamese-type network, and multiscale similarity measure is synchronously performed. Unlike 

SIFT, multiscale image blocks are extracted directly to match via the pipeline of Siamese-type 

network in image Gaussian pyramid instead of three separate steps of multiscale feature detection, 

description, and matching. It is of importance that a known spatial resolution is used to resample the 

approximate scale for capturing the candidate conjugated patches. Despite the restriction of spatial 
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resolution of the reference and sensed images, it is suited to satellite images matching because of a 

known resolution and rough georeference obtained from the space-borne equipments, such as GPS 

for sensor position and star trackers for sensor attitude [27,28]. Finally, geometrical constraints are 

used to remove outliers based on whole-to-local quadratic polynomial functions. The detailed steps 

are presented in Figure 2. 

 

Figure 1. Architecture of Siamese convolutional neural network. 

 

Figure 2. Schematic of the proposed matching framework. 

As shown in Figure 1, input patches are extracted from reference and sensed images. Six 

convolutional layers are arranged for the extracted features in each stream. One max-pooling layer 

is wedged between the convolutional layers of Conv1 and Conv2, and two streams share identical 

weights. The similarity measure consists of one dot product layer, one fully connected layer, and 

one sigmoid layer. The matching and non-matching probabilities between 1 and 0 given by sigmoid 

function (
1

1+𝑒−𝑥) are used to define the similarity, in which 1 and 0 correspond to matching and 

non-matching target output values, respectively. 
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2.1. Siamese Convolutional Neural Network 

The architecture of the Siamese convolutional neural network (SCNN) significantly affects the 

performance of similarity learning. However, except for repeated trials, no effective rule on 

determining the architecture of SCNN has been reported in the literature. In our study, the 

architecture is designed on the basis of the factors that affect matching performance. For the 

multi-temporal remote sensing images shown in Figure 3, the complex background variations can 

be simplified as certain types of factors, as listed below. 

     

(a) 2008 (b) 2009 (c) 2010 (d) 2011 (e) 2012 

     

(f) 2013 (g) 2014 (h) 2015 (i) 2016 (j) 2017 

Figure 3. Multi-temporal Google Earth images of the same area from 2008 to 2017. Images are 

affected by complex background variations, including small rotation and translation, nonlinear 

geometric deformation, shadow, image quality degradation, and land cover changes. 

Factor 1: Rotation and translation. These factors are the most basic problems and should be 

estimated between reference and sensed images. In satellite images, rotation and translation errors 

generally come from image distortion and navigation error. The transformation of rotation and 

translation can be represented as 

[
𝑥
𝑦] = [

cos 𝜃 − sin 𝜃
sin 𝜃    cos 𝜃

] [
𝑥′

𝑦′] + 𝑡 (1) 

in which (𝑥, 𝑦) and (𝑥′, 𝑦′) are the coordinates of the patch centers, 𝜃 is the rotation angle, and 𝑡 

denotes translation. 

Factor 2: Nonlinear geometric deformation. Remote sensing images are generally affected by 

complex nonlinear geometric deformations, and they may be caused by topographic reliefs and 

earth curvature. Nonlinear geometric deformation between remote sensing images can be 

approximately described by polynomial transformation. 

Factor 3: Shadow. Shadows are common in high-resolution remote sensing images, especially 

in areas with significant topography. The influence of shadow can be expressed as [29] 

𝐺𝑛𝑜𝑛𝑠ℎ𝑎𝑑𝑜𝑤 = 𝑎𝑘 ∙ 𝐺𝑠ℎ𝑎𝑑𝑜𝑤 + 𝑏𝑘 (2) 

in which 𝐺𝑛𝑜𝑛𝑠ℎ𝑎𝑑𝑜𝑤 and 𝐺𝑠ℎ𝑎𝑑𝑜𝑤 indicate the grayscale of pixels without shadow and with shadow, 

respectively. Furthermore, 𝑎𝑘 and 𝑏𝑘 are two coefficients. 

Factor 4: Image quality degradation. This factor is a widespread problem when surface 

radiations pass through the atmosphere. The grayscale degradation model can be written as [30] 

𝑓 = 𝐴 ∙ 𝑢 + 𝜀 (3) 

in which 𝑢 and 𝑓 are the true and degradation images, respectively; 𝐴 is a diagonal matrix with 

diagonal elements composed of 0 and 1; and 𝜀 represents the noise vector. 
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Factor 5: Land cover changes. This factor is considered a widely existing complex nonlinear 

problem in multi-temporal remote sensing images. Nonlinear grayscale changes are difficult to 

describe using a generic mathematical model. 

Apart from the aforementioned factors, other changes (i.e., sensor settings) may be found but 

are rather difficult to model. Moreover, although the relationship of pairs after decoupling is simple 

to determine, many uncertainties are found in the coupled factors. Consequently, the integration of 

factors is difficult to analyze, and the coefficients of each transformation are difficult to compute 

simultaneously. In this study, the combination of these factors is represented in multiple hidden 

layers to avoid explicit solutions. The multiple transformations between output 𝑂 and input 𝑋 of 

the deep network can be expressed as  

𝑂 = 𝑓𝑛(… 𝑓2(𝑓1(𝑋𝑊1)𝑊2 … )𝑊𝑛) (4) 

in which 𝑓1, 𝑓2, … , 𝑓𝑛 denotes the various transformations caused by the involved factors of image 

matching (e.g., 𝑓1  reflects the factor in Equation (1)), while 𝑊1, 𝑊2, … , 𝑊𝑛  denotes the related 

weights. In the proposed method, five convolutional layers are arranged to describe the five 

aforementioned factors. An additional layer is also added to describe the unknown factors. The 

architecture of the proposed Siamese-type network includes three types of layers: convolutional, 

pooling, and fully connected layers (Figure 1). Batch normalization [31] is wedged into each 

convolutional layer before the activation of neurons. In this network, two streams of convolutional 

and pooling layers sharing the weights are arranged without assuming any feature extraction and 

description. ReLU activation is employed for feature sparse representation in the convolutional 

layers. Max-pooling is used for feature map compression and complexity simplification. 

Subsequently, one fully connected layer is concatenated to the decision network. The sigmoid 

function is employed to define the similarity in the fully connected layer. Output 𝑓𝑗
𝑙 of the 𝑗𝑡ℎ 

feature map in the 𝑙𝑡ℎ layer via convolution can be written as 

𝑓𝑗
𝑙 = 𝜎(𝑧𝑙) = 𝜎 ( ∑ 𝑓𝑖

𝑙−1 ∗ 𝑤𝑖𝑗
𝑙

𝑖∈𝑠𝑙−1

+ 𝑏𝑗
𝑙) (5) 

where 𝑓𝑖
𝑙−1 is the 𝑖𝑡ℎ feature map in the (𝑙 − 1)𝑡ℎ layer; 𝑠𝑙−1 is the number of feature maps in the 

(𝑙 − 1)𝑡ℎ layer; 𝑤 and 𝑏 represent the convolution kernels (weights) and biases, respectively; ∗ is 

the convolution operator; and σ(. )  denotes the activation function. ReLU σ(𝑥) = max(0, 𝑥)  is 

applied in our method. Unlike the activation function used in the output layer of deep networks [19], 

in the proposed Siamese-type network, sigmoid function instead of ReLU is adopted to compute 

matching and non-matching probabilities, which are restricted between 0 and 1. Hence, the 

hinge-based loss function may be unsuitable for computing the loss in terms of the output values, 

while the global cost function is an alternative function with regard to sigmoid output. Therefore, 

the proposed Siamese-type network is trained in a supervised manner by minimizing cost function𝐽. 

𝐽(𝑤, 𝑏) =
1

𝑛
∑ (

1

2
‖ℎ(𝑥(𝑖)) − 𝑦(𝑖)‖

2
)

𝑛

𝑖=1

+ 
𝜆

2
∑ ∑ ∑(𝑤𝑗𝑖

𝑙 )
2

,

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝑛𝑙−1

𝑙=1

 (6) 

in which h(x) are the trained results of the output layer; y are the expected output values given in a 

supervised manner; 𝑛 and 𝑛𝑙  are the number of trained data and layers, respectively; 𝜆 is the 

weight decay parameter; and 𝑠𝑙 and 𝑠𝑙+1 are the number of feature maps in layers 𝑙 and 𝑙 + 1, 

respectively. Back propagation, which is used to update the weights and biases from one layer to the 

next via stochastic gradient descent, can be written as 

𝑤𝑖𝑗
(𝑙)

= 𝑤𝑖𝑗
(𝑙)

− 𝜂
𝜕𝐽(𝑤, 𝑏)

𝜕𝑤𝑖𝑗
(𝑙)

= 𝑤𝑖𝑗
(𝑙)

− 𝜂(𝑓𝑗
(𝑙)

𝛿𝑖
(𝑙+1)

) (7) 
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𝑏𝑖
(𝑙)

= 𝑏𝑖
(𝑙)

− 𝜂
𝜕𝐽(𝑊, 𝑏)

𝜕𝑏𝑖
(𝑙)

= 𝑏𝑖
(𝑙)

− 𝜂𝛿𝑖
(𝑙+1)

 (8) 

𝜕𝐽(𝑤, 𝑏)

𝜕𝑤𝑖𝑗
(𝑙)

=
𝜕𝐽(𝑊, 𝑏)

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑤𝑖𝑗
(𝑙)

 (9) 

𝜕𝐽(𝑤, 𝑏)

𝜕𝑏𝑖
(𝑙)

=
𝜕𝐽(𝑊, 𝑏)

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑧𝑖
(𝑙+1)

𝜕𝑏𝑖
(𝑙)

 (10) 

in which 𝜂 is the learning rate. The residual error 𝛿𝑖

(𝑛𝑙)
 of the output layer can be computed by 

𝛿𝑖

(𝑛𝑙)
=

𝜕𝐽(𝑊, 𝑏; 𝑥, 𝑦)

𝜕𝑧
𝑖

(𝑛𝑙)
= − (𝑦𝑖 − 𝑓 (𝑧𝑖

(𝑛𝑙)
)) ⋅ 𝑓′ (𝑧𝑖

(𝑛𝑙)
) (11) 

The residual error of back propagation in the 𝑖𝑡ℎ feature map of 𝑙𝑡ℎ convolutional layer is 

computed as 

𝛿𝑖
(𝑙)

= (∑ 𝑤𝑗𝑖
(𝑙)

𝛿𝑖
(𝑙+1)

𝑠𝑖+1

𝑗=1

)  𝑓′(𝑧𝑖
(𝑙)

) (12) 

The main advantage of the proposed SCNN is its strong capability to deal with nonlinear 

problems using the multilayer network. Figure 4 shows the pairwise matching and non-matching 

probabilities computed by the proposed SCNN for all the patch pairs in Figure 3. The image patch 

of each year is compared with other years. The architecture of the proposed SCNN in this test is 

expressed as follows: The two streams initially consist of the same branch 𝐶(64,7,3)–ReLU–𝑃(2,2)–

𝐶(128,5,1) –ReLU– 𝐶(128,5,1) –ReLU– 𝐶(128,5,1) –ReLU– 𝐶(256,5,1) –ReLU– 𝐶(256,5,1) –ReLU. The 

concatenated part 𝐹(512)-Sigmoid- 𝐹(2). 𝐶(𝑛, 𝑘, 𝑚) denotes the convolutional layer with 𝑛 filters 

of spatial size 𝑘 × 𝑘 of band number 𝑚. 𝑃(𝑘, 𝑠) represents a max-pooling layer with size 𝑘 × 𝑘 of 

stride 𝑠. 𝐹(𝑛) is a fully connected layer with 𝑛 output units. Training dataset with true-color 

patches is generated from Google Earth images. Multi-temporal remote sensing images on 

conjugated areas are divided as image patches (size 96 × 96) to be used as inputs. Overfitting is 

avoided with a data augmentation strategy [19], Gaussian filtering with standard deviation 𝜎 = 1.6 

and 𝜎 = 3.2 respectively. Weights are initialized by Gaussian random distribution. The initial 

learning rate of 0.01 and momentum of 0.9 are used to train the proposed SCNN. In the results, the 

matching probabilities are considered high-level, whereas the non-matching probabilities are 

considered low-level. This indicates that the images of the same scene can be considered to be highly 

similar by the proposed SCNN in spite of severe intensity changes (as described in Figure 3) between 

images. We can thus infer that the proposed SCNN is robust to linear and nonlinear transformations, 

such as illumination, cloud cover, and land cover changes. 

  

(a) Image in 2008 as reference image. (b) Image in 2009 as reference image. 
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(c) Image in 2010 as reference image. (d) Image in 2011 as reference image. 

  

(e) Image in 2012 as reference image. (f) Image in 2013 as reference image. 

  

(g) Image in 2014 as reference image. (h) Image in 2015 as reference image. 

  

(i) Image in 2016 as reference image. (j) Image in 2017 as reference image. 

Figure 4. Matching and non-matching probabilities between multi-temporal remote image patches 

in Figure 3. (a–j) show the statistical results from 2008 to 2017. 

2.2. Coarse-Conjugated Patch Decision 

Considering that many similar objects or patterns may exist in different image areas in remote 

sensing images, traditional matching methods that use exhaustive searching strategies may cause 

matching ambiguity and generate false matches. To limit the search area and improve efficiency, a 

GPCQ-based coarse-to-fine method is exploited to find the conjugated area in this study. Image 

patches with fixed sizes are extracted from the reference and sensed images. Patch comparison is 

performed from the top of the Gaussian image pyramid to the bottom, as shown in Figure 5. First, a 
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Gaussian image pyramid is established based on the given size of patches. If the given size of 

patches is 𝑑 × 𝑑, then the image size in the top pyramid is 2𝑑 × 2𝑑 and the size of next layer is 

4𝑑 × 4𝑑. Thus, one upper layer has half spatial resolution of a pixel, so that we can cover wider area 

with a fixed image size in a higher layer and conduct coarse searching. In this paper, the minimum 

number of layers is set as 5. The bottom layer is the original image. If the number of layers 

established is less than 5, the original image will be enlarged to reach the minimum number of layers. 

Second, the Gaussian image pyramid is split into a series of patches with fixed size 𝑑 × 𝑑 based on 

the quadtree principle. Third, SCNN is used to compare the similarity of the reference and the 

sensed patches in the current above-and-below scales of the Gaussian image pyramid in the range of 

the conjugated patches obtained from one upper layer. The patch similarity is defined based on the 

difference of matching probability 𝑝(𝑚) and non-matching probability 𝑝(𝑛𝑚), to which (𝑝𝑖,𝑗
(𝑚)

−

𝑝𝑖,𝑗
(𝑛𝑚)

)
𝑚𝑎𝑥

 denotes the maximum difference of the 𝑖𝑡ℎ patch in the sensed image to the 𝑗𝑡ℎ patch in 

the reference image. This definition satisfies the constraint in Equation (13), and patches 𝑖 and 𝑗 

are regarded as a pair of conjugated regions. 

(𝑝𝑖,𝑗
(𝑚)

− 𝑝𝑖,𝑗
(𝑛𝑚)

)2𝑛𝑑
𝑚𝑎𝑥

(𝑝𝑖,𝑗
(𝑚)

− 𝑝𝑖,𝑗
(𝑛𝑚)

)
𝑚𝑎𝑥

< 𝑅𝐴 (13) 

in which 2𝑛𝑑 𝑚𝑎𝑥 is the second maximum difference on the 𝑖𝑡ℎ patch in the sensed image while 

𝑅𝐴 is the ratio threshold set to 0.6. 

 

Figure 5. Patch comparison via GPCQ. The red rectangles are the patches, which are located at the 

top layer of Gaussian image pyramid. For example, four patches with sizes 𝑑 × 𝑑 are found in the 

top pyramid layer with size 2𝑑 × 2𝑑, in which 𝑑 is set to 96 pixels. The green and blue rectangles 

are the patches in the second and third layers, respectively. SCNN is used to compare the similarity 

between the patches in the reference and sensed images. 

2.3. Multiscale-Conjugated Point Decision 

Coarse-conjugated patches are found using the method described in the previous section. 

However, the conjugated patches from the comparison of grids with fixed sizes are difficult to locate 

precisely, and a 2D shift between coarse-conjugated patches exists. Furthermore, the center of the 

coarse patches cannot be easily used to obtain the accurate localization of the matches. In Ref. [32], 

normalized cross-correlation (NCC) is adopted to determine the precise conjugated points of optical 

and synthetic aperture radar images in Siamese-type networks. Score maps for the searching space 

with 51 × 51 pixels are generated from the reference and sensed images, and the high peak in the 

score map is considered a conjugated point location. However, the NCC is a time-consuming method. 

In this study, we use a fast-point localization method based on the Harris algorithm [33], 

which is regarded as a simple and efficient approach. Only the corners of the coarse-conjugated 



Remote Sens. 2018, 10, 355  10 of 23 

 

patches, rather than every pixel in the patch, are selected as candidates to find the precise point 

locations. The algorithm is expressed below. 

Algorithm: 

Input: 𝑃𝑠  and 𝑃𝑟  are the coarse-conjugated patches in the sensed and reference images, 

respectively; 𝐶𝑖 = 1
𝑛  are the Harris corners in 𝑃𝑠 and 𝑃𝑟, and 𝑛 is the number of Harris corners 

Parameters: matching probability 𝑝𝑚 , non-matching probability 𝑝𝑛𝑚 , and similarity index 

𝑆𝑖 =
𝑝𝑚−𝑝𝑛𝑚

𝑝𝑛𝑚
. 

Compute the distance of center to Harris corners 𝑑(𝐶𝑖=1
𝑛 )𝑠 and 𝑑(𝐶𝑖=1

𝑛 )𝑟 in the patches. 

Traverse the Harris corners based on 𝑑(𝐶𝑖 = 1
𝑛 ) from min to max. 

for 𝑖 = 1 to 𝑛𝑠 do 

 for 𝑗 = 1 to 𝑛𝑟 do 

  Compute 𝑆𝑖𝑠𝑟 ←
𝑝𝑚−𝑝𝑛𝑚

𝑝𝑛𝑚
 

  if (𝑆𝑖𝑠𝑟)𝑚𝑎𝑥 < 𝑆𝑖𝑠𝑟 then 

   Update (𝑆𝑖𝑠𝑟)𝑚𝑎𝑥 ← 𝑆𝑖𝑠𝑟 

 end for 

end for  

Record the coordinates of Harris corners with (𝑆𝑖𝑠𝑟)𝑚𝑎𝑥. 

The location accuracy of the original Harris algorithm is expressed at the pixel level. To 

achieve sub-pixel accuracy, we utilize the improved sub-pixel level Harris operator (S-Harris). The 

neighbors of the Harris corner, rather than by using local non-maximum suppression of a response 

function, are considered for corner detection. The least square method is adopted to refine the 

location of the Harris corner at the sub-pixel level. 

𝐽 = 𝑉T𝑃𝑉 (14) 

in which 𝑉 = [𝑥̂ − 𝑥1, 𝑦̂ − 𝑦1, 𝑥̂ − 𝑥2, 𝑦̂ − 𝑦2, ⋯ , 𝑥̂ − 𝑥𝑛, 𝑦̂ − 𝑦𝑛]T ; (𝑥̂, 𝑦̂)  and (𝑥𝑛, 𝑦𝑛)  are the 

coordinates of the refined corner and neighbors, respectively; 𝑛 is the number of neighbors; and 𝑃 

is the diagonal weight matrix 𝑑𝑖𝑎𝑔 [𝑝𝑤1, 𝑝𝑤1, 𝑝𝑤2, 𝑝𝑤2, ⋯ , 𝑝𝑤𝑛, 𝑝𝑤𝑛], which is computed with a corner 

response value. To ensure that the corners are evenly distributed, the reference and sensed images 

are divided into fixed grid sizes (i.e., 96 × 96  pixels in this paper). After non-maximum 

suppression, the pixels in each grid are sorted in descending order based on their corner response 

values. The first 100 pixels (the given number) are considered as the corners of each grid. If the total 

number of S-Harris corners is less than 3000 in an image, the given number of each grid is set to 200. In 

this paper, the S-Harris with grids is named gridding S-Harris, while the corners detected in the 

whole image are named non-gridding S-Harris. 

Matching S-Harris corners with a fixed window is difficult to accomplish for remote sensing 

images with changed scales. To find the scale-invariant matches, the multiscale patches are 

compared synchronously to capture the S-Harris corners for the initial matches. 

2.4. Outlier Elimination 

Outliers are inevitable in initial matching. Thus, polynomials and the RANSAC algorithm are 

usually combined to eliminate outliers. However, local geometric distortions may be inconsistent for 

different terrains or land covers. To overcome this problem, a whole-to-local outlier elimination is 

implemented from the top to bottom layers of the Gaussian pyramid. The main steps of outlier 

elimination are as follows: 

Step 1: Find the correct match set 𝑆𝐶𝑀 for the top layer of the Gaussian pyramid by using 

geometric transformation and RANSAC. 

Step 2: In the next Gaussian pyramid layer, validate all initial matches by using local 

polynomials. As shown in Figure 6, six correct matches for the initial match (𝑃1, 𝑃2) are selected to 

solve the local polynomial coefficients, and point 𝑃2
′ is estimated with 𝑃1. If the residual error of 
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𝑃2 and 𝑃2
′ is less than the triple standard deviation, then (𝑃1, 𝑃2) is regarded as a pair of correct 

matches and is saved in set 𝑆𝐶𝑀. 

Step 3: Repeat Step 2 until the validation task is completed for all the Gaussian pyramid layers. 

In the validation, if more than six matches are found around a point, then the quadratic 

polynomial of Equation (15) is selected to fit the local geometric transformation. Otherwise, the 

affine transformation of Equation (16) is used to describe the local geometric transformation. 

{
𝑥1 = 𝑎0 + 𝑎1𝑥2 + 𝑎2𝑦2 + 𝑎3𝑥2

2 + 𝑎4𝑥2𝑦2 + 𝑎5𝑦2
2

𝑦1 = 𝑏0 + 𝑏1𝑥2 + 𝑏2𝑦2 + 𝑏3𝑥2
2 + 𝑏4𝑥2𝑦2 + 𝑏5𝑦2

2 , (15) 

in which (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the coordinates of the matches in the reference and sensed images, 

respectively, while 𝑎0, 𝑎1, … , 𝑎5 and 𝑏0, 𝑏1, … , 𝑏5 are the polynomial coefficients. 

{
𝑥1 = 𝑐0 + 𝑐1𝑥2 + 𝑐2𝑦2

𝑦1 = 𝑑0 + 𝑑1𝑥2 + 𝑑2𝑦2
. (16) 

in which (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are the coordinates of the matches in the reference and sensed images, 

respectively, while 𝑐0, 𝑐1, 𝑐2 and 𝑑0, 𝑑1, 𝑑2 are the coefficients of the affine transformation. 

 

Figure 6. Local outlier elimination. (𝑃1, 𝑃2) denotes the initial matches of the reference and sensed 

images. 𝑃2
′ is estimated from 𝑃1 based on local polynomial coefficients. 

3. Experimental Evaluation and Discussion 

3.1. Experimental Datasets 

The training datasets are generated from Google Earth historical images. The datasets include 

rivers, coastlines, roads, farmlands, forests, mountains, and buildings in urban and rural areas. The 

datasets also contain patches with different periods, scales, illuminations, shadows, and land cover 

changes. A total of 80,000 pairs of patches (half matching and half non-matching patches) with a 

fixed size of 96 × 96 pixels are extracted in a supervised manner from Google Earth historical 

images. The non-matching patches examples were generated by two ways: firstly, we randomly 

select patches from different matching patch pairs to construct non-matching patches; besides, some 

examples are produced by cropping similar objects (e.g., two different buildings) from Google Earth 

historical images. Furthermore, 240,000 pairs of patches are extended to avoid overfitting by image 

rotation, Gaussian blur, and affine transformation. Therefore, the total number of patch pairs is 

320,000, in which 312,000 and 8000 pairs of patches are randomly selected as training and test 

datasets, respectively. 

ZY3, GF1, IKONOS, and Google Earth high-resolution remote sensing images with complex 

background variations are selected to construct the image pairs shown in Figure 7. Then, the 

proposed matching framework is evaluated. Different objects (buildings, rivers, coastlines, and 

forests) and different types of terrain are found in the images. A detailed description of each image 

pair is shown in Table 1. 

   

P
2
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1
 

Reference image Searching image 



Remote Sens. 2018, 10, 355  12 of 23 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 7. Experimental image pairs. (a,b) is a pair of ZY3 (fusion image obtained from multispectral 

and panchromatic images) and Google Earth images in an urban area in China. (c,d) is a pair of GF1 

(fusion image obtained from multispectral and panchromatic images) and Google Earth images in 

China. (e,f) is a pair of ZY3 and GF1 images with large background variations in a mountain area in 

China. (g,h) is a pair of IKONOS and Google Earth images with coastline in Australia. The images in 

(i,j) are a pair of Google Earth images with farmlands in different seasons in the United States. (k,l) 

is a pair of Google Earth images in China, in which (l) is contaminated by cloud and haze. 

Table 1. Description for each pair of images in the experiments. 

Pairs 
Image 

Number 
Year Image Source 

Image Size 

(Unit: Pixel) 

Spatial Resolution 

(Unit: Meter) 

Pair 1 
(a) 2013 ZY3 1000 × 750 2.10 

(b) 2017 Google Earth 1765 × 1324 1.19 

Pair 2 
(c) 2015 GF1 1972 × 1479 2.00 

(d) 2017 Google Earth 3314 × 2485 1.19 

Pair 3 
(e) 2013 ZY3 780 × 585 5.80 

(f) 2015 GF1 565 × 424 8.00 

Pair 4 
(g) 2003 IKONOS 1190 × 893 1.00 

(h) 2017 Google Earth 1000 × 750 1.19 

Pair 5 
(i) 2016 Google Earth 1936 × 1452 1.19 

(j) 2016 Google Earth 1936 × 1452 1.19 

Pair 6 
(k) 2015 Google Earth 1686 × 1264 1.19 

(l) 2016 Google Earth 1686 × 1264 1.19 

3.2. SCNN Training 

To improve the reliability of the training samples derived from multi-temporal remote sensing 

images with background variations, a batch size of 200 is used, which is larger than the batch size of 

128 in Ref. [19]. Therefore, 1560 iterations exist in each round. The SCNN is trained in parallel on 

Nvidia GPUs within 100 rounds, and the training is forced to terminate when the average value of 

the loss function is less than 0.001. Weights are initialized for training by random Gaussian 

distributions [34]. The momentum and weight decay are set to 0.9 and 0.0005, respectively. Then, 
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the learning rate is reduced to accelerate the training and obtain good performance. In this study, a 

piecewise function is adopted to adjust the learning rate. The initial learning rate is set to 0.01 then 

decreased gradually with the following formula: 

𝜂𝑖𝑡𝑒𝑟 = {
𝛼 ∗ 𝜂𝑖𝑡𝑒𝑟−1,   𝑖𝑓 (𝑖𝑡𝑒𝑟 % 100 = 0)

𝑒𝑙𝑠𝑒         
𝜂𝑖𝑡𝑒𝑟−1

1 + 2.5 ∗ 𝜂𝑖𝑡𝑒𝑟−1
 

 (17) 

in which 𝑖𝑡𝑒𝑟  denotes the number of iterations; 𝜂𝑖𝑡𝑒𝑟  denotes the learning rate of the 𝑖𝑡𝑒𝑟𝑡ℎ 

iteration, which is updated based on previous learning rate 𝜂𝑖𝑡𝑒𝑟−1 ; %  is an operator for 

computing the remainder; the optimal convergence can be achieved by decreasing the learning rate 

at about every 100 iterations based on the observation of our experiments; and 𝛼 is a constant, 

which is set to 0.75. 

3.3. Feature Visualization  

Figure 8 shows the visualization of features at each convolutional layer (Conv1–Conv6) of the 

SCNN after ReLU activation. The feature maps show one of the features in the convolutional layer, 

e.g., one of 64 features is shown in the feature maps labeled Conv1. We can see that low-level 

texture information is captured in Conv1, and many high-level semantic features are extracted in 

deep convolutional layers. For example, the feature maps labeled as Conv3 in Figure 8a highlight 

high-rise residential community regions, and Conv4 in Figure 8b highlight the regions with bodies 

of water. The two compared feature maps in each convolutional layer for all pairs are similar, 

which demonstrates that the SCNN is suitable for the feature extraction of images with complex 

background variations. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 8. Examples of feature visualization learned by the proposed SCNN. (a), (b), (c), (d), (e) and 

(f) are the visual features in Pair1, Pair2, Pair3, Pair4, Pair5 and Pair6 respectively. 
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3.4. Evaluation Criteria of Matching Performance 

Three indicators, namely, the number of correct matches (𝑁𝐶𝑀), matching precision (𝑀𝑃), and 

root mean square error (RMSE), are used to evaluate the proposed method in our experiments. 𝑀𝑃 

and 𝑅𝑀𝑆𝐸 can be computed as follows: 

𝑀𝑃 =
𝑁𝐶𝑀

𝑁𝑇𝑀
× 100% (18) 

in which 𝑁𝑇𝑀 is the number of total matches (initial matches). 

𝑅𝑀𝑆𝐸 =  √
1

𝑁𝐶𝑀
∑ [(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2]

𝑁𝐶𝑀

𝑖=1

 (19) 

in which (𝑥, 𝑦) is the coordinate of the correct matches in the sensed image, while (𝑥′, 𝑦′) is the 

transformed coordinate of the correct matches in the reference image. The 𝑁𝐶𝑀 is counted and 

manually checked in our experiments. 

3.5. Comparison of SCNNs with Different Numbers of Layers 

To evaluate the effects of layer number in our method, we reduced (layer−) and added (layer+) 

one convolutional layer to train and test the datasets. The performance is evaluated by determining 

average accuracy (𝐴𝐴), which is computed as follows: 

𝐴𝐴 =  
1

𝑖𝑡𝑒𝑟𝑠
∑

𝑃𝑀𝑁𝑖

𝑇𝑀𝑁
,

𝑖𝑡𝑒𝑟𝑠

𝑖=1

 (20) 

in which 𝑖𝑡𝑒𝑟𝑠 is the number of iteration in each round; 𝑃𝑀𝑁𝑖 is the number of positives for 

matching and non-matching pairs in the 𝑖𝑡ℎ iteration; and 𝑇𝑀𝑁 is the total number of pairs. 

Figure 9 shows the average accuracy of each round for the training and test data with layer− 

and layer+. Our network and the deep network (layer+) achieved higher accuracy by nearly 3% 

compared with layer−. Layer+ converged slower than our network. Layer− and our network 

converged at nearly 10 rounds (1.56 × 104 iterations), whereas layer+ converged at nearly 18 

rounds (2.808 × 104 iterations). In addition, our network and layer+ performed better than layer− 

in terms of 𝑁𝐶𝑀, 𝑀𝑃, and 𝑅𝑀𝑆𝐸, as shown in Figure 10. The experimental results demonstrate the 

effective performance of our network given the tradeoff between accuracy and network complexity. 

  

(a) (b) 

Figure 9. Comparison of average accuracies for each round between training (a) and test (b) data 

with layer−, layer+, and our network. 
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(a) (b) (c) 

Figure 10. Comparison of (a) NCM, (b) MP, and (c) RMSE values with different deep SCNNs. 

3.6. Comparison between Gridding and Non-Gridding S-Harris 

The gridding S-Harris detector is compared with the non-gridding S-Harris for the proposed 

matching framework. The filtering radius 𝑟 = 5 pixels and standard deviation 𝜎 = 0.8 are used for 

Gaussian filtering. The corner response value 𝑅  is computed as 𝑅 = det𝑀 − 𝑘 ∗ (trace𝑀)2 , in 

which 𝑀 is a Harris matrix and 𝑘 is set as 0.04. The radius of the local window is set to 7 pixels. The 

computed NCM and RMSE of the gridding S-Harris and non-gridding S-Harris are shown in Figure 11. 

   
(a) (b) (c) 

Figure 11. Comparison of (a) NCM, (b) MP, and (c) RMSE between gridding S-Harris and 

non-gridding S-Harris. 

As shown Figure 11, the gridding S-Harris performs better than the non-gridding S-Harris in 

terms of NCM, MP, and RMSE. This finding is attributed to the detection of a fixed number of 

corners in each grid that is not easily affected by image grayscale variations. Then, the evenly 

distributed corners are obtained to accurately compute the geometric transformation (as shown in 

Section 3.8). Many homogenous or weakly textured areas can be seen in the images of Pairs 5 and 6, 

while large background variations exist in Pairs 3 and 4. In those images, unevenly distributed 

corners and matching ambiguity caused by non-gridding S-Harris significantly reduced the number 

of matches and accuracy. 

3.7. Evaluation of GPCQ 

GPCQ is adopted in our method to narrow down the searching space of conjugated points and 

reduce matching ambiguity. Then, the proposed matching frameworks with and without GPCQs 

are compared for the performance evaluation of the GPCQ. In the test, the patch size is set to 96 × 96 

pixels. The SCNN-based pairwise similarity measure and the quadratic polynomial constraint are 

used to obtain the matches through a bi-directional matching strategy. Figure 12 shows the 

comparative results in terms of the NCM, MP, and RMSE. 



Remote Sens. 2018, 10, 355  16 of 23 

 

   
(a) (b) (c) 

Figure 12. Comparison of (a) NCM, (b) MP, and (c) RMSE with and without GPCQs. 

On the basis of the experimental results, the proposed matching framework with GPCQ 

performed better than the framework without GPCQ. This finding is attributed to two reasons. 

First, many local image contents may be similar in the different areas of the same image, which 

result in many patches with low distinctiveness. The images in Figure 7i,j,l contain more highly 

similar local regions compared with the other experimental images. Thus, the exhaustive searching 

strategy may have produced matching ambiguity in the proposed framework without GPCQ, such 

that only a few correct matches are obtained. Second, the limited, unevenly distributed matches 

hindered the implementation of an accurate polynomial geometric registration. 

3.8. Performance Evaluation of the Proposed Matching Framework 

To evaluate its performance, the complete framework is compared with SIFT and other three 

state-of-the-art matching methods, namely, two matching methods for remote sensing images with 

background variations (i.e., see Jiang [5] and Shi [20]) and a 2-channel deep network-based method 

(i.e., see Zagoruyko [19]). The comparative NCM, MP, and RMSE values are shown in Tables 2–4, 

respectively. In the experiments, the initial matches of RMSE over 3 pixels are considered to be false 

matches for all comparative methods. The visualization results of the proposed matching 

framework and the comparative methods are shown in Figures 13–17. The proposed matching 

framework can obtain many correct and regularly distributed matches for all experimental pairs, 

and it can achieve relatively higher accuracy of less than 1 pixel, as shown in Table 4. 

Table 2. NCM values of each method for remote sensing images with complex background variations. 

Image Pair 
Matching Methods 

SIFT Jiang Shi Zagoruyko Proposed 

Pair 1 93 13 24 39 1253 

Pair 2 69 19 25 71 1132 

Pair 3 10 9 13 0 303 

Pair 4 0 0 9 0 356 

Pair 5 14 0 7 0 345 

Pair 6 0 0 0 0 91 

Table 3. MP values of each method for remote sensing images with complex background variations. 

Image Pair 
Matching Methods 

SIFT Jiang Shi Zagoruyko Proposed 

Pair 1 51.8% 68.3% 73.6% 85.7% 94.3% 

Pair 2 54.2% 76.2% 80.4% 84.6% 91.6% 

Pair 3 42.6% 71.5% 77.8% 0.0% 89.9% 

Pair 4 0.0% 0.0% 79.1% 0.0% 86.7% 

Pair 5 60.4% 0.0% 66.2% 0.0% 82.9% 

Pair 6 0.0% 0.0% 0.0% 0.0% 77.1% 
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Table 4. RMSE values of each method for remote sensing images with complex background variations. 

Image Pair 
Matching Methods 

SIFT Jiang Shi Zagoruyko Proposed 

Pair 1 0.8732 2.9674 2.1536 0.9657 0.5736 

Pair 2 0.9485 2.1453 2.4665 0.9054 0.6143 

Pair 3 2.4153 2.7478 2.5833 Null 0.9372 

Pair 4 Null Null 2.0751 Null 0.7476 

Pair 5 1.7834 Null 2.9887 Null 0.7732 

Pair 6 Null Null Null Null 0.9426 

 
(a) 

 
(b) 

 
(c) 
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(e) 

 
(f) 

Figure 13. Matching and registration results of the proposed matching framework. The matches of Pairs 

1–6 are pinned to the top-left two images of (a–f) using yellow dots. The two small sub-regions marked 

by red boxes correspond to the two conjugated patches P1 and P2. The top-right image shows the 

registration result of the checkerboard overlay of the image pair. The four small sub-regions marked by 

green, blue, magenta, and cyan are enlarged to show the registration details. 

    
(a) (b) 
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(c) (d) 

Figure 14. Matching results of SIFT. The matches of Pairs 1, 2, 3, and 5 are shown in (a), (b), (c), and 

(d), respectively. No correct match is obtained for the images of Pairs 4 and 6 (i.e., see Table 2). 

    
(a) (b) 

  
(c) 

Figure 15. Matching results using Jiang’s method [5]. (a–c) are the matching results of Pairs 1–3. No 

correct match is obtained for the images of Pairs 4–6 (i.e., see Table 2). 

    
(a) (b) 

    
(c) (d) 

  
(e) 

Figure 16. Matching results using Shi’s method [20]. (a–e) are the matching results of Pairs 1–5. No 

correct match is obtained for the image of Pair 6 (i.e., see Table 2). 

    
(a) (b) 
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(c) (d) 

    

(e) (f) 

Figure 17. Matching results using Zagoruyko’s method [19]. (a,b) are the matching results of Pairs 1 

and 2, respectively. No correct match is obtained for the images of Pairs 3–6 (i.e., see Table 2). (c–f) 

highlights the ellipse and centroids of MSER of Pairs 3–6. 

Table 2 presents the comparative results of the five methods in terms of NCM. Except for our 

method, the methods used for the comparison are sensitive to image quality degradation and failed 

in Pair 6. The matches obtained by using the methods of Jiang and Shi are mainly distributed on the 

line objects, as shown in Figures 15 and 16, respectively. The method of Zagoruyko, a deep 

learning-based method that combined 2-channel deep network with MSER [35], worked well for 

Pairs 1 and 2, as shown in Figure 17a,b, respectively. However, the method of Zagoruyko is less 

effective than the four other methods, because few corresponding MSERs are detected, as shown in 

Figure 17c–f. The MP values of the methods of Jiang and Shi are higher than those of the SIFT 

method, and their corresponding correct matches are less. Moreover, as shown in Table 4, the 

RMSEs of the methods of Jiang and Shi are over 2 pixels. These results can be attributed to the line 

location determined by the edge detector, which is easily affected by complex background 

variations. The methods of Jiang and Shi were less effective than SIFT in terms of RMSE. 

On the basis of experimental results, the proposed framework presented more significant 

improvements than the other methods in terms of matching performance when remote sensing 

images with complex background variations were used. The effectiveness of the proposed matching 

framework can be explained by a number of reasons. First, the deep and abstract features obtained 

by training are more salient than the manually designed features. As shown by the feature maps of 

the conjugated patches in Figure 8, the conjugated features are highly similar despite the existence 

of significant background variations. Second, the gridding S-Harris operator can find evenly 

distributed corners with high-location accuracy. Third, the GPCQ-based searching strategy can 

improve the comparison reliability of conjugated patches. In the GPCQ algorithm, the Gaussian 

pyramid-based multiscale patch similarity comparison and quadtree can reduce the searching space 

of S-Harris corners and improve the robustness of comparison. Finally, the quadratic 

polynomial-based whole-to-local outlier elimination method can remove false matches and 

improve matching precision. 

In the SIFT method, the difference-of-Gaussian detector and the gradient-based SIFT descriptor 

are both sensitive to significant changes in intensity caused by complex background variations. 

However, background variations may result in local support regions with different image contents 

for each SIFT feature. Subsequently, the SIFT method generates descriptors with low similarity, 

thereby resulting in many outliers. In the methods of Jiang and Shi, the matches are produced from 

relatively stable shapes and structures, such as coastlines and roads. However, these kinds of line 

objects seldom present rich and regularly distributed contents in remote sensing images, and thus, 

they are unsuitable for obtaining satisfactory point matching results. In addition, the edge detector 

is sensitive to nonlinear grayscale changes. If changes occur between the line objects (e.g., 

inconsistent shape of coastlines in Figure 7g,h), then the location accuracy of these lines will be low. 

In the method of Zagoruyko, the MSER detector is sensitive to local noise and structure component 
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changes caused by complex background variations. A highly similar shape context for conjugated 

regions is difficult to detect. The failed examples in Figure 17c–f suggest that the MSER is unstable 

for complex background variations. As evidenced by the experimental results, the line- and 

region-based methods cannot fully guarantee good matching results when using remote sensing 

images with complex background variations, because the intensity information is unreliable. 

4. Conclusions 

In this paper, we present the SCNN-based matching framework to effectively find matches 

between remote sensing images with complex background variations. First, a Siamese-type network 

is designed to directly learn the similarity of conjugated patches. Second, a gridding S-Harris 

algorithm is developed to determine the coordinates of point matches, and the GPCQ-based 

searching strategy is used to narrow down the searching space and achieve multiscale comparison 

of conjugated patches. Finally, a whole-to-local quadratic polynomial constraint is used to remove 

the false matches. The deep features detected by the SCNN are more distinctive and unambiguous 

compared with the manually designed features. Furthermore, the statistical and visualization 

results indicate that our framework can obtain more well-distributed matches and higher matching 

precision and accuracy for all experimental image pairs compared with the state-of-the-art 

matching methods. The results proved the high capability of the proposed framework in matching 

remote sensing images with complex background variations. 

However, the proposed matching framework is constrained by the unknown spatial 

resolutions of the reference and sensed images. The reference and sensed images should be 

resampled by approximating the same spatial resolution before matching. In addition, the image 

matching framework is proposed to improve matching performance in the context of image 

background variations, in which there should be significant texture changes, so some images with 

discriminative textures were collected to generate the training and test datasets. As we know, the 

accuracy of supervised machine learning highly depends on the quality and variety of the training 

data set. As a result, a lot of correct matches can be obtained in the images with discriminative 

textures (i.e., Figure 13a,b), while only a few correct matches were obtained in some areas with 

homogeneous or weak textures (i.e., the farmland areas with homogeneous textures in Figure 13e, the 

weakly textured areas covered by thick cloud in Figure 13f). Therefore, the proposed image matching 

framework may not be suitable for the images fully covered by homogeneous or weak textures. 

Our future work may focus on improving the matching performance of the proposed method 

for images without known spatial resolutions or with several homogenous areas. 
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