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Abstract: Restricted by technical and budget constraints, hyperspectral (HS) image which contains
abundant spectral information generally has low spatial resolution. Fusion of hyperspectral and
panchromatic (PAN) images can merge spectral information of the former and spatial information
of the latter. In this paper, a new hyperspectral image fusion algorithm using structure tensor is
proposed. An image enhancement approach is utilized to sharpen the spatial information of the
PAN image, and the spatial details of the HS image is obtained by an adaptive weighted method.
Since structure tensor represents structure and spatial information, a structure tensor is introduced
to extract spatial details of the enhanced PAN image. Seeing that the HS and PAN images contain
different and complementary spatial information for a same scene, a weighted fusion method is
presented to integrate the extracted spatial information of the two images. To avoid artifacts at the
boundaries, a guided filter is applied to the integrated spatial information image. The injection matrix
is finally constructed to reduce spectral and spatial distortion, and the fused image is generated by
injecting the complete spatial information. Comparative analyses validate the proposed method
outperforms the state-of-art fusion methods, and provides more spatial details while preserving the
spectral information.

Keywords: image fusion; hyperspectral image; panchromatic image; structure tensor; image
enhancement; weighted fusion

1. Introduction

Hyperspectral (HS) remote sensing is an emerging discipline. Traditional remote sensing
sensors obtain the image in a few discrete bands, and lose a large amount of useful information.
A hyperspectral remote sensing sensor is capable of acquiring numerous contiguous narrow bands
in a certain wavelength range [1]. As a result, the HS imagery has very high spectral resolution,
and is a three-dimensional data cube, of which two spatial dimensions contain the space information,
and one spectral dimension at each pixel includes the high-dimensional reflectance vectors [2,3]. Such
HS image with abundant spectral information has been widely utilized in many domains, such as
military surveillance [4], environmental monitoring [5], mineral exploration [6,7], and agriculture [8,9].
However, due to the constraints of technical difficulties and budget, the HS image usually has low
spatial resolution. Although the high spectral resolution is crucial for identifying the materials, high
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spatial resolution is also important for locating the objects with high accuracy. There are various
techniques to improve the spatial resolution of the HS image. Hyperspectral image fusion is one of the
important spatial resolution enhancement approaches. Panchromatic (PAN) sensors can provide the
PAN imagery with high spatial resolution. Fusion of an HS image and a PAN image is able to obtain a
fused HS image with high spectral and spatial resolution by integrating the spectral information of the
HS image and the spatial information of the PAN image.

A large number of hyperspectral image fusion methods have been proposed, and can be roughly
divided into five families [10]. The first family is component substitution (CS), which first separates
the spatial and spectral information of an HS image. The separated spatial component is then
substituted by the PAN image, and a fused HS image can be obtained by applying the inverse
transformation [11]. The CS includes algorithms such as intensity-hue-saturation (IHS) [12–14],
principal component analysis (PCA) [15–17], Gram-Schmidt (GS) [18], adaptive GS (GSA) [19], Brovey
transform (BT) [20], and partial replacement adaptive CS (PRACS) [21]. These CS based methods
work well from a spatial aspect [19], and have fast and simple implementation [13]. However, they
may suffer from serious spectral distortion, cause by the difference between the PAN image and
the substituted spatial component [22]. The second family is multiresolution analysis (MRA) which
aims to extract the spatial details of a PAN image through the multiscale decomposition or spatial
filtering. The extracted spatial details are then injected into an HS image. Some well-known examples
in the MRA family are smoothing filter based intensity modulation (SFIM) [23], decimated wavelet
transform (DWT) [24], Laplacian pyramid [25], modulation transfer function (MTF) generalized
Laplacian pyramid (MTF-GLP) [26], and MTF-GLP with high pass modulation (MTF-GLP-HPM) [27].
The MRA algorithms have temporal coherence [28], and good spectral preservation performance.
On the negative side, these MRA algorithms have heavy computational burden and complicated
implementation when compared to CS-based algorithms [28]. The CS and MRA approaches are the
traditional fusion methods, and have been also extended from multispectral (MS) pansharpening to
hyperspectral pansharpening.

The other three families, Bayesian methods, matrix factorization based methods, and hybrid
methods, have been proposed recently. Bayesian methods transform a fusion problem into an
explicit probabilistic framework, and then define a suitable prior distribution of interest to regularize
the optimization model [29]. Bayesian sparsity promoted Gaussian prior (Bayesian sparse) [30],
Bayesian HySure [31], and Bayesian naive Gaussian prior (Bayesian naive) [32] belong to this class of
hyperspectral pansharpening. Matrix factorization based methods employ the nonnegative matrix
factorization (NMF) model [33], and utilize the estimated solution of the NMF model to generate the
fused HS image. The matrix factorization family contains algorithms such as nonnegative sparse coding
(NNSC) [34], and constrained nonnegative matrix factorization (CNMF) [35]. Bayesian approaches
and matrix factorization approaches perform well in terms of the preservation of spectral information.
However, they have high computational cost. Hybrid methods combine algorithms from different
families, for example, CS and MRA families, to form a new algorithm. Such obtained new algorithms
generally take advantages of algorithms in both families [36]. Examples include the curvelet and ICA
fusion method [37], the guided filter PCA (GFPCA) method [38], and the non-linear PCA (NLPCA)
and indusion method [39].

The key to hyperspectral pansharpening is to provide more spatial information while preserving
the spectral information of the original HS image. In order to accomplish this goal, this paper presents
a new hyperspectral image fusion algorithm based on structure tensor. In this work, the structure
tensor which describes the geometry structure and spatial details is applied to the fusion of HS
and PAN images for the first time. Traditional methods extract the spatial details only from the
PAN image without considering the structure information of the HS image, and thus, cause spectral
distortion or deficient spatial enhancement. The proposed method considers the spatial details of
the HS and PAN images simultaneously. The spatial details of the PAN image are extracted by
calculating and analyzing the structure tensor and its eigenvalues. The spatial details of the HS image



Remote Sens. 2018, 10, 373 3 of 19

are synchronously generated by the adaptive weighted method. In order to consider the HS and
PAN images simultaneously and obtain the complete spatial details, an appropriate weighted fusion
strategy is introduced to merge the extracted spatial information from the PAN image with the spatial
information obtained from the HS image. To avert artifacts at the boundaries, a guided filter which is
an edge-preserving filter is applied to the obtained merged spatial information image. Consequently,
we can effectively provide spatial information and accomplish sufficient spatial enhancement. In order
to maintain the spectral information, an injection gains matrix is constructed. This gains matrix can
also further reduce the spatial distortion by a defined tradeoff parameter. After a desired gains matrix
is constructed, the fused HS image is obtained by adding spatial details to the interpolated HS image.
Extensive experiments have been conducted on both simulated and real hyperspectral remote sensing
datasets to verify the excellent fusion performance in spatial and spectral aspects.

The rest of this paper is organized as follows. Section 2 briefly introduces the basic theory of
structure tensor. The proposed hyperspectral image fusion method is described in detail in Section 3.
In Section 4, the experimental results and analysis for different datasets are presented. Conclusions are
drawn in Section 5.

2. Related Work

A structure tensor can represent the structure and spatial information of images and has been
shown to be an important tool in the field of image analysis [40,41]. The structure tensor has been
successfully applied to many image processing problems, such as texture analysis [42], anisotropic
filtering [43], and motion detection [44].

For a gray image I(x, y), the change generated by a shift (∆x, ∆y) can be described as

r = ∑
(x,y)

w(x, y)[I(x + ∆x, y + ∆y)− I(x, y)]2 (1)

where (∆x, ∆y) includes {(0, 1), (1, 0), (1, 1), (−1, 1)}, and w is a smooth window, such as a Gaussian
window [40]. Then, by using the first-order Taylor series I(x + ∆x, y + ∆y) = I(x, y) + Ix∆x +

Iy∆y + O(∆x2, ∆y2), the change r are described as

r = ∑
(x,y)

w(x, y)[Ix∆x + Iy∆y + O(∆x2, ∆y2)]
2

(2)

where Ix = ∂I
∂x and Iy = ∂I

∂y are the horizontal and vertical components of the gradient vector. For the
small shift, the change r can be simplified as

r = [∆x, ∆y]T[∆x, ∆y]T (3)

where a matrix T is the structure tensor, defined as

T =

 ∑
(x,y)

w(x, y)(Ix)
2 ∑

(x,y)
w(x, y)Ix Iy

∑
(x,y)

w(x, y)Ix Iy ∑
(x,y)

w(x, y)(Iy)
2

 (4)

This structure tensor T is a semi-definite matrix and can be decomposed as

T =
[

e1 e2

][ µ1 0
0 µ2

][
e1 e2

]T
(5)

where µ1 and µ2 are the nonnegative eigenvalues, and e1 and e2 are the eigenvectors corresponding to
the two eigenvalues. The two nonnegative eigenvalues describe the structure information of an image.
When µ1 ≈ µ2 ≈ 0, the windowed image region is the flat area. If µ1 > µ2 ≈ 0, the area belongs to the
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edge region. When µ1 ≥ µ2 > 0, this indicates a corner. The trace is the sum of the eigenvalues and
the determinant is the product of the eigenvalues, and a thresholding is used to classify and detect a
edge or a corner [40]. For one pixel of an image, structure tensor matrix J is defined as

J =

[
(Ix)

2 Ix Iy

Ix Iy (Iy)
2

]
= ∇I·∇IT (6)

where ∇I = [Ix, Iy]
T is the gradient operator, and · is matrix product.

3. Proposed Hyperspectral Image Fusion Algorithm

Figure 1 shows a diagram of the proposed method, which consists of the following steps.
First, the spatial information of an HS image is obtained by using an adaptive weighted method.
Then, an image enhancement approach is applied to the PAN image to sharpen the spatial information.
This is followed up by a structure tensor which is introduced to extract the spatial details of the
enhanced PAN image. Subsequently, the extracted spatial information of the HS and PAN images
is merged via a matching weighted fusion method, and a guided filter is performed on the merged
spatial information to prevent artifacts. Finally, an injection gains matrix is constructed to avoid the
spectral and spatial distortion, and a fused image is produced through injecting the integrated spatial
details into each band of the interpolated HS image.
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Figure 1. Diagram of the proposed hyperspectral image fusion algorithm. (m and M (m < M ) represent
the image height of the original HS and PAN images, respectively. n and N (n < N ) represent the
image width of the two images, and d represents the number of the HS image bands.).

3.1. Upsamping and Adaptive Weighted for the HS Image

For the same scene, let YH ∈ Rm×n×d represent the original low spatial resolution HS image,
and YP ∈ RM×N×1 represent the high spatial resolution PAN image. Fusing the HS and PAN images
aims to obtain a fused high spatial resolution HS image XH ∈ RM×N×d. Here, m and M (m < M)
denote the image height of the HS and PAN images, respectively. n and N (n < N) denote the
image width of these two images, and d denotes the number of the HS image bands. The low spatial
resolution HS image is upsampled to the scale of the PAN image by the finite impulse response (FIR)
filter interpolation method. The FIR filter interpolation method first performs zero interpolation
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on the low spatial resolution HS image, and then carries out the FIR filter processing to obtain the
interpolated image.

Ỹl
H =↑ Yl

H (7)

for l = 1, 2, . . . , d, where ↑ is the upsampling operation, ỸH ∈ RM×N×d is the interpolated HS image,
Ỹl

H ∈ RM×N is the lth band of the interpolated HS image, and Yl
H ∈ Rm×n is the lth band of the

original HS image.
For the purpose of extracting the spatial information of the HS image, an adaptive weighted

method [19] is applied to the interpolated HS image.

SH =
d

∑
l=1

ωlỸ
l
H (8)

where SH ∈ RM×N is the spatial information of the HS image, and [ω1, ω2, . . . , ωd]
T is the weight

vector. To obtain the weights {ωl}l=1,...,d, the PAN image is first reduced to the same spatial scale of the
low spatial resolution HS image. Let us denote this reduced PAN image as YP. Then, let us assume that
ŜH = ∑d

l=1 ωlYl
H. The optimal set of weights {ωl}l=1,...,d can be calculated by linear ridge regression to

minimize the mse between YP and ŜH. We obtain the closed-form solution of the weight ωl as follows

ωl =
(
(Yl

H)
T
(Yl

H)
)−1

(Yl
H)

T
YP (9)

for l = 1, 2, . . . , d, where ()T is the transpose operation, and ()−1 is the matrix inversion. In Equation (9),
Yl

H ∈ Rm×n and ŶP ∈ Rm×n are converted to the mn× 1 dimensional form to calculate the solution.

3.2. Image Enhancement and Structure Tensor Processing for the PAN Image

To sharpen the spatial structure information of the PAN image, image enhancement processing
is applied to the PAN image. The spatial filtering method is adopted to sharpen the PAN image.
Compared with the Laplace algorithm, Laplacian of Gaussian (LOG) image enhancement algorithm
can improve the robustness to noise and discrete points. We choose the LOG enhancement algorithm
to sharpen the PAN image. The LOG algorithm first reduces noise by Gaussian convolution filtering.
Subsequently, Laplace operator is utilized to enhance the spatial details. The Laplacian filtered image
is finally combined with the PAN image to obtain the enhanced PAN image. This LOG enhancement
procedure can be described as

ŶP = YP + c[YP ∗ fLOG(x, y)] (10)

where ŶP ∈ RM×N denotes the enhanced PAN image, fLOG(x, y) denotes the kernel function of LOG
operator, ∗ denotes the convolution operator, and c is a constant. If the central coefficient of the kernel
fLOG(x, y) is negative, c is equal to −1. If the central coefficient of the kernel fLOG(x, y) is a positive
value, c is 1. In this work, the size of the kernel is set to 15 × 15. The central coefficient of the kernel is a
negative value, and c is −1. Based on the principle of the LOG operator, the kernel function fLOG(x, y)
is defined as

fLOG(x, y) =
∂2

∂x2 fG(x, y) +
∂2

∂y2 fG(x, y) (11)

where fG(x, y) is the Gaussian convolution function, defined as

fG(x, y) =
1√

2πσ2
exp(− x2 + y2

2σ2 ) (12)

where σ is the standard deviation, and σ is set to 0.43. Thus, the kernel function fLOG(x, y) is
calculated by

fLOG(x, y) =
x2 + y2 − 2σ2

σ4 exp(− x2 + y2

2σ2 ) (13)
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In order to extract the spatial details of the enhanced PAN image, the structure tensor processing
is introduced. Based on Equation (6), structure tensor matrix of the enhanced PAN image at pixel i is
defined by

Ti =

[
Ŷ 2

Px,i ŶPx,iŶPy,i

ŶPx,iŶPy,i Ŷ 2
Py,i

]
(14)

where ŶPx = ∂ŶP
∂x and ŶPy = ∂ŶP

∂y are the horizontal and vertical components of the gradient vector on

the enhanced PAN image, and Ti ∈ R2×2 is the structure tensor matrix at pixel i on the enhanced PAN
image. To include the local spatial structure information, a Gaussian kernel function is convoluted
with the above structure tensor.

Ti =

[
gr ∗ Ŷ 2

Px,i gr ∗ ŶPx,iŶPy,i

gr ∗ ŶPx,iŶPy,i gr ∗ Ŷ 2
Px,i

]
=

[
P11 P12

P12 P22

]
(15)

where gr represents a Gaussian kernel with standard deviation r, the kernel size and the standard
deviation of the Gaussian kernel are set to 1 × 2 and 0.5, Ti represents the resulting structure

tensor matrix at pixel i, and

[
P11 P12

P12 P22

]
simply represents the tensor Ti. According to the content

of related work, the structure tensor Ti can be decomposed as the form shown in Equation (5).
Two nonnegative eigenvalues which represent the spatial structure information are calculated using
the following formula

ξ1,2 =
1
2

[
P11 + P22 ±

√
(P11 − P22)

2 + 4P2
12

]
(16)

where ξ1 and ξ2 are the nonnegative eigenvalues for the structure tensor matrix shown in Equation (15).
The values of the two nonnegative eigenvalues divide the structure information into three types, i.e.,
flat area, edge area, and corner. If ξ1 and ξ2 are near zero, the area of this pixel is the flat area. When
ξ1 > ξ2 ≈ 0 and ξ1 ≥ ξ2 > 0, the area of this pixel belongs to the edge area and corner, respectively.
For an image, we consider that the effective spatial information includes edge region and corner.

The trace of a matrix, denoted by R, is the sum of the eigenvalues, and is also the sum of P11 and
P22. The determinant denoted by D, is the product of the eigenvalues. We test on a large number of
enhanced PAN images to study the trace and determinant at each pixel. Figure 2 shows the trace and
determinant at each pixel on two of the enhanced PAN images. For a pixel, if R is near zero, the two
eigenvalues are all near zero, and the area is the flat area. If R is larger than zero, at least one of the
nonnegative eigenvalues is greater than zero, and the area at this pixel belongs to edge region or corner.
Similarly, when D is near zero, at least one of the eigenvalues is near zero, and the area is flat area
or edge region. when D is larger than zero, the two eigenvalues at this pixel are all larger than zero,
and this pixel is a corner. The edge regions and corners are important spatial information. Based on the
analysis and study on numerous enhanced PAN images, we suggest the following guidelines. When
R > 1 ∗ 10(−5), the pixel is identified as edge region or corner, and the area of this pixel is the effective
spatial information. Thus, the value of this pixel should be retained. Otherwise, the area of this pixel is
classified as the flat area, and the value of this pixel is not retained. This procedure of extracting the
spatial details of the enhanced PAN image can be described as

SP,i =

{
ŶP,i, if R > 1 ∗ 10(−5)

0, otherwise
(17)

where SP ∈ RM×N is the spatial information of the enhanced PAN image, SP,i is the value of the spatial
information at pixel i, and ŶP,i is the value of the enhanced PAN image at pixel i.
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Figure 2. Trace and determinant at each pixel on two enhanced PAN images. (a1,a2) PAN image;
(b1,b2) Trace of structure tensor at each pixel; (c1,c2) Determinant of structure tensor at each pixel.

Figure 3 shows the spatial information obtained by the gradient methods and the structure tensor
method. Figure 3a shows a PAN image. Figure 3b shows the enhanced PAN image which is sharpened
by using the LOG image enhancement algorithm. Figure 3c,d show the spatial information extracted
by the horizontal gradient processing and the vertical gradient processing, respectively. According
to Equation (17), the spatial information extracted by the structure tensor method is obtained and
shown in Figure 3e. As shown in Figure 3, the extracted spatial information of the horizontal gradient
method and the vertical gradient method only retain part of edge information of the original image.
By contrast, the spatial information obtained by the structure tensor method contains most of the edge
and structure information. This illustrates the structure tensor processing method in this subsection
can effectively extract the spatial details of the enhanced PAN image.Remote Sens. 2018, x, x FOR PEER REVIEW  8 of 19 
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Figure 3. Spatial information of an enhanced PAN image extracted by the gradient methods and the
structure tensor method. (a) PAN image; (b) Enhanced PAN image; (c) Horizontal gradient method;
(d) Vertical gradient method; (e) Structure tensor method.



Remote Sens. 2018, 10, 373 8 of 19

3.3. Weighted Fusion of Spatial Details

As shown in Figure 1, SH contains the spatial information of the HS image, and SP retains
the spatial details of the enhanced PAN image. For a same scene, the HS image and the PAN
image all include spatial information, and the spatial information of the two images is different
and complementary. The PAN image has more spatial information, but may not include the details
about the spatial structure of the HS image. Most conventional approaches only extract the spatial
information from the PAN image, and not consider the spatial structure of the HS image. They may
lead to spectral distortion or inadequate spatial enhancement. To obtain the complete spatial details
and consider the spatial information of the HS and PAN images simultaneously, a weighted fusion
method is presented to integrate the spatial information of the HS image with the spatial information
of the PAN image.

SF,i =

{
SH,i, if SP,i = 0
λ1·SP,i + λ2·SH,i, if SP,i 6= 0

(18)

where λ1 and λ2 are weight coefficients, SF ∈ RM×N is the complete spatial details, SF,i is the
value of SF at pixel i, SP and SH are the spatial information of the enhanced PAN image and the
HS image, respectively, SP,i and SH,i are the values of SP and SH at pixel i. Since the PAN image
contains more spatial details compared with the HS image, λ1 and λ2 are set to 0.9 and 0.1, respectively.
Subsequently, to avoid artifacts at the boundaries, a guided filter is applied to the obtained fused spatial
information image. The guided filter is an edge-preserving filter. It can smooth the input image while
transferring the structure information from the guidance image to the output image [45]. The fused
spatial information SF is served as both the guidance image and the input image. The filtered image
which is the continuous and smooth result of the input image has the spatial structure information
of the guidance image. Thus, the filtered output image which is continuous can avert artifacts at
the boundaries, and preserves the spatial details of the fused spatial information SF, simultaneously.
According to the principle of the guided filter, the output image is a local linear transformation of the
guidance image. This procedure are described as

Si = aiSF,i + bi =
1
|s| ∑k∈vi

akSF,i +
1
|s| ∑k∈vi

bk, ∀i ∈ vk (19)

where S ∈ RM×N is the output image, vk is a local square window centered at pixel k, the local window
size is set to 40, ak and bk are linear coefficients assumed to be constant, ai and bi are the average
coefficients of all windows overlapping i, and |s| is the number of pixels in vk. The linear coefficients ak
and bk are computed by minimizing the difference between the input image SF and the output image
S while maintaining the linear transformation in the window vk. The solution of ak and bk is obtained
by calculating the linear ridge regression model.

ak =

1
|s|∑i∈vk

SF,iSF,i − θkSF,k

χ2
k + ε

(20)

bk = SF,k − akθk (21)

where θk and χ2
k are the mean and variance of the guidance image SF in vk, SF,k is the mean of the

input image SF in vk, ε is a regularization parameter, and parameter ε is set to 10−4.

3.4. Constructing Gains Matrix and Injecting Spatial Details

Before including the integrated continuous spatial details into the interpolated HS image, a
injection gains matrix is constructed to control the spectral and spatial distortion. To reduce the
spectral distortion, the ratios between each pair of the HS bands should preserve unchanged. It is
significant for maintaining the spectral information to preserve such ratios. It is depicted as
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Gl ∝
Ỹl

H

(1/d)∑d
l=1 Ỹl

H

(22)

for l = 1, 2, . . . , d, where G ∈ RM×N×d denotes the injection gains matrix, and Gl ∈ RM×N denotes
the lth band of the gains matrix. For the sake of ensuring the spatial quality, we define a following
tradeoff parameter to regulate the amount of the injected spatial details.

Gl = τ
Ỹl

H

(1/d)∑d
l=1 Ỹl

H

(23)

for l = 1, 2, . . . , d, where τ is the defined tradeoff parameter. The influence and setting of the tradeoff
parameter τ have been expounded in the experimental part. Then, the spatial details are injected into
the interpolated HS image to generate the fused HS image for each band.

Xl
H = Ỹl

H + Gl · S (24)

where · is element-wise multiplication.

4. Experimental Results and Discussion

In this section, we design the experimental setup, and analyze the setting of the tradeoff parameter.
To evaluate the fusion performance of the proposed method, four hyperspectral remote sensing datasets
are used for experiments.

4.1. Experimental Setup

The proposed STF method is tested on four public hyperspectral datasets, which are shown in
Table 1. Table 1 summarizes their characteristic.

• Pavia University dataset: Pavia University dataset was acquired by the Reflective Optics System
Imaging (ROSIS) over Pavia, Italy. The HS image consists of 115 bands covering the spectral
range 0.4–0.9 µm. The dimensions of the experimental PAN image are 250 × 250 with the spatial
resolution of 1.3 m. The test HS image is of size 50 × 50 pixels with the spatial resolution of 6.5 m.
For Pavia University dataset, 103 bands are applied to experimentation.

• Moffett field dataset: Moffett field dataset is a standard data product which has been provided
by the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) [29]. This dataset contains
224 bands in the spectral range of 0.4–2.5 µm. The size of the PAN and HS images that are used
for experimentation are 250 × 160 and 50 × 32. The spatial resolution of the experimental PAN
and HS images are 20 m and 100 m, respectively. The water absorption and noise corrupted bands
are removed, and 176 bands are used for experimentation.

• Washington DC dataset: Washington DC dataset is an airborne hyperspectral data over the
Washington DC Mall. This dataset includes 210 bands in the spectral range of 0.4–2.4 µm.
Bands in the opaque atmosphere region are removed from the dataset, and 191 bands are left for
experimentation. The test PAN image is of size 250 × 250 pixels, and the size of the HS image is
of 50 × 50 pixels.

• Hyperion dataset: The EO-I spacecraft launched in 2000, and carried two primary instruments
which were Advanced Land Imager (ALI) and Hyperion [29]. Hyperion instrument can provide
the HS image which contains 242 bands covering the spectral range of 0.4–2.5 µm. ALI instrument
is capable of providing the PAN image. For Hyperion dataset, 128 bands are applied to
experimentation. The size of the test PAN image is 216 × 174 with the spatial resolution of
10 m. The experimental HS image is of size 72 × 58 pixels with the spatial resolution of 30 m.
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Table 1. Characteristic of the four used datasets.

Dataset Size Spatial Resolution Band Number Spectral Range

Pavia University PAN 250 × 250
HS 50 × 50

1.3 m
6.5 m 103 0.4–0.9 µm

Moffett field PAN 250 × 160
HS 50 × 32

20 m
100 m 176 0.4–2.5 µm

Washington DC PAN 250 × 250
HS 50 × 50

3 m
15 m 191 0.4–2.4 µm

Hyperion PAN 216 × 174
HS 72 × 58

10 m
30 m 128 0.4–2.5 µm

Pavia University dataset, Moffett field dataset, and Washington DC dataset are semi-synthetic
dataset. Given a reference high spatial resolution HS image, the simulated low spatial resolution
HS image and the simulated PAN image are generated. The simulated PAN image is generated by
averaging the bands of the visible range of the reference image. According to the Wald’s protocol [46],
the low spatial resolution HS image is simulated by applying a 9 × 9 Gaussian kernel blurring and
downsampling to the reference HS image, and the downsampling factor is 5. Hyperion dataset is a real
dataset to evaluate the capability of the proposed method in real hyperspectral remote sensing image.

The proposed method is compared with six hyperspectral pansharpening methods, namely
MTF-GLP with High Pass Modulation (MTF-GLP-HPM) [27], Bayesian sparsity promoted Gaussian
prior (Bayesian Sparse) [30], constrained nonnegative matrix factorization (CNMF) [35], guided
filter PCA (GFPCA) [38], Brovey transform (BT) [20] and principal component analysis (PCA) [15].
MTF-GLP-HPM (abbreviated as MGH) belongs to multiresolution analysis (MRA) class. Bayesian
Sparse fusion method (abbreviated as BSF) is one of the Bayesian methods. The CNMF algorithm
and the GFPCA fusion approach belong to matrix factorization based methods and hybrid methods,
respectively. These four methods which give the state-of-the-art fusion performance were all presented
in recent years. The BT and PCA method which are the simple and classical fusion methods belong to
component substitution (CS) family. These compared methods cover the recent effective works and
the existing five categories which have been described in introduction section. In the experiments,
the number of endmembers is set to 20 for the CNMF approach. For the GFPCA algorithm, the window
size and the blur degree of the guided filter are set to 17 and 10−6 respectively. The pixel values of
every test image are normalized to the range of 0–1.0 to reduce the amount of calculation.

To assess the capability of the proposed fusion method, several widely used evaluation indices
are adopted, i.e., cross correlation (CC) [47], spectral angle mapper (SAM) [47], root mean squared
error (RMSE), and erreur relative global adimensionnelle de synthse (ERGAS) [48]. CC is a spatial
index and the best value is 1. SAM measures the degree of spectral similarity. The RMSE and ERGAS
indices show the global quality of the fused image. The optimal value of SAM, RMSE, and ERGAS
are 0. The experiments for the four datasets were all performed using MATLAB R2015b, and tested on
a PC with an Intel Core i5-7300HQ CPU @ 2.50 GHz and 8 GB memory.

4.2. Tradeoff Parameter Setting

In the proposed method, the complete spatial details are finally included into the interpolated
HS image. In order to reduce the spatial distortion, we define the tradeoff parameter τ to control the
amount of the injected spatial details. The setting of the tradeoff parameter τ has an important impact
on the spatial quality. Since the tradeoff parameter regulates the spatial distortion, the best value of τ

can be chosen via the spatial index. Thus, for the sake of concluding the influence of τ, the proposed
approach is tested on the Moffett field dataset and the Washington DC dataset to observe the CC
values with different τ settings. Figure 4 shows the CC index values with different tradeoff parameter
settings. When the tradeoff parameter τ is set to 0.1, the proposed method acquires the optimal CC
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values. We have also performed on numerous hyperspectral remote sensing images, and discovered
that τ = 0.1 also provides the largest CC values. Therefore, for the proposed method, the tradeoff
parameter τ is set as 0.1.
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4.3. Experiments on Simulated Hyperspectral Remote Sensing Datasets

In this part, the experiments are performed on three simulated hyperspectral remote sensing
datasets to evaluate the fusion performance of the proposed method. Three datasets are Pavia
University dataset, Moffett field dataset, and Washington DC dataset, respectively.

4.3.1. Pavia University Dataset

Figure 5a shows the reference high resolution HS image of Pavia University dataset. Figure 5d–j
shows the fused HS images of each method for the Pavia University dataset. By comparing the
fused images with the reference HS image visually, it can be observed that the GFPCA method looks
blurry. This is because the GFPCA method utilizes the guided filter to transfer the spatial details from
the PAN image to the HS image, but the spatial details are injected insufficiently. The BT approach
provides enough spatial information, but the fused image obtained by the BT approach has spectral
distortion in some areas, such as the trees and roads. Although the CNMF method has good fidelity
of the spectral information, the CNMF method has deficient improvement of the spatial quality in
some marginal areas, such as the edges of the trees and roofs. By contrast, we find that the PCA,
BSF, MGH, and proposed STF method have the satisfactory fusion performance, and the MGH and
STF methods achieve the better capability in preserving the spectral information compared with the
PCA and BSF methods. In order to further compare the fusion performance, Figure 6 shows the error
images (absolute values) of the competing methods for Pavia University dataset. Yellow means large
differences, and blue means small differences. From Figure 6, it can be seen that the proposed SFT
method shows the smallest differences between the fused HS image and the reference HS image.

Quantitative results of different fusion methods are shown in Table 2, which indicates that
the proposed method achieves the best performance. The SAM, RMSE, and ERGAS values of
the proposed method are the best, and the CC value of the proposed method is the second best.
These results demonstrate that the proposed STF algorithm performs well in both the objective and
subjective evaluations.
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(b) Simulated PAN image; (c) Interpolated HS image; (d) PCA; (e) GFPCA; (f) BT; (g) CNMF; (h) BSF;
(i) MGH; (j) STF.
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Figure 6. Error images of the competing methods for Pavia University dataset. (a) PCA; (b) GFPCA;
(c) BT; (d) CNMF; (e) BSF; (f) MGH; (g) STF.

Table 2. Quantitative results of different fusion methods for Pavia University dataset.

Index PCA GFPCA BT CNMF BSF MGH STF

CC 0.9342 0.8142 0.9375 0.8598 0.9059 0.8608 0.9336
SAM 7.2570 9.5526 6.6324 7.6670 8.8048 7.2589 6.6212

RMSE 0.0387 0.0596 0.0389 0.0493 0.0428 0.0867 0.0386
ERGAS 4.2443 6.8524 3.9901 5.7962 4.8990 7.7826 3.9733

4.3.2. Moffett Field Dataset

The fusion results obtained by each method for Moffett field dataset are displayed in Figure 7d–j.
Visually, the PCA and BT methods have high fidelity in rendering the spatial details, but cause spectral
distortion. This is due to the mismatching between the PAN image and the replaced spatial component.
Compared with the PCA and BT approaches, the GFPCA seems to have less spectral distortion,
but the spatial details are not sufficient. The fused result obtained by the CNMF method has good
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spectral fidelity, but the edges and spatial structures are not sharp enough, especially in the rural areas.
The visual analysis shows that the BSF, MGH, and STF methods give the better fused results. The MGH,
and STF algorithms are clearer, especially in the rural regions and rivers. However, the pansharpened
image obtained by the MGH approach is too sharp in some areas, such as the tall buildings in urban
areas. By contrast, the proposed STF method has superior performance in terms of providing the
spatial information while preserving the spectral information. Table 3 reports the objective quantitative
results for each method. From Table 3, we can apparently see that the proposed STF method has the
largest CC value, and smallest SAM, RMSE, and ERGAS values.
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Figure 7. Fusion results obtained by each method for Moffett field dataset. (a) Reference HS image;
(b) Simulated PAN image; (c) Interpolated HS image; (d) PCA; (e) GFPCA; (f) BT; (g) CNMF; (h) BSF;
(i) MGH; (j) STF.

Table 3. Quantitative results of different fusion methods for Moffett field dataset.

Index PCA GFPCA BT CNMF BSF MGH STF

CC 0.9046 0.9163 0.8705 0.9398 0.9558 0.9586 0.9647
SAM 12.0820 10.1200 8.3690 7.3153 7.9628 6.4328 6.2690

RMSE 0.0479 0.0444 0.0524 0.0372 0.0321 0.0489 0.0308
ERGAS 6.5091 6.1392 8.2161 5.1683 4.5358 6.6523 3.9744

The spectral reflectance curve difference values between the reference image and each fused
image on one single pixel are compared to assess the spectral preservation performance. Figure 8
shows the spectral reflectance difference values on four pixels which are marked in yellow in Figure 7a.
As shown in Figure 8, a gray dotted line is served as the benchmark. The closer the spectral reflectance
difference values between the reference image and the fused image get to the dotted line, the more
the spectral information is preserved. From Figure 8, it can be observed that the spectral reflectance
difference values of the proposed method are most approximate to the dotted line (benchmark line) on
the whole. These results validate the proposed method has the smallest difference when compared to
other fusion methods.
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4.3.3. Washington DC Dataset

The visual experimental results obtained by each method for the Washington DC dataset are
shown in Figure 9d–j. In spite of good spatial quality, the fused images produced by the PCA and
BT approaches cause spectral distortion in the roads and buildings. According to visual comparison
of these results, the fused image generated by the MGH method has good fidelity of the spectral
information. However, the MGH method suffers from spectral distortion in some areas, such as the
roof areas. Compared with the PCA and MGH methods, the GFPCA algorithm has less spectral
distortion. But the result of the GFPCA method has insufficient enhancement in the spatial aspect,
and the fused image is blurry. The BSF, and STF method provide more spatial details compared to the
CNMF method, since the CNMF method loses a little spatial information in the edges, such as in the
roads and buildings. In contrast, the BSF, and STF method enhance more spatial information while
preserving the spectral information of the original HS image.
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Figure 9. Fusion results obtained by each method for Washington DC dataset. (a) Reference HS image;
(b) Simulated PAN image; (c) Interpolated HS image; (d) PCA; (e) GFPCA; (f) BT; (g) CNMF; (h) BSF;
(i) MGH; (j) STF.
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To further compare the fusion capability, the error images (absolute values) of different approaches
for the Washington DC dataset are shown in Figure 10. Yellow means large differences, and blue means
small differences. As shown in Figure 10, the SFT method shows the smallest differences in most
regions, which testifies the preeminent fusion performance of the proposed method. The values
of objective quality evaluation of each method for the Washington DC dataset are tabulated in
Table 4. As shown in Table 4, for the proposed method, the CC, SAM, and RMSE values are the
best, which prove once again that the proposed method is superior to the compared hyperspectral
pansharpening methods.
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Figure 10. Error images of the competing methods for Washington DC dataset. (a) PCA; (b) GFPCA;
(c) BT; (d) CNMF; (e) BSF; (f) MGH; (g) STF.

Table 4. Quantitative results of different fusion methods for Washington DC dataset.

Index PCA GFPCA BT CNMF BSF MGH STF

CC 0.8485 0.7650 0.8157 0.7655 0.8294 0.8502 0.8636
SAM 7.9107 9.9500 7.9970 8.4167 10.0846 7.5508 7.3970

RMSE 0.0145 0.0148 0.0205 0.0148 0.0149 0.0359 0.0140
ERGAS 80.7202 59.4649 45.0533 43.2606 73.4928 95.2458 72.3328

4.4. Experiments on Real Hyperspectral Remote Sensing Datasets

In this part, the experiments are performed on the real hyperspectral remote sensing dataset to
assess the fusion capability of the proposed method. The real HS dataset is the Hyperion dataset.
Figure 11a,b show the low spatial resolution original HS image and the high spatial resolution PAN
image. The fusion results of the competing methods are shown in Figure 11d–j. By a visual comparison
of the pansharpened images, the PCA method has significant spectral distortion. For the GFPCA
method, the spatial details are injected insufficiently, and the fused HS image looks fuzzy. The BSF
method is better than the PCA method in preserving the spectral information, while the spatial details
is a little less in the regard to some regions, such as the roads and grass. By contrast, the BT, CNMF,
MGH, and STF method achieve the superior property. Since the low spatial resolution original HS
image is unclear, the spectral information of the BT, CNMF, MGH, and STF method cannot accurately
be compared. In the spatial aspect, the proposed STF method has the better performance, since it adds
more spatial details.
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Figure 11. Fusion results obtained by each method for Hyperion dataset. (a) HS image; (b) PAN image;
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For the real HS dataset, a reference high spatial resolution HS image is commonly not available.
The original low resolution HS image can be served as the reference image. According to the
Wald’s protocol [45], the available original HS image is degraded to generate a degraded HS image.
The available PAN image is also degraded to obtain a degraded PAN image. The degraded HS and
PAN images are fused by each method to obtain the fusion results. These fusion results are compared to
the original HS image to evaluate the objective fusion performance of different methods. Table 5 reports
the objective fusion results for each method. From Table 5, we can apparently see that the proposed
STF has the largest CC value, and smallest SAM and ERGAS values. These results demonstrate that
the proposed algorithm obtains the excellent fusion performance.

Table 5. Quantitative results of different fusion methods for Hyperion dataset.

Index PCA GFPCA BT CNMF BSF MGH STF

CC 0.7154 0.7309 0.7545 0.8702 0.8233 0.8661 0.8780
SAM 4.2361 4.8197 2.9466 3.1359 4.7309 2.7979 2.6465

RMSE 0.0476 0.0488 0.0775 0.0453 0.0459 0.0389 0.0421
ERGAS 8.9573 9.8286 9.9465 8.6040 8.9578 8.5842 8.0167

5. Conclusions

In this paper, a novel hyperspectral remote sensing image fusion using structure tensor approach
is presented. The proposed method is believed to be the first work using the structure tensor to fuse the
HS and PAN images. The PAN image is first sharpened by the LOG image enhancement method. Then,
structure tensor is applied to the enhanced PAN image to extract the spatial information, while the
spatial details of the HS image are obtained by an adaptive weighted method, simultaneously. To obtain
the complete spatial details and accomplish spatial consistency, a suitable weighted fusion algorithm
is proposed to integrate the extracted spatial details of the HS and PAN images. Experimental results
from the Pavia University, Moffett field, Washington DC, and Hyperion datasets have shown that
the proposed method is superior to the other fusion methods in retaining the spectral information
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and improving the spatial quality. In the future, we will investigate the issue of how to determine the
weight coefficients λ1 and λ2 adaptively.
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