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Abstract: This study considers the various factors that regulate nutrients supply in the Red Sea.
Multi-sensor observation and reanalysis datasets are used to examine the relationships among dust
deposition, sea surface temperature (SST), and wind speed, as they may contribute to anomalous
phytoplankton blooms, through time-series and correlation analyses. A positive correlation was
found at 0–3 months lag between chlorophyll-a (Chl-a) anomalies and dust anomalies over the Red
Sea regions. Dust deposition process was further examined with dust aerosols’ vertical distribution
using satellite lidar data. Conversely, a negative correlation was found at 0–3 months lag between
SST anomalies and Chl-a that was particularly strong in the southern Red Sea during summertime.
The negative relationship between SST and phytoplankton is also evident in the continuously low
levels of Chl-a during 2015 to 2016, which were the warmest years in the region on record. The overall
positive correlation between wind speed and Chl-a relate to the nutritious water supply from the
Gulf of Aden to the southern Red Sea and the vertical mixing encountered in the northern part.
Ocean Color Climate Change Initiative (OC-CCI) dataset experience some temporal inconsistencies
due to the inclusion of different datasets. We addressed those issues in our analysis with a valid
interpretation of these complex relationships.
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1. Introduction

There has been much recent scientific interest in ocean color observations and biological
productivity issues in the Red Sea region [1–19]. The Red Sea is surrounded by deserts and other
arid land and has no river inflow or stream sources. Its high evaporation rate (>210 cm/yr) [20]
and low precipitation rate (<100 mm/yr) [21,22] results in the Red Sea having the highest salinity
of any major tropical oceanic basin [20]. Furthermore, the region is well-known for its extremely
high biodiversity, with more than 300 species of coral and 1400 species of fish [23,24]. Fisheries are
economically important to this area, as over 100,000 tons of fish are reportedly caught each year [25].
The high temperature and salinity of the water also make the Red Sea an important natural laboratory
for understanding the effects of climate change, especially on coral reefs [26–28].

Overall, the Red Sea is considered to be oligotrophic, as its surface waters are deficient in several
important nutrients, including nitrate, ammonium, phosphate, and silicate, resulting in low levels of
chlorophyll-a (Chl-a) (<2.6 mg/m3) [4]. However, the basin has a significant north-south gradient in
nutrient content that is regulated by the meridional flow [14], and a distinct seasonality with maximum
surface water Chl-a concentrations that are seen during the winter time, and minimum concentrations
during the summer [3]. Recent studies using both in situ and satellite observations have also identified
regions with higher Chl-a concentrations and nutrient levels than the traditional oligotrophic threshold
of 2.6 mg/m3 [3,4,11,12]. Locally elevated levels of Chl-a and surface nutrients have been attributed to
interactions among oceanic gyres, particularly in the southern portion of the Red Sea [14,17,19], as well
as aerial deposition of micro-nutrients, for example, iron (Fe), by wind-blown dust [29].

In an attempt to better understand the relationships among oceanic circulation and atmospheric
deposition on Chl-a amounts and nutrient levels in the Red Sea, a recent study examined an
anomalously high Chl-a event (>2 mg/m3) that occurred in June 2015 in the South Central Red
Sea (17.5◦ to 22◦N, 37◦ to 42◦E) [19]. The analysis suggested that a combination of factors contribute
to anomalous phytoplankton events in this portion of the Red Sea basin. These factors include the
horizontal transfer of upwelling water through eddy circulation and possible mineral fertilization
from atmospheric dust deposition. Notably, a lag correlation analysis revealed a statistically
significant two-month positive lag correlation between dust anomalies and Chl-a anomalies using
the MODIS-Aqua dataset. A similarly significant two-month negative lag correlation was identified
between sea surface temperature (SST) anomalies and Chl-a anomalies [19].

In this study, we further explore the relationships between Chl-a and other potentially important
environmental factors in the Red Sea region, including dust aerosol optical depth (DAOD), SST,
and wind speed for the period from September 1997 to December 2016. The role of dust is further
elucidated through examination of dust sources, dust properties, and the vertical profile of dust in
the region.

2. Materials and Methods

2.1. Materials

2.1.1. Ocean Color Climate Change Initiative (OC-CCI) Chlorophyll-a Data

In this study the Ocean Color Climate Change Initiative (OC-CCI) Level-3 Chl-a dataset version 3.1
at 4 km resolution is used, which extends from September 1997 to December 2016. The OC-CCI dataset
is produced by the European Space Agency (ESA) and it merges Chl-a retrievals from the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS); the MODerate resolution Imaging Spectroradiometer (MODIS)
on the Aqua satellite [30]; the MEdium Resolution Imaging Spectrometer (MERIS), which flew on
Envisat-1; and, the Visible Infrared Imaging Radiometer Suite (VIIRS), which flies on the Suomi
National Polar-orbiting Partnership (NPP) satellite [31]. Critical steps for achieving data consistency
within the OC-CCI dataset include band-shifting and empirical bias correction to match MERIS, MODIS,
and VIIRS data with SeaWiFS, and then merging the datasets together to compute uncertainty estimates
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per pixel [31–33]. The OC-CCI dataset has been widely used to address ocean related processes using
various optical parameters [18,31,33–36]. For the Red Sea region, in particular, the OC-CCI dataset
has been demonstrated to have good consistency with in situ observations along with substantially
improved coverage, particularly for the southern portion of the basin, which was enabled by blending
data from multiple satellite instruments [8,14,30].

2.1.2. MODIS-Aqua SST Data

MODIS-Aqua Global Level 3 Mapped Thermal SST product relies on information derived from the
11 and 12 µm thermal infrared (IR) bands (MODIS channels 31 and 32). SST data is available for both the
daytime and nighttime overpasses for different averaging periods, ranging from daily to annual, gridded
at 0.041◦ × 0.041◦ resolution [37]. For this study, we utilized the monthly MODIS-Aqua Daytime SST
data product for the period from July 2002 to May 2017 from the latest released version 2014.0.

2.1.3. Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST Data

The 4 km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Version 5 SST dataset
is a reanalysis of historical AVHRR data that has been improved using extensive calibration, validation,
and other information to yield a consistent, research quality time series for global climate studies [38,39].
The collection of National Oceanic and Atmospheric Administration (NOAA) satellite platforms that
is used in the AVHRR Pathfinder SST time series includes NOAA-7, NOAA-9, NOAA-11, NOAA-14,
NOAA-16, NOAA-17, and NOAA-18. In this study, we used the monthly daytime SST data for the
time period from September 1997 to June 2002 to extend our analysis farther back in time than is
possible with the MODIS-Aqua SST dataset alone, and to provide better temporal consistency with the
OC-CCI dataset. As a check, we compare the AVHRR SST data and the MODIS Aqua SST data from
July 2002 to December 2009 in order to characterize the systematic observational differences between
the two datasets. We adjust these differences to produce a combined SST dataset for the Red Sea that
extends from September 1997 to December 2016.

2.1.4. Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2) Dust
Reanalysis Data

The Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) is
an atmospheric reanalysis dataset that is extending from January 1980 to present that is produced by
the National Aeronautics and Space Administration (NASA) based on historical analysis using the
Goddard Earth Observing System Model, Version 5 (GEOS-5) with its Atmospheric Data Assimilation
System (ADAS), version 5.12.4. In order to assess the role of dust-related impact in the Red Sea,
we use the NASA Goddard Online Interactive Visualization ANd aNalysis Infrastructure (GIOVANNI)
tool [40] in order to obtain and process the monthly mean MERRA-2 data, including the field “Dust
Scattering AOT 550 nm”, which we designate as dust aerosol optical depth (DAOD) [41], as well
as “Dust Dry Deposition” for “Bin-1” through “Bin-5” and “Dust Wet Deposition” “Bin-1” through
“Bin-5”, and “Surface Wind Speed” [42]. All the MERRA-2 data used is at 0.5◦ × 0.625◦ resolution
covering the period from September 1997 to December 2016.

2.1.5. Multi-Angle Imaging SpectroRadiometer (MISR) Aerosol Optical Depth (AOD) Data

The Multi-angle Imaging SpectroRadiometer (MISR) instrument has been operational on the
NASA Terra satellite since early 2000 and it provides observations of the daytime portion of the Earth
from nine viewing directions in four spectral bands with an instrument swath of 400 km. In this
research, we use the monthly MISR (MIL3MAE.004) AOD product at 558 nm, which is gridded at 0.5◦

spatial resolution [43], in order to investigate the relationship between dust aerosols and Chl-a events
in the Red Sea for one event, namely June 2010. Studies have shown that MISR AOD retrievals over
desert sites tend to have better agreement with Aerosol Robotic Network (AERONET) ground-based
measurements than MODIS, especially for low AODs, and MISR provides a useful complement to
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MODIS AODs by capturing individual aerosol events, while still reproducing the overall aerosol
climatology [44,45].

2.1.6. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) AOD Data

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite [46]
has flown in formation with the sun-synchronous, near-polar A-train constellation of Earth observing
satellites since 28 April 2006. Developed as a collaboration between the French space agency, Centre
National d’Etudes Spatiales (CNES), and NASA, the main scientific objective of the CALIPSO mission
is to provide range-resolved information on the vertical distribution of aerosols and clouds. The Cloud
Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument uses a two-wavelength elastic
backscatter Nd:YAG laser that transmits linear polarized light at 532 nm and 1064 nm, coupled with
a receiver telescope of 1 m diameter that measures the perpendicular and parallel components of the
attenuated backscatter at 532 nm and the total attenuated backscatter at 1064 nm [47]. The CALIOP
Level 2 (L2) data includes information on the aerosol and cloud backscatter coefficient at 532 nm and
1064 nm, and the particle depolarization ratio at 532 nm [48]. Both aerosol and cloud profile datasets
are provided at 5 km horizontal and 60 m vertical resolution, for an altitude range of up to 8.3 km
above mean sea level (AMSL). The CALIPSO Version 3 (V3) algorithm discriminates aerosols into
six subtypes: (i) clean marine; (ii) dust; (iii) polluted continental; (iv) clean continental; (v) polluted
dust; and (vi) smoke [49]. The CALIPSO algorithm further assigns a specific Lidar Ratio (LR) to each
aerosol subtype, which can used in conjunction with the retrieved backscatter coefficient profiles for
the derivation of the extinction coefficient profiles at various levels within the atmosphere [50].

Dust aerosol and the optical properties of dust have been extensively studied using CALIOP
data [51–56]. In the present study, the CALIOP V3 L2 Aerosol Profile product is implemented
to derive pure dust extinction coefficient profiles over the Red Sea for the period of 2007 to 2015.
The Climatological Dust Extinction coefficient profiles (Clim-DE) dataset, reported at 1◦ × 1◦ spatial
resolution, are also used [57]. The Clim-DE dataset is based on the CALIPSO pure dust product [54]
and the ESA-LIVAS climatology (via http://lidar.space.noa.gr:8080/livas/). The Clim-DE product
has been used in previous studies to investigate the vertical structure of Saharan dust transport over
Europe [58] and the three-dimensional features of the dust burden over East Asia [59].

2.2. Methods

To investigate the variation of dust deposition and its impact on oceanic production in the Red
Sea region, a multi-sensor approach was used to evaluate Chl-a variability associated with dust
deposition using DAOD and other environmental parameters, such as wind speed and SST. Using the
MODIS-Aqua Chl-a product, Li et al. [19] revealed a two-month lag correlation positive dust anomalies
and high Chl-a anomalies, as well as a two-month lag correlation between negative SST anomalies and
high Chl-a anomalies. In this work, we use the OC-CCI dataset to further test and validate the results
obtained from Li et al. [19]. Moreover, this research explores the possible factors that are contributing
to the influence of aeolian dust on summertime phytoplankton blooms in the Red Sea by investigating
other dust-related factors, namely, wind speed, dust sources, and dust deposition type.

A time-averaged map of Chl-a concentration for the Red Sea was generated with OC-CCI data
from September 1997 to December 2016 (Figure 1). The map shows the same meridional pattern of
Chl-a concentration, as in previous research [3,19]—high values appear near the entrance of Gulf of
Aden in the south and along nearby coastal areas; the northern Red Sea (20◦N to 28◦N) is lower in Chl-a
than the southern Red Sea (13◦N to 20◦N), while the region that is south of the Farasan Islands (13◦N
to 17◦N) has higher Chl-a amounts than the region just to the north (17◦N to 20◦N). Note, however,
that the range of Chl-a values (0.15 to 2.15 mg/m3) from the OC-CCI dataset is smaller than the range
that was reported for the MODIS-Aqua dataset (0.1 to 5 mg/m3) [19]. Based on the abundance and
spatiotemporal distribution of surface Chl-a, in Figure 1, we partition the Red Sea into four domains
at specific, integer latitudinal boundaries for convenience. The four regions, from north to south,
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are designated the Northern Red Sea (NRS) (28◦N to 24◦N), the North Central Red Sea (NCRS) (24◦N
to 20◦N), the South Central Red Sea (SCRS) (20◦N to 17◦N), and the Southern Red Sea (SRS) (17◦N
to 13◦N). Note that these designations are slightly different than those that were used in previous
studies [3,19].

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 24 

 

north to south, are designated the Northern Red Sea (NRS) (28°N to 24°N), the North Central Red 
Sea (NCRS) (24°N to 20°N), the South Central Red Sea (SCRS) (20°N to 17°N), and the Southern Red 
Sea (SRS) (17°N to 13°N). Note that these designations are slightly different than those that were used 
in previous studies [3,19]. 

 
Figure 1. Ocean Color Climate Change Initiative (OC-CCI) Chl-a (mg m−3) Level 3 monthly OC-CCI 
Chl-a data averaged for the Red Sea from September 1997 to December 2016. The four regions labeled 
consecutively starting from the north to south are the Northern Red Sea (NRS), North-Central Red 
Sea (NCRS), South-Central Red Sea (SCRS), and Southern Red Sea (SRS). 

For each of the four regions, time series analyses of the nearly 20 years (September 1997 to 
December 2016) monthly data for Chl-a, DAOD, SST, and wind speed were performed using scaled 
values, anomalies, and lag (cross) correlation. The scaled values, SV, are calculated by finding the 
mean of the entire time series, xm, subtracting this from each monthly value, xi, and then normalizing 
the result by the mean of the time series. Formally, this is represented by the equation: = − = − 1 (1)

The use of the SV allows for time series of different variables to be represented on a similar scale 
and reveals potential long-term trends in the data, which are represented as deviations from the mean 
of the time series, xm. 

Due to the large seasonality in the Red Sea, it is often helpful to consider the monthly anomalies, 
as given by: = − ̅ (2)

Figure 1. Ocean Color Climate Change Initiative (OC-CCI) Chl-a (mg m−3) Level 3 monthly OC-CCI
Chl-a data averaged for the Red Sea from September 1997 to December 2016. The four regions labeled
consecutively starting from the north to south are the Northern Red Sea (NRS), North-Central Red Sea
(NCRS), South-Central Red Sea (SCRS), and Southern Red Sea (SRS).

For each of the four regions, time series analyses of the nearly 20 years (September 1997 to
December 2016) monthly data for Chl-a, DAOD, SST, and wind speed were performed using scaled
values, anomalies, and lag (cross) correlation. The scaled values, SV, are calculated by finding the
mean of the entire time series, xm, subtracting this from each monthly value, xi, and then normalizing
the result by the mean of the time series. Formally, this is represented by the equation:

SV =
xi − xm

xm
=

xi
xm

− 1 (1)

The use of the SV allows for time series of different variables to be represented on a similar scale
and reveals potential long-term trends in the data, which are represented as deviations from the mean
of the time series, xm.
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Due to the large seasonality in the Red Sea, it is often helpful to consider the monthly anomalies,
as given by:

ai = xi − x (2)

where x is the mean value that is calculated for that month from the entire dataset. To make the
different datasets comparable, the monthly anomalies are scaled by σ, the standard deviation of the
values for that month, which we term the Z-score:

Z − score =
ai
σ

=
xi − x

σ
(3)

In order to uncover the relationships between two different parameters, both standard correlation
and lag (cross) correlation analyses were done. The standard (Pearson) correlation coefficient, r,
between two time series of variables, x and y, with N elements can be expressed as:

r = ∑N
i=1(xi − x)(yi − y)√

∑N
i=1(xi − x)2

√
∑N

i=1(yi − y)2
=

Cov(x, y)
σxσy

(4)

where, Cov is the covariance function, and σx and σy represent the standard deviation of the x and y
time series, respectively. The correlation coefficient can assume values between −1 and +1, with −1
representing perfect anti-correlation and +1 representing perfect correlation. Finally, as in Li et al. [19],
we consider the lagged (cross) correlation r(k), for lag k, which is given by:

r(k) =
∑N−k

i=1 (xi − x)(yi+k − y)√
∑N

i=1(xi − x)2
√

∑N
i=1(yi − y)2

=
ccvf(x, y)

σxσy
(5)

where, ccvf is the cross-covariance function.
When creating cross-correlations maps, all of the data are re-gridded to the same resolution using a

bi-linear re-gridding algorithm. These maps reflect the relationships between phytoplankton—represented
by Chl-a—and other atmospheric and oceanic factors in different regions within Red Sea. Lagged
correlation maps, in particular, are used to attempt to uncover the mechanisms that are underlying the
residence times of dust in the Red Sea and the release of bioavailable Fe into the oceanic mixed layer and
its resulting effects on ocean productivity [60,61].

3. Results

3.1. Time Series of Scaled Values for Chl-a, DAOD, and SST

The time series of the SV for three of the datasets, Chl-a from OC-CCI (green), DAOD from
MERRA-2 (blue), and SST from blended AVHRR and MODIS-Aqua data (red) are shown in Figure 2
for the different regions of the Red Sea depicted in Figure 1.

A strong seasonal variation in all of the variables is immediately apparent, but is clearest in the SST
data. In all four regions, the SST is lowest near the beginning of the calendar year (January–February),
and highest in near the end of boreal summer and the beginning of boreal autumn (August–October).
Close inspection reveals small, but systematic differences from one region to the next. The SST cools
off slightly earlier in the SRS and warms slightly later, especially relative to the NRS. The magnitude of
the SST SV is largest in the NRS and smallest SCRS, meaning that larger deviations from the mean are
seen in the NRS.

There is also strong seasonality to dust events, particularly in the SRS, as shown in the time series
of SV for DAOD. Visually, there is also good correspondence between the SV for DAOD and SST in the
SRS, with elevated levels of DAOD corresponding to periods of elevated SST and decreased levels of
DAOD corresponding to periods of lower SST. This relationship becomes progressively weaker to the
north, with the NRS sometimes showing elevated DAOD events when the SST is near the mean value
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(SV near zero). The peak in the DAOD in the NRS tends to occur in the late boreal spring (April–May),
with negative SV in the autumn. These results indicate that different mechanisms are responsible for
dust generation in the northern parts of the Red Sea as compared to the southern regions.
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Figure 2. Time series of scaled values (see Equation (1)) for Chl-a, dust aerosol optical depth (DAOD)
(MERRA-2 Dust Scattering AOT in 550 nm), and sea surface temperature (SST) for the four regions of
the Red Sea represented in Figure 1.

The SV of Chl-a shows strong seasonality in the NRS, where Chl-a anomalies appear to be nearly
perfectly anticorrelated with SST anomalies, meaning that low SSTs correspond to high Chl-a, and vice
versa. The other portions of the Red Sea fail to show such a strong relationship. In the NCRS, positive
SV values of Chl-a can correspond to positive (2002), negative (2007, 2007), and near zero (2010) SV
values for SST. Visually, there appears to be little relationship with DAOD in the NRS. In the SCRS,
the SV for Chl-a seems to follow a six-month cycle, with a peak in January and another around June.
This relationship is also apparent in the SRS. Positive SV values for Chl-a correspond well to positive
SV values for DAOD, but with SV values that are near zero for SST. Finally, in the SRS, positive SV
values in Chl-a lead the maxima in SV values for SST slightly, and again correspond nearly perfectly
with positive SV values for DAOD.

When considering the largest positive excursions in SV for Chl-a, we note that these occur mainly
in the southern part of the Red Sea, with the summers of 2011, 2010, 2005, and 2003 having strong
events that are larger in magnitude than the typical wintertime Chl-a enhancements. Note that the
Chl-a event that was identified in the MODIS-Aqua dataset in summer 2015, and was discussed in
detail in Li et al. [19], does not rank as one of the largest Chl-a events in the OC-CCI dataset, but is
visible as one of the few outliers in the later part of the time series for the SCRS. The large positive
Chl-a events in 2011, 2005, and 2003 are significant in both the SCRS and the SRS, but have small or
even negative SV in the NCRS and NRS. The 2010 summertime event in the SCRS is weak in the SRS,
but is the largest event in the NCRS. The second largest event in the NCRS is in October 2002, and it
appears to be confined primarily to this region.
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3.2. Time Series of Z-Scores for Chl-a, DAOD, and SST

The large seasonality evident in all four regions of the Red Sea in SST, DAOD, and Chl-a in
Figure 2 tends to obscure significant monthly anomalies in these parameters. For this reason, we show
the Z-scores over the different regions of the Red Sea in Figure 3. Recall that the Z-scores represent the
monthly values, with the long-term monthly mean subtracted, and divided by the standard deviation
of the monthly values (see Equation (3)). A Z-score that is equal to one represents a monthly value
that differs from the long-term mean by one standard deviation. If the data are normally distributed,
then the expectation is that 95% of the data will have a Z-score ≤2, and only 0.3% of the data will have
a Z-score >3. Of the three parameters, the only one that appears to be nearly normally distributed
is the SST. Chl-a and DAOD Z-scores are skewed positive in all four regions, meaning that positive
anomalies are more likely than negative anomalies.
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Figure 3. Time series of Z-scores (see Equation (3)) for Chl-a, DAOD (MERRA-2 Dust Scattering AOT
in 550 nm), and SST for the four regions of the Red Sea represented in Figure 1.

The SST anomalies tend to be positive prior to 2002 in both the SCRS and SRS, with a notable
negative anomaly in the later part of 2000. Other negative anomalies are apparent in 2011 and 2012 in
all of the regions, with the intervening years showing small anomalies of both signs. The end of the
SST record in 2015/2016 shows positive anomalies that may be related to the powerful El Niño in 2016,
that made it the warmest year on record, with the World Meteorological Organization Provisional
Statement on the State of the Climate noting that 2013–2017 could be the warmest five-year period on
record [62].

The DAOD anomalies appear to be primarily negative prior to mid-2000. This happens to be
when MODIS-Terra data became available, so the inclusion of this dataset into the MERRA-2 DAOD
reanalysis time series likely introduces temporal inhomogeneity. With the exception of a few positive
outliers, and the time period between 2010 and 2012, there is no clear pattern to the DAOD anomalies,
especially late in the time series. The large positive DAOD anomaly in 2000 occurs in all four regions
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and it is correlated with a strong negative SST anomaly. However, when comparing across the regions,
the largest DAOD anomaly corresponds to the smallest SST anomaly, and vice versa. Other DAOD
anomalies appear in late 2010 and 2013 in all four regions, but there does not seem to be any relationship
with SST. Finally, the large DAOD anomaly in 2015 only occurs in the SRS and SCRS, where it correlates
well with a negative SST anomaly, but there is no DAOD anomaly at all in the NCRS or the NRS.

Even more than the DAOD dataset, the Chl-a Z-score time series shows clear temporal
inhomogeneity. Visually, it is possible to separate the Chl-a time series into three distinct periods that
are common to all four regions. The first period is prior to mid-2002, where the negative anomalies
dominate in all the regions, with the exception of a single peak event in the NCRS and NRS in late
1998. Also notable in this time period are the gaps in the time series in the SCRS and SRS. Table 1 lists
the time period of each of the four sensors used to construct the OC-CCI Chl-a dataset [31].

Table 1. Information of the Sensors Used in the OC-CCI Dataset.

Sensor Number Sensor Name Start Time End Time

1 SeaWiFS September 1997 December 2010
2 MODIS (Aqua) July 2002 On-going
3 MERIS April 2002 April 2012
4 VIIRS January 2012 On-going

According to Table 1, prior to mid-2002 only the SeaWiFS sensor was used to generate the
OC-CCI Chl-a time series, meaning that persistent clouds or dust could obscure the underlying water
surface, thus resulting in a data gap. The introduction of additional sensors helped to mitigate this
issue [8,14,30]. The second time period runs from mid-2002 to early 2012 and is characterized by
primarily positive Chl-a anomalies. Only the NRS shows any significant negative anomaly during
this period, which occurs in early 2010. Table 1 shows that MERIS was no longer included in the
OC-CCI Chl-a dataset after April 2012, due to the loss of contact with the Envisat-1 platform. Around
the same time, the VIIRS data began to be included. The loss of MERIS and the inclusion of VIIRS
corresponds to the third period evident in the time series, which is characterized by primarily negative
Chl-a anomalies. Notable exceptions are a strong positive anomaly at the beginning of 2014 that can be
seen in all four Red Sea regions, and another large anomaly at the beginning of 2015, which seems
to be confined to the SCRS and SRS. The June 2015 event that is discussed in detail in Li et al. [19] is
apparent in the Z-score time series, but only in the SCRS.

The time series shown in Figure 3 are suggestive of relationships among these three variables,
particularly in the SCRS, and, to a lesser extent, the SRS, as discussed in our earlier work [19]. However,
the temporal in homogeneities that are apparent in the both the Chl-a time and DAOD series indicate
that caution must be exercised before drawing too strong conclusions from these particular datasets.
We explore the representativeness of the datasets for different time periods in our later discussion
(Section 3.3).

3.3. Comparision of Sensors Used in OC-CCI Data

When comparing the monthly means of Chl-a between MODIS and OC-CCI, (analysis done but
not shown here), a low bias in OC-CCI relative to MODIS-Aqua at large Chl-a values was observed
with high outliers in the mean for low Chl-a values. Looking at the monthly median values, the low
bias remained, but the high bias is more or less eliminated. We believe that MERIS is the cause of
this bias and for that we decided to run a comparative analysis between Chl-a, obtained from the
OC-CCI data, against SST, DAOD, and wind observations and anomalies during three different periods
amongst the sensors that aee listed in Table 1. These three periods represents data before MERIS
(1998–2002), during MERIS (2003–2011) and after MERIS (2012–2016). Figure 4a–c, show correlation
maps (lag = 0) of SST, DAOD and WINDSPEED with Chl-a for each of the stated periods against the
whole entire period (1998–2016). Similar behavior across the different time periods should be normal
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and is expected, however, cases with discrepancies and inconsistent behavior will be discussed and
highlighted in the following.
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WINDSPEED (b1–b8) and DAOD (c1–c8) (MERRA-2 Dust Scattering Aerosol Optical Depth (AOT) in
550 nm) with Chl-a, for entire period (1998–2016) (first column), before MERIS (1998–2002) (second
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Over the entire time period 1998–2016, SST and Chl-a observations exhibit a consistent negative
correlation during the three different periods (Figure 4(a1)), whereas the anomalies (Figure 4(a5))
of both the northern and southern-most regions of the Red Sea stood out. This could be owed to
the upwelling of cooler and nutrient-rich seawater [17] and the induction of a cool and nutrient-rich
current from Gulf of Aden [3,11,14], respectively. However, during the period 1998–2002, the central
Red Sea region (19◦N–23◦N) exhibited a low correlation that is presented by the white colored area
(Figure 4(a2)) while the SST and the Chl-a anomalies experienced a positive correlation (Figure 4(a6)
due to the influence of eddy activity [2,19], a behavior that is also observed during the period 2012–2016
(Figure 4(a8)).

A consistent correlative behavior between wind speed and Chl-a observations is clear during all
of the time periods, where the northern Red Sea exhibits a negative correlation, while the middle and
southern Red Sea exhibits a positive correlation (Figure 4(b1–b4)). This could be attributed to the fact
that summer seasons experience the strongest periods of wind speed that can drive the Gulf of Aden
currents into the Red Sea, leading to the phytoplankton bloom of the central and southern regions [14].
While the northernmost region shows phytoplankton blooming, mainly during the winter period due
to weaker wind. For wind speed and Chl-a anomalies, the entire region exhibits a positive correlation
(Figure 4(b5–b8)). An exception is observed during 1998–2002 (Figure 4(b6)), where the northern and
central Red Sea (19◦N–23◦N) exhibited a different correlative behavior from the other periods. This can
be attributed to the influence of wind stirring up the seawater to enhance nutrient mixing and the
eddy activities over the two regions, respectively.

As for the DAOD and Chl-a, it is rather complicated because of the lack of observations during
major dust events, which make it hard to conclude a definitive correlative behavior. However,
we observed an overall negative correlation between DAOD and Chl-a observations (Figure 4(c1–c4))
during all of the time periods, but with rather exceptional positive correlations in the coastal and
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southern regions of the Red Sea. This positive correlative behavior is not clear during the period
2012–2016 (Figure 4(c4)), mainly because the Chl-a summer observations are insufficient due to major
dust events. It is also noteworthy that during 1998–2002, the negative correlation in 23◦N–25◦N was
stronger than that of 2003–2011, something that we need to look into to better understand it. For DAOD
and Chl-a anomalies (Figure 4(c5–c8)), a positive correlative behavior is observed over the whole
region with a very strong positive correlation in the NRS during 2012–2016 (Figure 4(c8)), which may
be attributed to eddy’s or wind stirring up influence (Figure 4(b8)) or wet deposition.

In conclusion, we believe that the three different outlined periods more or less behaved similarly
when compared to the entire period’s behavior, namely during 1998–2016. However, we still acknowledge
the presence of few differences that were discussed above. This finding strongly supports the validity of
using OC-CCI Chl-a data to study its cross correlative behavior with SST, wind speed, and DAOD.

3.4. Anomaly Comparison of Chl-a Concentration and Other Factors for June 2010

Figure 5 shows the monthly anomaly, ai (see Equation (2)), maps in the Red Sea for June 2010
for Chl-a, SST, and AOD, as well the related meteorological parameters dust dry and wet deposition,
and wind speed. The latter three parameters are taken from the MERRA-2 reanalysis. June 2010 was
selected because it has a large positive Chl-a anomaly, which is particularly apparent in the NCRS and
SCRS time series (see Figure 3).Remote Sens. 2018, 10, x FOR PEER REVIEW  12 of 24 
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The map of the Chl-a anomaly field in Figure 5a shows a large area of high Chl-a at around 16◦N
in the SCRS, with a somewhat smaller positive anomaly around 22◦N in the NCRS. Note the large
region of missing data between about 17◦ and 18◦N, which could be due to persistent clouds or dust.
The SST anomalies in Figure 5b show the expected correlation in the SCRS with low SSTs in the area of
elevated Chl-a amounts. In the NCRS, however, the SST anomalies are slightly positive. The AOD
anomaly map in Figure 5c shows slightly elevated AODs at around 0.1 over most of the Red Sea
during June 2010. Higher AOD anomalies are seen around 19◦N, centered near Port Sudan, Sudan.
Interestingly, negative AOD anomalies are more directly associated with the positive Chl-a anomaly
in the SCRS. The dust dry deposition map in Figure 5d shows small positive anomalies over most of
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the region, with the exception of the extreme southern Red Sea. The dust wet deposition in Figure 5e,
in contrast, has a large positive anomaly in both the SCRS and SRS, with larger positive anomalies
along the eastern coastline. Comparison with Figure 5a shows that the positive Chl-a anomalies are not
well correlated with the increased wet deposition in these regions, however. Finally, the wind speed
anomalies in Figure 5f show the distinct signature of the wind jet that is associated with the Tokar Gap,
which is discussed in terms of its relation to the Chl-a anomaly in June 2015 in Li et al. [19]. In this case,
the axis of elevated wind speeds corresponds well with the missing data in the Chl-a map in Figure 5a.

3.5. Correlation Analysis of Chl-a Anomalies with SST and DAOD Anomalies

To further investigate the relationships between SST and the MERRA-2 DAOD with Chl-a, the
correlation coefficients, r (see Equation (4)), for the anomalies in these parameters for each month and
each region within the Red Sea are given in Table 2.

Table 2. SST/Chl-a and DAOD/Chl-a monthly anomaly correlation coefficients for the four Regions of
Red Sea. Light blue indicates negative correlation between −0.5 and −0.7, dark blue indicates negative
correlation <−0.7. Light red indicates positive correlation between +0.5 and +0.7. Dark red indicates
positive correlation >+0.7.

NRS NCRS SCRS SRS

January SST/Chl-a −0.562 −0.268 −0.496 −0.703
DAOD/Chl-a +0.244 +0.407 +0.310 +0.314

February SST/Chl-a −0.639 −0.355 −0.785 −0.592
DAOD/Chl-a +0.473 +0.669 +0.670 +0.678

March
SST/Chl-a −0.617 −0.341 −0.618 −0.592

DAOD/Chl-a +0.138 +0.736 +0.479 +0.294

April SST/Chl-a −0.301 +0.042 +0.266 −0.138
DAOD/Chl-a +0.243 +0.588 −0.160 −0.027

May SST/Chl-a −0.151 −0.410 −0.419 −0.497
DAOD/Chl-a 0.597 +0.436 +0.370 +0.360

June
SST/Chl-a +0.122 −0.091 −0.223 −0.296

DAOD/Chl-a +0.531 +0.521 +0.528 +0.122

July SST/Chl-a +0.102 −0.263 −0.484 −0.672
DAOD/Chl-a +0.020 +0.250 +0.651 +0.674

August SST/Chl-a −0.083 +0.391 +0.015 −0.099
DAOD/Chl-a +0.147 +0.294 +0.219 +0.442

September SST/Chl-a −0.182 −0.096 −0.464 −0.339
DAOD/Chl-a +0.509 +0.562 +0.526 +0.431

October
SST/Chl-a −0.107 +0.292 −0.228 −0.339

DAOD/Chl-a +0.647 +0.103 −0.017 +0.260

November
SST/Chl-a −0.256 +0.034 −0.392 −0.705

DAOD/Chl-a −0.030 +0.169 +0.578 +0.500

December
SST/Chl-a −0.319 −0.151 −0.542 −0.569

DAOD/Chl-a +0.095 +0.083 +0.269 +0.212

Significant negative correlations (<−0.5) are colored blue and significant positive correlations
(>+0.5) are shaded red. Absolute values that are greater than or equal to 0.5 are shaded in light colors,
and absolute values greater than 0.7 are shaded in darker colors. These limits are chosen because the
coefficient of determination, r2, is 0.25 for r = 0.5 and approximately 0.5 for r = 0.7. This means that
25% and 50% of the association is explained by a linear relationship between the terms for these two
thresholds, respectively. This same information is plotted in Figure 6 as a monthly time series for the
SST/Chl-a anomaly relationship (Figure 6a) and the DAOD/Chl-a anomaly relationship (Figure 6b).

As seen in Table 2, and Figure 6, SST anomalies are typically negatively correlated with Chl-a
anomalies, while DAOD anomalies are positively correlated with Chl-a anomalies. These relationships
are not unexpected, as phytoplankton tends to thrive in relatively cooler environments, while dust
deposition can provide necessary nutrients, including Fe, which helps to foster phytoplankton growth,
particularly in oligotrophic waters, like the Red Sea. The correlation with the largest magnitude is
−0.785, found between SST anomalies and Chl-a anomalies in February in the SCRS. This is followed
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closely by the large positive correlation of +0.736 between DAOD anomalies and Chl-a anomalies
in March in the NCRS. Other significant negative correlations are found in the SRS between SST
anomalies and Chl-a anomalies in January and November.
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When considering the overall temporal structure of the correlations between SST and Chl-a
anomalies that are shown in Figure 6a, the relationships are similar for the NCRS, SCRS, and SRS, while
the NRS behaves differently. The June and July correlations in the NRS achieve their highest (positive)
values, and have their largest (negative) correlations in February and March. The other regions also
have large (negative) values in February and March, with much smaller absolute correlations in April,
then increasingly negative correlations in May, June, and July. This behavior may reflect the boreal
summer intrusion of cooler waters from the Indian Ocean through the Gulf of Aden in the south,
but the magnitude of the monthly correlation is rather small between SST and Chl-a in all four regions
in the summertime.

The correlation between DAOD anomalies and Chl-a anomalies in Figure 6b shows a different
pattern than Figure 6a. First, the NRS has large positive correlations in February, May, and October.
The SCRS and SRS are nearly identical, with the exception of June, which may be due to the residual
issues in the SRS due to clouds or persistent dust in this month. The correlation in these two regions
peaks in February, falls rapidly in April, peaks again in July, then falls in October, but peaks again
in November. The NCRS shows characteristics of both the NRS and the two southern regions with
a broad peak in correlation centered on March, declining until July–August, with a second peak in the
correlation in September.

February and March are the months that are showing the largest number of significant correlations
in all regions, while August is the only month that shows no significant correlations. Significant
positive anomaly correlations between DAOD and Chl-a outnumbered the significant negative anomaly
correlations between SST and Chl-a. With the exception of February and March, the former tend to be
concentrated in the boreal summer months, while the latter are more frequent in the boreal winter.
Finally, the number of months with significant anomalies of either sign is largest is the SRS (9), followed
by the SCRS (8), the NRS (7), and the NCRS (5). Note, however, that these results are at least partly
due to the selection of the threshold for significance.

3.6. Lag (Cross) Correlation Maps of SST, Wind Speed, and DAOD with Chl-a

In Li et al. [19], we discovered a clear two-month lag correlation between Chl-a and DAOD
anomalies using a MODIS data. To expand this major finding through the longer time and to gain
further understanding of how the factors discussed here influence Chl-a, the MERRA-2 data of DAOD
and Surface Wind Speed as well as MODIS Aqua SST data are re-gridded to 4 km spatial resolution
with linear re-gridding algorithm. This re-gridding algorithm is already applied and presented in
Figure 4a–c. Through the current lag analysis, SST & Chl-a observations, and anomalies exhibits
a gradually changing behavior (Figure 7(a1–a8)). For instance, we found that the negative correlation
between Chl-a and SST of the northern region gradually flips to a positive correlation at lag 3 due
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to a seasonal change (Figure 7(a1–a4)). Moreover, the lag 3 map (Figure 7(a4)) shows a south-north
positive trend implying on the inflow of the nutritious waters from the Gulf of Aden to the Red Sea
environment. Slowly dissipating/increasing behavior in the anomalies of Chl-a and SST is observed as
we move from 0 to 3 months lag (Figure 7(a5–a8)). It is worth noting that the SST/Chl-a anomalies
(Figure 7(a5–a8)) use MODIS Aqua SST data during the period of 2003 to 2016, whereas the SST/Chl-a
anomalies’ plot during the period of 1998 to 2002 uses the AVHRR SST data (Figure 4(a6)).Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 24 
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Figure 7. Cross Correlation maps of actual observations and anomalies for SST (a1–a8), WINDSPEED
(b1–b8) and DAOD (c1–c8) (MERRA-2 Dust Scattering AOT in 550 nm), with Chl-a for a time lag of
0 month (first column), lag of one month (second column), lag of two months (third column), and lag
of three months (fourth column).

The northern region of the Red Sea shows an increasing negative behavior from lag 0 to 3 months
lag between the Chl-a and wind speed observations (Figure 7(b1–b4)). This finding shed the light of
the decline of the wind driven vertical mixing with seasonal change. On the other hand, a declining
positive correlative behavior from 0 to 3 months lag is clearly observed over the northern and southern
Red Sea regions between the wind speed & Chl-a anomalies (Figure 7(b5–b8)).

It is quite evident that the Red Sea environment exhibits a consistent negative correlative behavior
between the Chl-a and the DAOD observations (Figure 7(c1–c4)) with clear positive correlative
exceptions dominating the southern region and the coastal areas. This can be cautiously attributed
to possible deposition scenarios. However, it is noteworthy that the Chl-a and DAOD anomalies
shows a positive correlation at zero lag (Figure 7(c5)) and moving north-south trend from lag 1 to
lag 3 (Figure 7(c6–c8)). The exceptional positively correlated round-shaped area at SCRS at lag-2
(Figure 7(c7)) agrees with the findings of Li et al. [19] that showed the bloom at the same region during
June 2015 because of the eddy’s contribution as well as the Tokar gap dust event. This indicates that
the bloom of June 2015 was so profound to dominate the correlation plot, showing that the two-month
lag high correlation may have resulted from this event. However, all of the plots are all about the
statistical relationship, not necessarily proving the causation between the observations.

3.7. Calipso-Based 3D Climatology of Desert Dust Aerosol over the Red Sea

In addition to the horizontal variability of AVHRR and MODIS Aqua SST, MERRA-2 Dust
Reanalysis Data, MISR AOD, and OC-CCI Chl-a product, the CALIPSO based ESA-EARLINET LIVAS
Pure-Dust and Clim-DE products are used to understand the structure of dust aerosol layers over
the study domain. The combined use of Pure Dust AOD and Clim-DE products provides the full
three-dimensional desert dust aerosols over the Red Sea.
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Figure 8 shows the seasonal spatial patterns of CALIPSO columnar Dust AOD (DAOD) at 532
nm, over the Red Sea and the surrounding areas averaged for December–February (DJF), March–May
(MAM), June–August (JJA), and September–November (SON) between 01/2007 and 12/2015. It must
be clarified that the seasons have been defined based on the temporal and spatial characteristics of
Aeolian dust activity over the Red Sea [10,63]. From the geographical distributions of DAOD, it is
revealed that the dust activity over the Red Sea peaks in summer, while it diminishes during winter.
Moreover, a strong north-to-south and west-to-east DAOD increasing gradient is apparent over the
study domain, throughout the year. The maximum DAODs (up to 0.5) are recorded over the southern
parts of the Red Sea and Saudi Arabia in summer and spring, respectively. In autumn (SON), DAODs
do not exceed 0.3, while in winter (DJF), the minimum DAODs (less than 0.1) throughout the year are
observed over the eastern parts of the Sahara Desert.
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Figure 8. Geographical distribution of the mean Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) Dust AOD at 532 nm, for the three-month averages: December to February
(DJF), from March to May (MAM), from June to August (JJA), and from September to November (SON),
for the period 01/2007–12/2015.

In order to illustrate the vertical distribution of dust aerosols over the Red Sea, the seasonal
extinction coefficient profiles (Clim-DE), which were averaged over the period 2007–2015, have been
produced for each sub region (NRS, NCRS, SCRS, SRS). As indicated in Figure 9, throughout the
year, the main portion of dust aerosols is confined in the lowest troposphere (lower than 1 km),
with maximum Clim-DE values ranging from 0.08 (Figure 9d) to 0.24 (Figure 9o) km−1, depending
on the sub region. Mean dust extinction coefficient gradually decreases with height, reaching values
that are less than 0.01 km−1 up to 6 km−1. Furthermore, elevated dust aerosol layers (2–5 km) are
evident mainly between March and August and for latitudes southern to 20◦N, encompassing the
SCRS and SRS regions, while during autumn and winter, dust aerosol layers are in general suppressed
below 5 km height. Among the sub regions, the highest extinction coefficients are found during
MAM in the northern domains (NRS and NCRS), while the corresponding values in SCRS and SRS
are observed during JJA. The synergistic implementation of the mean DAOD product (Figure 7) and
the climatological extinction coefficient profiles (Figure 9) provides an insight regarding the seasonal
variation of dust aerosols three-dimensional distribution above the Red Sea.
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averages: December to February (DJF), from March to May (MAM), from June to August (JJA), and from
September to November (SON), for the period 01/2007–12/2015.

The strong spatial and temporal variability of DAOD across the study domain is driven by the
geographical features as well as on the different meteorological mechanisms favoring dust mobilization
and uplifting over arid areas of the eastern Saharan Desert and the Arabian Peninsula [63–65]. Dust
generating dynamical processes include meteorological mechanisms of different scales, such as
cyclones and anticyclones [66,67], Nocturnal Low-Level Jets [68,69], and Haboobs [70,71]. Between
February and April, mid-latitude Mediterranean cyclones associated with cold fronts passages result
in a long-range transport of Saharan dust aerosol towards the northern Red Sea [63,72]. By contrast,
during summer the major sources of dust aerosols are the Arabian Peninsula deserts (An-Nafud,
Ad-Dahna, Rub-Al-Khali) and the local sources of Eritrea and the Republic of Sudan. Under favorable
synoptic conditions, dust events take place over the southern Red Sea [63,73]. In addition, the dust
aerosol transport and deposition processes are highly dependent on the local topography in the vicinity
of the Red Sea. At the northern parts (NRS, NCRS), the less complex surface elevation and the flatter
topography allow for the free transport of dust aerosol plumes. On the contrary, in the southern parts
of the Red Sea (SCRS, SRS) mountain ridges along both the African and Arabian Peninsula coastlines
confine dust aerosol flows creating persistent dust layers for extended periods [16]. The removal
processes of dust aerosol particles include both dry and wet deposition [74,75]. Dry deposition
(or gravitational settling) is the predominant removal mechanism of mineral particles from the
atmosphere in the north Red Sea (NRS, NCRS), while over its southern parts, wet deposition plays
a key role [72]. The higher dust aerosol load over the southern part of Red Sea [10] in combination
with the predominance of wet removal processes results in an increased dust aerosol deposition and
input to the southern parts of the Red Sea with respect to its northern parts.
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4. Discussion

In this work, we studied a combination of atmospheric and meteorological factors, including SST,
dust deposition (DAOD), and wind activities regulating Red Sea phytoplankton growth using 20 years
(1997–2016) observation and reanalysis data. We discovered a bias in the OC-CCI data owed to the data
merge from different sensors leading to some inconsistency over different time periods. The systematic
high bias values occurred mainly during the service period of MERIS sensor. We presented this
issue of inconsistency in the time series variation of Chl-a in Figure 3 and discussed it in Section 3.3.
To overcome this problem, we divided the data into three periods: before MERIS (1998–2002), during
MERIS (2003–2011), and after MERIS (2012–2016), and compared each time frame with the entire
time period (1998–2016). Our results confirmed that except for the central Red Sea during (1998–2002)
and for NRS during (2012–2016), the correlation maps of most Red Sea regions match those of the
entire time period. This is an important conclusion that supports the validity of using OC-CCI data
for the long-term correlative analysis that is the focus of this work. An evident negative relationship
between Chl-a and SST anomalies is observed and a major decline in Chl-a is correlated with the
warmer waters of 2015 and thereafter. Hence, we argue against previous research [7] proposing that the
warmer climate conditions could make the Red Sea ecosystem more productive, since phytoplankton
could not get underlying nutrition [76]. The vertical analysis of dust aerosol optical depth proved
that DAOD is a reliable indicator of dust deposition over the Red Sea ecosystem. We found that
dust deposition contributed at different extents over different regions of the Red Sea to the Chl-a
anomalies. This is clear from the positive correlation between DAOD and Chl-a at different lags. It is
noteworthy that the SCRS exhibits a two-month lag, thus confirming the impact of the anomalous
event during June 2015 [19]. However, not all of the dust events could induce phytoplankton blooms,
due to the varying nature of the dust sources. For instance, SRS received more wet deposition as
compared to the NRS (see Figure 5), resulting in more bioavailable nutrient (e.g., Fe, Si) for ocean
ecosystems. Meanwhile, the positive correlation between wind speed and Chl-a verified that preferred
wind patterns could enhance the horizontal intrusion of nutrient-rich water to the southern Red Sea [3].
We found that stronger winds brought more nutritious water from Gulf of Aden into the Red Sea
(see SRS in Figure 4(b5–b8)). Furthermore, strong wind also enhanced vertical mixing, thus bringing
deeper water that is nutrient rich to be brought into the euphotic zone [3]. This is clear from the
positive correlation between Chl-a and wind speed anomalies over the northernmost Red Sea as shown
in Figure 4(b8). Ocean circulation is a quite important factor influencing the phytoplankton blooms
distribution [3,19]. Hence, it is expected that the inflow of nutrient-rich seawater from the Gulf of
Aden can affect most regions of the Red Sea, including NCRS, SCRS, and SRS. Our 19 years analysis
showed a similar monthly correlation variability between Chl-a and SST anomalies for the central and
southern regions, but not for the NRS, suggesting the role that the inflow played here (See Figure 6a).
Moreover, since mesoscale anti-cyclonic eddies affect phytoplankton blooms through transferring
nutrients and/or Chl-a to the open waters in the central Red Sea, our cross correlation maps showed
the eddies’ role, resulting in the October 2002 bloom that wsa reported in Sofianos and Johns [2]
(see Figure 4(a2,a6,b2,b6)) and the June 2015 bloom reported in Li et al. [19] (see Figure 7, Chl-a and
DAOD anomalies at lag 2). The CALIPSO AOD climatology supported the dust contribution to the
Chl-a, as discussed above and showed by the positive correlation coefficients (Table 2), since the dust
activity peaked during summer and diminished during winter (see Figure 8). The extinction coefficient
vertical profiles validated the dust aerosols contribution since the elevated dust layers (2–5 km) were
evident during summer season mainly over the SCRS and SRS regions (see Figure 9).

5. Conclusions

This study considers a combination of different factors that are regulating nutrient supply in
the Red Sea environment that may contribute to the observed anomalous phytoplankton outbreaks.
We found that the Red Sea environment experienced, as expected, a negative correlation between SST
and Chl-a observations. This negative correlation is plausible since phytoplankton normally blooms
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during winter. However, we also found that this negative relationship still holds between SST and
Chl-a anomalies, with few exceptions that can be attributed to some eddy activities or possible wet
dust deposition. It is clear that anomalously cooler water, either from upwelling or intruding current
from Gulf of Aden, could bring nutrients leading to enhanced phytoplankton blooming. On the other
hand anomalously warmer water experiences reduced phytoplankton blooming because of nutrients
shortage that is induced by stronger stratification and reduced mixing layer depth. This is evident
from the extremely high SST anomalies paired with extremely low Chl-a anomalies during 2015–2016.
Hence, we believe that warmer climate conditions could make the Red Sea ecosystem less productive.
The extent of the June, 2010 anomalous event over the entire Red Sea environment made it quite
interesting and it was deeply investigated. A combination of factors, ranging from SST anomalies,
wet and dry dust deposition, and elevated wind speeds all contributed to the extent of that event.
The strong north-to-south, west-to-east increasing gradient of the DAOD explains the higher dust
activity on the southern regions of the Red Sea environment during summer and spring seasons
that agrees with the higher productivity. This is evident from the correlation maps between Chl-a
and DAOD anomalies at specifically two and three months lags over the southern Red Sea yet still
with some contributions to the other regions as well at 0 lag. Our multi sensor approach together
with the correlative analyses enhanced our understating of varying contributing atmospheric and
meteorological factors into the phytoplankton blooms. Further research will be conducted for specific
cases of anomalous blooms over the Arabian Gulf to investigate the regional extent of contributing
factors to other neighboring water bodies.
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