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Abstract: Recently, deep learning-based methods have drawn increasing attention in
hyperspectral imagery (HSI) classification, due to their strong nonlinear mapping capability.
However, these methods suffer from a time-consuming training process because of many network
parameters. In this paper, the concept of broad learning is introduced into HSI classification.
Firstly, to make full use of abundant spectral and spatial information of hyperspectral imagery,
hierarchical guidance filtering is performing on the original HSI to get its spectral-spatial
representation. Then, the class-probability structure is incorporated into the broad learning model to
obtain a semi-supervised broad learning version, so that limited labeled samples and many unlabeled
samples can be utilized simultaneously. Finally, the connecting weights of broad structure can
be easily computed through the ridge regression approximation. Experimental results on three
popular hyperspectral imagery datasets demonstrate that the proposed method can achieve better
performance than deep learning-based methods and conventional classifiers.

Keywords: hyperspectral imagery; classification; broad learning; semi-supervised; class-probability
structure

1. Introduction

Hyperspectral imagery (HSI) captured by hyperspectral sensors has high spectral and spatial
resolution, thus has a strong capability to distinguish surface objects [1]. HSI has been widely applied in
many fields including agricultural monitoring [2], environment analysis and prediction [3], and climate
monitoring [4]. HSI classification is a common task in these applications, i.e., to assign a class label of
surface object to every HSI pixel by using a small number of training samples.

In recent years, many methods have been proposed to address HSI classification. The K-nearest
neighborhood (KNN) [5] determines the class of testing sample by calculating the Euclidean distance
between testing and training samples. Support vector machine (SVM) [6,7] projects samples to
a high-dimensional space by kernel functions and distinguishes sample classes by learning a
classification hyperplane, which achieves satisfactory performance in the small-sample classification
tasks. Extreme learning machine (ELM) [8,9] is a single hidden-layer neural network which has the
following characteristics: (1) the connecting weights between input-layer and hidden-layer neurons are
randomly assigned and do not need to be adjusted during the learning process; and (2) the connecting
weights between hidden-layer and output-layer neurons can be calculated via the least square method.
Therefore, the computational efficiency of ELM is high.

Recently, deep learning (DL) is found to be able to automatically learn representative features
from data via stacking multi-layer nonlinear units [10,11], making successful application on HSI
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analysis. Chen et al. [12] firstly introduced DL into HSI classification, and directly deemed spectral
and spatial information as inputs of stacked autoencoder (SAE). Afterwards, Tao et al. [13] added
sparse constraints on SAE and Chen et al. [14] introduced the deep belief network. The unsupervised
CNN was designed by Romero et al. [15]. By layer-wise training approach, the unsupervised sparse
features of HSI are learned. Compared with unsupervised CNN, supervised CNN can extract features
that are more helpful on classification. A CNN with pixel-pair features (CNN-PPF) was proposed
by Li et al. [16]. By comparing the classes of a couple of samples, new training samples are obtained,
which highly outnumbered the original, and thus ensures a vast number of parameter learning in
CNN. In terms of limited labeled samples as well as dimensionality disaster problem, Santara et al. [17]
proposed BASS-Net. Compared with conventional CNN, BASS-Net has fewer parameters and needs
fewer training samples. By simplifying the training process, Pan et al. [18] introduced PCANet to
realize HSI classification and further the NSSNet for more complex nonlinear mapping by using
kernel PCA (KPCA) instead of PCA due to insufficient expression of nonlinearity from PCANet.
In later study, Pan et al. [19] further proposed R-VCANet comprehensively using rolling guidance
filter (RGF) and vertex component analysis network (VCANet). Compared with conventional CNN,
R-VCANet has a simpler structure and fewer network parameters, which demand fewer labeled
training samples. Meanwhile, the fully utilized spatial information of HSI makes the extracted features
from network more discriminative, thus achieving higher classification accuracy. Several experiments
on hyperspectral datasets demonstrated that the classification accuracy of R-VCANet is higher than
other deep learning methods such as R-PCANet and NSSNet.

However, DL methods require complicated structural adjustment and a vast computation of
network training. Aiming at such problems, Chen and Liu [20] proposed a novel broad learning system
(BLS) to offer an optional learning approach. The approach is based on the random vector functional
link neural network (RVFLNN) [21,22]. First, the original data are mapped via random weights as
mapped features (MF) and stored in feature nodes. Next, MF is similarly mapped via random weights
to obtain enhancement nodes (EN) for broad expansion. Finally, the normalized optimization of
l2-norm is solved by ridge regression approximation to get ultimate network weights. Compared
with DL, BLS has the following advantages: (1) BLS is merely composed of three parts while the deep
learning requires deep structure that is stacked by multiple nonlinear units. Therefore, BLS has a
simpler structure. (2) BLS solves the network weights with ridge regression while DL adopts gradient
descent. When the weights are not well initialized, DL requires more iterations. Therefore, the training
process of BLS is simpler and faster. (3) The connecting weights from input data to MF and from MF
to EN in BLS are randomly generated and the trainable parameters merely include the connecting
weights from MF and EN to output nodes. Therefore, compared with DL, BLS generally needs less
network parameter training and hence fewer labeled training samples. In the tasks of HSI classification,
there exactly exists such a problem of limited numbers of labeled samples. Therefore, BLS might be
better suited to HSI classification than DL. However, BLS belongs to supervised classification method
while the unlabeled samples are huge in number. To fully make use of this part of information, it is
necessary to investigate semi-supervised BLS.

Semi-supervised learning (SSL) methods have attracted much research attention recently due
to its capability of full use of both vast numbers of unlabeled samples and the limited numbers of
labeled samples. Plenty of graph-based SSL methods have been successively proposed, such as the
adjacency structure of graph is constructed by KNN or ε-ball neighborhood, which further determines
weight matrices by Gaussian kernel [23,24], non-negative local linear reconstruction coefficients [25],
etc. However, SSL methods based on conventional graph have the following disadvantages: (1) the
algorithm performance is heavily influenced by graphs to be constructed; and (2) higher sensitivity
occurs in terms of neighboring parameters. Considering these problems, SSL methods based on
sparse graph were successively proposed. The nonnegative low-rank and sparse graph proposed by
Zhuang et al. [26] can capture both the global mixture of subspaces structure (by the low-rankness) and
the locally linear structure (by the sparseness) of data, hence it is both generative and discriminative.
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Morsier et al. [27] presented a kernel low-rank and sparse graph, which was based on sample
proximities in reproducing kernel Hilbert spaces and expressed sample relationships under sparse
and low-rank constraints. However, data class structure is not considered in the above methods.
Considering this, Shao, et al. [28] presented a class-probability (CP) structure, which can express the
relation between each sample and each class via a class-probability matrix.

In summary, a HSI classification method is proposed based on a semi-supervised BLS (SBLS).
The main contributions of this paper include: (1) To our knowledge, this is the first trial where
BLS is applied in HSI classification tasks. The proposed SBLS can get higher HSI classification
accuracy and faster training speed. (2) The class-probability structure is introduced into BLS for an
extended semi-supervised BLS to make use of limited numbers of labeled samples as well as vast
unlabeled samples.

2. HSI Classification Based On SBLS

The flowchart of HSI classification based on SBLS is shown in Figure 1 and includes three
steps: (1) the original HSI data are processed by hierarchical guidance filtering (HGF) to get the
spectral-spatial expression of HSI; (2) the pseudo labels of unlabeled samples are obtained via
CP structure; and (3) SBLS is trained by labeled samples and corresponding labels, as well as unlabeled
samples and corresponding pseudo labels.
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2.1. Hierarchical Guidance Filtering

The first step of SBLS is to get the HGF representation of HSI, shown as Step 1 in Figure 1.
The original hyperspectral images are expressed in the form of 3D tensor. If vectorization is expressed
by a tensor, not only is the data dimension greatly increased, but the inherent data structure is also
destroyed. Pan et al. [29] proposed a spectral-spatial expression of HSI data by using HGF. As one of
the edge-preserving filtering methods, HGF can remove noise and small details while preserving the
overall structure of the image, thus can map the original HSI data into a feature subspace having more
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abundant feature expression. In terms of the superiority of HGF, the original HSI is processed by HGF
to get the spectral-spatial expression of HSI.

As an extension of guided filtering and rolling guidance filtering, HGF can generate a series of
joint spectral-spatial features. HGF minimizes the following energy function:

E(ap
k , bp

k ) = ∑
i∈ωk

((
ap

k Gi + bp
k − Ip

i

)2
+ εap2

k

)
(1)

where ap
k and bp

k are linear coefficients based on the input HSI data Ĩ and the guidance image G, ωk is
the window around pixel k with size (2r + 1)× (2r + 1), r is the window radius, i is one of a pixel in
ωk, p denotes the p-th band, and ε is the controlling parameter. Larger ε will lead smoother output.
Equation (1) is a ridge regression, and can be solved by:

ap
k =

1
|ω| ∑

i∈ωk

Ĩ
p
i Gi−µkIp

k

σ2
k +ε

bp
k = Ĩ

p
k − ap

k µ
p
k

(2)

where µk and σk are the mean and standard variance of G, respectively; Ip
k is the mean of Ĩ in ωk;

and |ω| is the number of pixels in ωk. More details can be found in [29]. HGF is a kind of preprocessing
trick, and a similar strategy is also used in [19,29].

2.2. Class-Probability Structure

The second step of SBLS is to obtain the pseudo labels of unlabeled samples via CP structure,
shown as Step 2 in Figure 1. The labeled samples via HGF expression XS = {x1, · · · , xn} ∈ Rns×m and
corresponding labels YS = {y1, · · · , yns} ∈ Rns×c are given, where ns is the number of labeled
samples, m is the number of dimensionality, c is the number of classes, yij is a binary number
and if the i-th sample belongs to j-th class, yij = 1, or else yij = 0. Given the unlabeled samples

XU = {x1, · · · , xn} ∈ RnU×m via HGF expression, where nU means the number of unlabeled samples,
the overall number of samples is n = nS + nU . Hence, the similarity between the labeled XS and
unlabeled samples XU can be expressed by the following:

min‖a‖1
s.t. XSa = x′ i

(3)

where a is the sparsity coefficient. Equation (3) can be solved with alternating direction
methods of multipliers with adaptive penalty (ADMAP). More details can be referred to in [28].
The class-probability vector of xi is written as:

pi = aTYS (4)

where pi = (pi1, pi2, · · · , pic) ∈ R1×c, and pic means the probability that the i-th sample belongs to the
c-th class. Regarding the unlabeled samples, it is feasible to get the class-probability matrix pU ∈ RU×c

via label propagation for a given sample. Regarding the labeled samples, the class-probability matrix
pS ∈ RS×c is defined. Therefore, the probability that the i-th and the j-th samples belong to an identical
class is written as:

Pij =

{
1 i = j
pi pj

T i 6= j
(5)

As a further step, P can be expressed as P =

(
PSS PUS

PSU PUU

)
, where PSS means the probability

that the labeled samples have the same class while PUU means the probability that the unlabeled
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samples have the same class. PUS and PSU represent the probabilities that the unlabeled and labeled
samples have the same class, respectively. Finding the index of maximum probability per row in PUS,
can obtain the labeled sample that is most similar to each unlabeled one as well as the pseudo label YU

of the unlabeled samples. The calculation principle is as follows:

if pij = max(pi), then yU
i = yS

j (6)

2.3. SBLS

The third step of SBLS is to train the SBLS model and get the predictive labels of unlabeled
samples, shown as Step 3 in Figure 1. BLS is proposed based on RVFLNN, including three parts:
mapped features (which are the mapping from inputs), enhancement nodes (which are the mapping
from mapped features), and output labels (which are the joint mapping from mapped features and
enhancement nodes). The learning parameter is Wm, which can be fast and approximately obtained
by ridge regression. However, the BLS model belongs to the supervised method and cannot utilize
vast numbers of commonly unlabeled samples in HSI. Hence, for better adaption of BLS into HSI
classification, it is necessary to investigate semi-supervised BLS. Here, CP is introduced into BLS and
SBLS is proposed to realize the semi-supervision classification of HSI.

HSI samples X = [XS; XU ] ∈ Rn×m generally expressed by HGF are given, as well as labels YS

and YU that are obtained by the class-probability structure. In terms of SBLS, the input is first mapped
to “mapped features” via the random weight WM = [WM

1 , · · · , WM
GM ] and bias βM = [βM

1 , · · · , βM
GM ],

which is:
Zi = φi(XWM

i + βM
i ) (7)

where GM is the number of groups of MF. φi(·) is a nonlinear function, and different functions can be
chosen for different groups of MF. Here, linear mapping is used in all MF for simplicity, which means
Zi = XWM

i + βM
i . To have better features, WM is usually fine-tuned by linear sparse auto encoder.

After obtaining the MF, Z = [Z1, Z2, · · · , ZGM ], the expansion of SBLS can be realized by mapping
the features of MF to EN with random weights WE and bias βE

Hj = φj(ZWE
j + βE

j ) (8)

where GE is the number of ENs. Further, the SBLS model is expressed as:

[YS
∣∣∣YU ] = [Z

∣∣∣H]Wm (9)

where Wm are the connecting weights from MF and EN to output nodes. It can be solved the
following problem:

argmin
Wm

‖ [Z
∣∣∣H]Wm − [YS

∣∣∣YU ]‖
2

2
+ λ‖Wm‖2

2 (10)

where λ denotes the further constraints on the sum of the Wm. The solution of Equation (8) can be
solved by ridge regression:

Wm =
(

λI + [Z|H]T[Z
∣∣∣H]
)−1

[Z|H]T[YS|YU ] (11)

If λ = 0, Equation (8) degenerates into the least square problem. On the other hand, if λ→ ∞ ,
the solution is heavily constrained and tends to 0. Thus, we set λ→ 0 here, such as 2−30. By giving an
approximation to the Moore–Penrose generalized inverse of [Z|H] , Equation (8) can be written as:

Wm = [Z|H]+[YS
∣∣∣YU ] (12)

Specifically, we have:
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[Z|H]+ = lim
λ→0

(
λ I + [Z|H]T[Z

∣∣∣H]
)−1

[Z|H]T (13)

Finally, the predictive labels can be obtained by

Y = [Z|H]Wm (14)

In summary, the algorithm steps of HSI classification based on SBLS is shown in Table 1.

Table 1. The proposed HSI classification method based on SBLS.

Input: HGF-based HSI spectral-spatial representation.
(a) Calculate class-probability matrix P according to Equation (5).
(b) Calculate pseudo labels YU for unlabeled samples P according to Equation (6).
(c) Calculate Z and H according to Equations (7)–(8), respectively.
(d) Calculate weights Wm of BLS according to Equations (12)–(13).
(e) Calculate predictive labels Y with Equations (7), (8), and (14), according to WM, βE, WE, βm, and Wm.
Output: predictive labels Y.

3. Experiments and Analysis

3.1. HSI Datasets

In this section, three real HSI datasets, i.e. Indian Pines, Salinas and Botswana, are used to evaluate
the accuracy and efficiency of the proposed SBLS method. Figure 2 shows the ground truth maps of
the three HSI datasets. For the three HSI datasets, 20 samples are randomly selected from different
surface objects as labeled (training) samples, with the remaining as unlabeled (testing) samples.

(1) For supervised classification methods, only the labeled samples are used to train the classifier
and the trained classifier is used to predict the labels of unlabeled samples.

(2) For semi-supervised classification methods, all labeled and unlabeled samples are used to train
the classifier. In addition, since the total size of Salinas dataset is large, only part of labeled samples
participates in the classifier training.

(3) Since the total size of surface object “Oats” in Indian Pines dataset is small, the size of labeled
samples (denoted by s.l.s.) equals that of unlabeled samples (denoted by s.u.s.). The detailed sample
settings for different HSI datasets are shown in Table 2.
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Table 2. Size of labeled and unlabeled samples for different HSI datasets.

No.
Indian Pines Salinas Botswana

Surface Object s.l.s. s.u.s. Surface Object s.l.s. s.u.s. Surface Object s.l.s. s.u.s.

1 Alfalfa 20 26 Brocoli_green_weeds_1 20 500 Water 20 250
2 Corn-notill 20 1408 Brocoli_green_weeds_2 20 500 Hippo grass 20 81
3 Corn-mintill 20 810 Fallow 20 500 Floodplain grasses1 20 231
4 Corn 20 217 Fallow_rough_plow 20 500 Floodplain grasses2 20 195
5 Grass-pasture 20 463 Fallow_smooth 20 500 Reeds1 20 249
6 Grass-trees 20 710 Stubble 20 500 Riparian 20 249
7 Grass-pasture-mowed 20 8 Celery 20 500 Firescar2 20 239
8 Hay-windrowed 20 458 Grapes_untrained 20 500 Island interior 20 183
9 Oats 10 10 Soil_vinyard_develop 20 500 Acacia woodlands 20 294
10 Soybean-notill 20 952 Corn_senesced_green_weeds 20 500 Acacia shrublands 20 228
11 Soybean-mintill 20 2435 Lettuce_romaine_4wk 20 500 Acacia grasslands 20 285
12 Soybean-clean 20 573 Lettuce_romaine_5wk 20 500 Short mopane 20 161
13 Wheat 20 185 Lettuce_romaine_6wk 20 500 Mixed mopane 20 248
14 Woods 20 1245 Lettuce_romaine_7wk 20 500 Exposed soils 20 75
15 Buildings-Grass-Trees-Drives 20 366 Vinyard_untrained 20 500
16 Stone-Steel-Towers 20 73 Vinyard_vertical_trellis 20 500

3.2. Comparative Experiments

To evaluate the performance of the proposed SBLS on HSI classification, we investigate the
following nine methods for comparison.

(1) Traditional classifiers include SVM [6], ELM [8], and SPELM [9]. Since only the linear
feature mapping is used in BLS and SBLS, the linear kernel function is used in SVM and ELM in our
experiments. The hyper parameters of SVM and ELM are selected through five-fold cross validation,
and the penalty factor of SVM and the regularization coefficient of ELM and SPELM are selected from
{1, 10, 100, 1000}. In addition, HSI data after HGF preprocessing were taken as the input of SVM, ELM,
and SPELM for fair comparison. The number of trails of SPELM is set as 50.

(2) Semi-supervised graph-based classification method is SSG [23]. The width of Gaussian and
regularization parameter are selected from {10−5, 10−4, . . . , 105}.

(3) Deep learning-based methods include CNN-PPF [16], BASS-Net [17], and R-VCANet [19].
The network configurations of CNN-PPF, BASS-Net, and R-VCANet refer to corresponding
articles, respectively.

(4) Spectral-spatial classification method is HiFi-We [29].
(5) BLS [20], where HSI data after HGF preprocessing were taken as the input of BLS.
The proposed SBLS and nine comparative methods are used on the three HSI datasets for

classification. Related experiments about CNN-PPF and BASS-Net are tested on Theano and Torch
platforms with GPU GTX 980. Other experiments are performed in MATLAB R2014a using a computer
with a 3.60 GHz Intel Core i7-4790 CPU and 16 GB of RAM. Each experiment is conducted five times
to get the average value for stochastic. Tables 3–5, respectively, show the comparison of classification
performance on different datasets, where five performance indexes are considered: the accuracy
on each surface object (%), average accuracy (AA, %), overall accuracy (OA, %), Kappa coefficient,
and consumed time (t, s) for classifier training and testing sample classification.

The following can be observed in Tables 3–5:
(1) The AA, OA, and Kappa coefficient of SBLS on the three datasets are the highest. This is

because the CP structure is introduced into SBLS, which can make use of vast unlabeled samples
compared with BLS.

(2) ELM has the shortest period of consumed time, followed by SVM. Besides SVM and ELM,
BLS has the shortest consumed time. This is because the BLS network parameters can be directly
solved by the generalized inverse and BLS has simple network.

(3) CNN-PPF, BASS-Net, and R-VCANET have longer consumed time. This is because these
methods belong to deep learning. For BASS-Net, a high number of iteration steps are needed when
the network parameters are updated based on the gradient descent. For CNN-PPF, to ensure the
training of the CNN with many layers, the training samples are expanded greatly in number and,
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therefore, it has longer training time. For R-VCANet, its testing process is time-consuming due to the
high dimensions of extracted features per layer.

(4) Compared with BLS, SBLS has longer period of consumed time. This is because the correlation
computation between samples in CP structure consumes much time.

The classification maps on Indian Pines and Salinas datasets are visibly shown in Figures 3 and 4,
respectively. A conclusion consistent with the aforementioned can be obtained from Figures 3 and 4:
the classification effect of HSI with SBLS is the best.

Table 3. Comparison of classification performance on Indian Pines dataset.

Surface Object SVM
[6]

ELM
[8]

SPELM
[9]

SSG
[23]

CNN-PPF
[16]

BASS-Net
[17]

R-VCANet
[19]

HiFi-We
[29]

BLS
[20] SBLS

Alfalfa (%) 54.15 66.63 90.13 96.15 32.84 80.77 100 100 96.15 99.23
Corn-notill (%) 75.00 79.17 87.01 71.46 53.64 55.33 64.98 85.72 78.69 84.73
Corn-mintill (%) 72.11 87.93 85.30 84.07 56.36 59.75 86.05 91.36 98.52 94.49
Corn (%) 54.13 61.31 77.35 93.82 33.73 91.24 99.54 98.16 100 100
Grass-pasture (%) 87.88 98.58 94.31 85.40 79.34 89.42 91.14 91.14 96.33 90.67
Grass-trees (%) 98.15 99.40 99.62 97.35 94.67 94.93 99.30 99.86 90.14 99.86
Grass-pasture-mowed (%) 27.34 28.59 38.46 97.50 57.14 100 100 100 100 100
Hay-windrowed (%) 100 98.35 99.57 98.69 91.02 99.56 98.47 98.69 87.12 99.34
Oats (%) 66.21 73.78 94.85 100 58.82 100 100 100 100 100
Soybean-notill (%) 72.36 71.24 80.18 79.33 53.83 73.11 89.50 83.82 82.98 88.11
Soybean-mintill (%) 91.85 82.31 94.38 78.94 72.81 54.74 72.98 83.61 89.40 88.38
Soybean-clean (%) 75.78 57.59 82.56 78.25 43.46 63.18 95.64 87.09 97.91 93.40
Wheat (%) 99.78 99.47 100 99.14 98.90 98.92 98.92 99.46 100 99.68
Woods (%) 99.57 99.50 99.74 94.18 93.14 82.09 94.14 99.20 98.96 99.81
Buildings-Grass-Trees-Drives (%) 83.83 92.84 97.97 85.74 73.10 65.57 90.16 89.89 99.73 99.07
Stone-Steel-Towers (%) 99.19 96.35 98.12 98.63 87.18 98.63 100 98.63 98.63 99.18
AA (%) 78.58 80.82 88.72 89.91 67.50 81.70 92.55 94.16 94.66 95.99
OA (%) 83.56 83.01 90.78 83.91 67.20 69.95 84.36 89.94 90.88 92.47
Kappa 0.8139 0.8071 0.8950 0.8177 0.6325 0.6616 0.8234 0.8855 0.8959 0.9143
t(s) 0.98 0.34 35.80 372.96 1500.03 1251.78 3238.74 250.16 4.81 420.02

Table 4. Comparison of classification performance on Salinas dataset.

Surface Object SVM
[6]

ELM
[8]

SPELM
[9]

SSG
[23]

CNN-PPF
[16]

BASS-Net
[17]

R-VCANet
[19]

HiFi-We
[29]

BLS
[20] SBLS

Brocoli_green_weeds_1 (%) 100 100 100 98.06 99.95 99.50 99.60 99.66 99.97 100
Brocoli_green_weeds_2 (%) 99.80 100 99.95 93.84 98.84 99.65 99.87 99.19 99.51 99.81
Fallow (%) 91.07 99.80 99.88 88.20 78.47 99.49 98.06 99.06 100 99.96
Fallow_rough_plow (%) 97.33 97.01 98.87 94.29 95.81 98.84 98.91 99.07 99.33 99.80
Fallow_smooth (%) 97.26 91.77 96.82 90.32 96.21 97.03 99.32 98.59 98.98 99.13
Stubble (%) 99.70 99.97 99.98 94.54 99.61 99.80 98.65 99.20 99.78 99.80
Celery (%) 98.26 99.90 99.81 92.89 97.66 99.72 98.20 98.73 99.53 99.84
Grapes_untrained (%) 85.31 77.57 86.12 56.65 72.84 65.18 70.71 78.99 88.81 91.31
Soil_vinyard_develop (%) 99.20 98.43 98.50 89.73 99.08 98.61 99.74 99.87 99.97 99.65
Corn_senesced_green_weeds (%) 84.84 95.92 96.61 77.38 80.84 87.78 91.22 89.13 93.52 94.12
Lettuce_romaine_4wk (%) 86.68 92.56 96.49 89.43 63.20 92.18 98.66 97.73 99.54 99.79
Lettuce_romaine_5wk (%) 97.27 97.76 95.56 95.02 91.72 98.53 100 99.97 99.94 100
Lettuce_romaine_6wk (%) 96.52 88.63 96.41 91.58 96.84 96.21 99.44 96.58 99.11 99.00
Lettuce_romaine_7wk (%) 86.62 76.20 88.69 89.60 88.61 96.95 97.33 96.50 97.18 97.10
Vinyard_untrained (%) 67.10 81.56 79.71 72.97 60.14 67.43 74.66 87.14 82.75 89.27
Vinyard_vertical_trellis (%) 99.24 99.93 99.98 88.35 96.74 98.15 99.44 95.86 98.68 98.80
AA (%) 92.89 93.56 95.84 87.68 88.53 93.44 95.23 95.95 97.28 97.96
OA (%) 89.12 90.73 93.29 81.21 84.76 86.77 89.42 92.56 94.67 96.14
Kappa 0.8793 0.8965 0.9252 0.7927 0.8306 0.8533 0.8824 0.9174 0.9406 0.9570
t(s) 3.26 1.68 131.60 156.20 1560.19 1294.50 17,080.47 352.24 13.95 240.26
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Table 5. Comparison of classification performance on Botswana dataset.

Surface Object SVM
[6]

ELM
[8]

SPELM
[9]

SSG
[23]

CNN-PPF
[16]

BASS-Net
[17]

R-VCANet
[19]

HiFi-We
[29]

BLS
[20] SBLS

Water (%) 100 99.84 100 100 99.21 100 100 100 100 98.32
Hippo grass (%) 88.89 93.33 97.83 87.90 100 100 100 96.05 99.26 97.28
Floodplain grasses1 (%) 95.43 98.5 99.57 98.35 100 99.57 100 96.62 100 100
Floodplain grasses2 (%) 91.26 78.09 95.81 96.21 94.20 97.44 100 99.49 99.28 100
Reeds1 (%) 89.19 94.79 93.8 79.52 89.02 86.35 96.79 90.84 93.57 96.87
Riparian (%) 62.43 100 100 77.83 78.74 82.33 90.36 94.46 87.71 99.28
Firescar2 (%) 97.07 100 100 98.74 94.35 100 100 95.73 100 100
Island interior (%) 97.83 98.19 98.71 97.27 87.56 100 100 100 100 100
Acacia woodlands (%) 93.40 87.69 98.47 93.47 92.09 94.22 87.07 95.78 99.25 99.86
Acacia shrublands (%) 75.18 88.31 99.39 90.61 93.62 96.49 99.56 98.77 100 100
Acacia grasslands (%) 93.85 99.02 99.93 88.14 95.40 92.63 97.54 94.95 100 100
Short mopane (%) 89.70 94.43 98.43 98.14 100 100 100 97.52 100 100
Mixed mopane (%) 89.52 97.80 99.84 92.42 95.38 95.56 99.19 93.79 98.47 99.27
Exposed soils (%) 94.94 99.84 100 97.87 100 100 98.67 99.73 98.93 97.33
AA (%) 96.51 94.61 98.70 92.61 94.26 96.04 97.80 96.70 98.32 99.16
OA (%) 96.71 94.16 98.67 92.15 93.40 95.25 97.27 96.36 98.13 99.32
Kappa 0.9644 0.9367 0.9856 0.9149 0.9284 0.9485 0.9704 0.9606 0.9798 0.9926
t(s) 1.59 1.31 12.57 16.35 1020.09 1120.53 908.54 439.56 3.83 70.97
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3.3. Parameter Analysis

The adjustable parameters in SBLS include: MF group number, and number of MF nodes per
group. Let MF group number equal to number of nodes per MF, which is set as GM. The number of
EN nodes is set as GE. The relation between OA and GM or GE of SBLS on the three datasets is shown
in Figure 5. It is demonstrated that:

(1) With increase of GM and GE, the OA on each of the three datasets takes on the tendency
of rising up first and then dropping down. This is because the expression ability of SBLS increases
gradually and saturates with increase of GM and GE.

(2) The excessively low GM and GE will lead to the OA decrease while the excessively high GM

and GE will lead to additional computation. Therefore, GM and GE are, respectively, selected as 30–100,
40–400 and 20–500 in terms of the three datasets.
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4. Discussion

The experimental results show the following:
(1) From the aspect of classification accuracy, our proposed method, SBLS, achieves the highest

performance. There are two main reasons. First, BLS helps us to get a more accurate mapping
between input HSI and labels by utilizing a small amount of labeled samples. Then, by exploring
the relationship between each sample and each class with class-probability structure, we can obtain
the most similar labeled samples to each unlabeled one. Furthermore, the pseudo labels of unlabeled
samples can be given, and both the labeled and unlabeled samples can be utilized.

(2) From the aspect of consumed time, compared with deep learning-based methods, BLS and
SBLS consumed less time. The reasons can be summarized as two aspects. On the one hand,
the architectures of two broad learning-based methods only contain three parts (MF, EN and output
layer), while the deep learning-based methods are built with many layers. On the other hand,
the trainable parameters of broad learning are less than deep learning, and can be easily solved
with ridge regression. Compared with BLS, SBLS is more time-consuming because of the utilizing of
more samples and the extra computation for obtaining the class-probability matrix.

(3) The classification maps (shown in Figures 3 and 4) and the analysis of adjustable parameters
(shown in Figure 5) are also given for more details. We cannot guarantee that OAs obtained from SBLS
with any parameter settings are the highest. This is mainly because, when there are too few nodes,
much information is lost during the procedure of mapping.

Since there is no perfect thing, the drawbacks of the proposed SBLS method are summarized
as follows:

(1) Similar to other types of classifiers, both BLS and SBLS are sensitive to input.
(2) If too many nodes in MF or EN are settled, much memory space will be used.

5. Conclusions

With advances of hyperspectral imaging techniques, HSI classification remains an active and
challenging topic in the remote sensing community. Due to the difficulty of labeled samples, in this
paper, a semi-supervised broad learning system-based HSI classification method called SBLS is
proposed, which incorporates the class-probability into the broad learning. The designed model can
take advantage of limited samples and large number of unlabeled samples simultaneously. Compared
with deep learning-based methods, the weights of SBLS can be easily computed through ridge
regression approximation instead of gradient descent methods. Nine classification methods including
three traditional classifiers (SVM, ELM, and SPELM), one semi-supervised graph-based method
(SSG), three deep learning-based methods (CNN-PPF, BASS-Net, and R-VCANet), one spectral-spatial
method (HiFi-We), and the original broad learning system (BLS) are compared. Experimental results
on three real hyperspectral datasets (Indian Pines, Salinas and Botswana) demonstrate that, under the
condition of limited labeled samples, the proposed SBLS method can not only get higher classification
accuracy, but also cost much less time than deep learning-based methods.

Moreover, the proposed SBLS still has space for further improvement. For instance, SBLS cannot
determine the labels of samples when there is no a priori information. We will explore an unsupervised
version of BLS for HSI clustering.
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