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Abstract: Atmospheric CO2 concentrations are sensitive to the effects of climate extremes on carbon
sources and sinks of the land biosphere. Therefore, extreme changes of atmospheric CO2 can be used
to identify anomalous sources and sinks of carbon. In this study, we develop a spatiotemporal extreme
change detection method for atmospheric CO2 concentrations using column-averaged CO2 dry air
mole fraction (XCO2) retrieved from the Greenhouse gases Observing SATellite (GOSAT) from 1 June
2009 to 31 May 2016. For extreme events identified, we attributed the main drivers using surface
environmental parameters, including surface skin temperature, self-calibrating Palmer drought
severity index, burned area, and gross primary production (GPP). We also tested the sensitivity
of XCO2 response to changing surface CO2 fluxes using model simulations and Goddard Earth
Observing System (GEOS)-Chem atmospheric transport. Several extreme high XCO2 events are
detected around mid-2010 over Eurasia and in early 2016 in the tropics. The magnitudes of extreme
XCO2 increases are around 1.5–1.8 ppm in the Northern Hemisphere and 1.2–1.4 ppm in Southern
Hemisphere. The spatiotemporal pattern of detected high XCO2 events are similar to patterns of local
surface environmental parameter extremes. The extreme high XCO2 events often occurred during
periods of increased temperature, severe drought, increased wildfire or reduced GPP. Our sensitivity
tests show that the magnitude of detectable anomalies varies with location, for example 25% or larger
anomalies in local CO2 emission fluxes are detectable in tropical forest, whereas anomalies must
be half again as large in mid-latitudes (~37.5%). In conclusion, we present a method for extreme
high XCO2 detection, and large changes in land CO2 fluxes. This provides another tool to monitor
large-scale changes in the land carbon sink and potential feedbacks on the climate system.

Keywords: XCO2; GOSAT; extreme events; spatiotemporal; biosphere-atmosphere interaction;
atmospheric transport

1. Introduction

The global mean atmospheric CO2 concentration is increasing on average at a rate of
2.38 ppm yr−1 in recent years, due to anthropogenic CO2 emissions in excess of carbon uptake by land
and ocean sinks [1]. The annual increase is quite variable, for example the standard deviation from
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2009 to 2016 was 0.44 ppm yr−1 [2]. Carbon sources/sinks from the terrestrial biosphere contribute
most to the inter-annual variability [3]. Climate extremes like drought and heat waves have been
shown to result in large changes in carbon sources and sinks of terrestrial biosphere, which have
the potential to substantially modify regional carbon dioxide (CO2) uptake/release [4]. As a result,
regional atmospheric CO2 concentration could vary with climate change in addition to the global
atmospheric CO2 growth rate. The change of atmospheric CO2 concentration is not only impacted by
anomalous terrestrial biosphere CO2 uptake or release, caused by anomalous weather events, but also
intensifying climate changes [5,6]. Understanding the relationship between the CO2 concentration
changes response to climate events, makes an important contribution to carbon sources and sinks
change detection and forecasting [7].

Extreme weather events have increased and are predicted to increase in the frequency as
result of global warming [6,8–11]. They attract social interest for their fundamental impacts on
the natural environment and human society [12,13]. Previous research has attempted to link extreme
events and their effects on the land carbon sink. Combining reanalysis data and remote sensing
observations, Schwalm et al. [4] found that the drought during 2000–2004 in western North America
reduced carbon uptake by 30–298 TgC/yr. During the heat and drought in 2003 over Europe,
the gross primary production (GPP) was decreased by 30%, which resulted in strong anomalous
CO2 emission of 0.5 PgC/yr [14]. From the extreme wildfires in western Russia over the summer of
2010, CO2 emission increased 255.76 Tg based on satellite data [15]. The drought over that period can
be also captured by satellite observed solar-induced chlorophyll fluorescence (SIF) [16]. Anomalous
carbon uptake over Australia around 2011 was also discovered with satellite observations and model
simulations [17]. Extreme drought events in North America during 2011 and 2012 were also selected
as a case, for checking the capability of using SIF to characterize vegetation response to climate
change [18]. The strong 2015/2016 El Niño [19–21] may have increased carbon flux releases by
0.9 ± 0.29, 0.8 ± 0.22, and 0.8 ± 0.28 GtC over the tropical continents including South America, Africa
and Asia [22]. These studies show how carbon fluxes anomalies associated with extreme climate events
can impact atmospheric CO2 concentrations.

There is also great potential in identifying anomalous changes in the land carbon sink without
prior knowledge of extreme weather events [23–25]. Variations in atmospheric CO2 can be used
for anomalous carbon source and sink change analysis. The column-averaged CO2 dry air mole
fraction (XCO2) derived from the Greenhouse gases Observing SATellite (GOSAT) proved valuable
for confirming the effect of extreme climate events (such as El Niño) on the CO2 concentration [26].
However, the gaps in time and space limit the satellite retrieved XCO2 from probing the time and
space of carbon sources and sinks anomalies.

In this study, we use XCO2 time series from satellite observations with global mapping [27,28]
for extreme high XCO2 detection. In contrast to earlier studies, which concentrated on surface
environment variables (such as fraction of absorbed photosynthetically active radiation (fPAR), GPP,
surface temperature and so on) [29–31], we focus on using atmospheric CO2 concentration for extreme
event detection. CO2 anomalies integrate influences from many biosphere–atmospheric interaction,
including carbon uptake/release from soil ecological activity, vegetation activity, biomass burning,
etc. In addition, XCO2 anomalies can be connected across time and space as a result of atmospheric
transport. We aim to develop an approach for detecting spatiotemporal continuum high XCO2

anomalies using satellite XCO2 observations, which are related to terrestrial biosphere anomalies of
CO2 uptake and release. The detected high XCO2 can be attributed to carbon source/sink changes
caused by extreme weather events. The dataset used in this study and its preprocess is described in
Section 2. The method of extreme events detection can be found in Section 3. Corresponding results
of the extreme detection are revealed in Section 4. Discussion of the detected spatial pattern over
specific duration and correlation between XCO2 and local CO2 flux is in Section 5, and conclusions are
presented in Section 6.
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2. Datasets and Pre-Processing Steps

The datasets used in this analysis are summarized in Table 1 and include XCO2 from satellite
(GOSAT) and model simulations (CarbonTracker and Goddard Earth Observing System (GEOS)-Chem),
biospheric CO2 fluxes from Simple Biosphere Model, version 3 (SiB3) used in GEOS-Chem, and related
surface environmental parameters including surface skin temperature (Temp), self-calibrating Palmer
drought severity index (scPDSI), burned area (BA), and GPP. Detailed information about data set
versions and their characteristics will be described in the following sections. The spatial and temporal
scope of our analysis covers land areas from 45◦S to 60◦N, from June 2009 to May 2016.

2.1. Mapping XCO2 from Satellite Observations

GOSAT is the first satellite dedicated for greenhouse gas observations. Developed by the
Japan Aerospace Exploration Agency (JAXA), it launched in January 2009 [32]. We collected the
column-averaged CO2 dry air mole fraction (XCO2) of GOSAT observations, with the retrieval method
provided by the Atmospheric CO2 Observations from Space (ACOS) project team [33] (hereafter
referred as ACOS-GOSAT). The ACOS-GOSAT XCO2 v7.3 retrieval spans from 1 June 2009 to 31 May
2016. Gaps in observations were filled using an interpolation method to create global land maps
of XCO2 (GM-XCO2), with spatial resolution of 1 × 1 degree and time resolution of 3 days [27,28].
The GM-XCO2 maps are used for the spatiotemporal extreme event detection based on high XCO2

anomalies in this study.
Cross-validation based on a Monte Carlo sampling technique was used to assess the accuracy of

the GM-XCO2 product. The result is shown in Figure S1. It shows good agreement between predicted
GM-XCO2 and observed (no interpolation) XCO2 with a high coefficient of determination (R2 = 0.94)
and a low mean absolute prediction error (MAPE) of 0.85 ppm. GM-XCO2 was also compared
with observed XCO2 from ground-based sites from the Total Carbon Column Observing Network
(TCCON) [34–49] as shown in Figure S2. Averaged absolute bias between GM-XCO2 and TCCON
observations are around 1 ppm with a standard deviation of 1.51 ppm, shown in Table S1. Detailed
information on the GM-XCO2 validation method can be found in He et al. [27] and Zeng et al. [28].

Table 1. Summary of the datasets used in this study. XCO2 from global mapping of satellite
observations (GM-XCO2) and model simulation (CarbonTracker: CT-XCO2 and GEOS-Chem (described
in Section 2.2): GEOS-XCO2), biospheric CO2 fluxes from SiB3 used in GEOS-Chem, environmental
parameters including surface skin temperature (Temp), self-calibrating Palmer drought severity index
(scPDSI), burned area (BA), and gross primary production (GPP). The spatial and temporal resolution
of the observations or model products are indicated as well as a reference describing the products in
more detail.

Data Source Space Res. Time Res. Reference

GM-XCO2 Mapping data from ACOS GOSAT v7.3 1.0 × 1.0 de. 3 days O’Dell et al. [33]
Zeng et al. [28]

CT-XCO2 CarbonTracker 2016 2.0 × 3.0 de. 3 h Peter et al. [50]

GEOS-XCO2 GEOS-Chem v11.1 2.0 × 2.5 de. 3 h Nassar et al. [51]

SiB3 CO2 flux Simple Biosphere Model, version 3 1.0 × 1.25 de 3 h Sellers et al. [52]

Temp AIRSX3STM v6.0, produced with AIRS and AMSU 1.0 × 1.0 de. monthly Huffman et al. [53]

scPDSI CRU TS 3.25 0.5 × 0.5 de. monthly Wells et al. [54]

BA GFED v4.0 0.25 × 0.25 de. monthly Giglio et al. [55]

GPP MOD17A2 v5 1.0 × 1.0 km monthly Heinsch et al. [56];
Zhao et al. [57]

2.2. XCO2 from Model Simulations

We also compared the results from CarbonTracker 2016. CarbonTracker is a model-data
assimilation system and annual updates provide atmospheric CO2 mixing ratio distributions and
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inferred surface fluxes [50]. CarbonTracker uses the Carnegie–Ames–Stanford Approach (CASA)
land surface model to estimate priors and Transport Model 5 (TM5) to represent atmospheric
circulation [58]. CarbonTracker version 2016 provide atmospheric CO2 concentration from 1 January
2009 to 31 December 2015 [59]. We calculated the XCO2 from the CarbonTracker atmospheric
distribution of CO2 (CT-XCO2), with spatial resolution of 2 × 3 degrees and time resolution of
3 days, using the CO2 profile data within the local time around 13:00, with the pressure-averaged
method described in Conner et al. [60]. After that, CT-XCO2 was downscaled to be 1 × 1 degrees using
the nearest neighbor.

We tested the sensitivity of XCO2 to changes in surface fluxes using a collection of surface flux
estimates and the GEOS-Chem global chemical transport model (CTM) assimilated with meteorological
fields from the National Aeronautics and Space Administration (NASA) Goddard Earth Observing
System (GEOS) [51,61]. Surface CO2 fluxes used in GEOS-Chem include fossil fuel emission from
Open-source Data Inventory for Anthropogenic CO2 (ODIAC); biomass burning from the Global
Fire Emission Database (GFED3); ocean exchange from Takahashi et al. [62] and annual biofuel
fluxes from Yevich and Logan [63]. Biospheric CO2 fluxes used for this simulation were from the
SiB3 [52]. The biospheric fluxes from SiB3 were not available for our entire study period (only 2006
through 2010), therefore, we only use them as a way to test the influence of atmospheric transport
on extreme XCO2 detection. In order to calculate the extreme XCO2 detection from the GEOS-Chem
sensitivity test, we did need to use biospheric flux estimates for the entire record. For this purpose,
we used only 2009 flux repeated from 2010 to 2015. This was important for determining the Z score
(described in Section 3.2) of the GEOS-Chem simulation. We simulated atmospheric CO2 concentration
from 1 January 2009 to 31 December 2015, using GEOS-Chem, version 11.1. The model used here
is driven by 3 hourly assimilated meteorological observations from GEOS at 2◦ (latitude) by 2.5◦

(longitude) horizontal resolution with 47 vertical layers. The GEOS-Chem XCO2 (GEOS-XCO2) was
calculated with the average kernel [60] of GOSAT XCO2 within the local time around 13:00. After that,
GEOS-XCO2 was resampled to be 1 × 1 degrees similar as that of CT-XCO2. We emphasize that this
model simulation is not intended to match observations.

2.3. Surface Environmental Parameters Related to CO2 Uptake and Release

Surface parameters that we explored included land surface skin temperature (temp), scPDSI,
BA, and GPP. We obtained the temperature data from NASA [64], which uses a standard physical
retrieval that is combination of data from the Atmospheric Infrared Sounder (AIRS) and the Advanced
Microwave Sounding Unit (AMSU) [65]. We used the level 3 monthly product with spatial resolution
of 1 × 1 degrees from January 2009 to September 2016 for AMSU limitation later. The drought severity
index, scPDSI, used for quantifying long-term drought conditions, are calculated with time series of
temperature, together with fixed parameters related to the soil/surface characteristics at each location,
which aims to make results from different climate regimes more comparable [54]. This index was
available as monthly 0.5 degree from January 2009 to December 2016. Monthly BA, from Global Fire
Emissions Database, Version 4.0 (GFED4), had a spatial resolution of 0.25 degree from January 2009 to
December 2016. The product combined Moderate Resolution Imaging Spectroradiometer (MODIS)
burned area maps with active fire data from the Tropical Rainfall Measuring Mission (TRMM) Visible
and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) family of sensors [55].
GPP, a parameter related to carbon uptake by vegetation photosynthesis, was obtained from MODIS.
Monthly GPP was produced with the data of time resolution of 8 days [56,57]. GPP with spatial
resolution of 1 km data from 2009 to 2015 was collected from [66], and data of 2016 are calculated with
data accumulation directly. In addition, The Land Cover Type Climate Modeling Grid (CMG) product
(MCD12C1) from MODIS [67] in 2009 was used for land cover classification over detected results.

Quality control was performed on all datasets according to their respective user guides and
resampled to 1 × 1◦ degree spatial resolution to match GM-XCO2 using grid averaging. A mean
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seasonal cycle was calculated for each time series similar to GM-XCO2 in order to identify anomalies
in time and space.

3. Methods

3.1. Extreme XCO2 Change and Data Preprocess

To quantify XCO2 anomalies in satellite observations and model simulations, we need to remove
the XCO2 background increase due to fossil fuel emissions and the mean seasonal cycle. The fitting
method used a combination of a linear function and annual periodic function as shown in Equation (1),

x(t) = k0 + k1t + ∑2
i=1(ai cos(2πit) + bi sin(2πit)) + δ. (1)

where x(t) represents the XCO2 in time t. k0 represents the mean XCO2 at the start of the time series,
k1t represents the XCO2 gradual trend mainly caused by anthropogenic CO2 emissions [1], which is
assumed to be a linear increase. The term ∑2

i=1(ai cos(2πit) + bi sin(2πit)) characterizes the XCO2

seasonal cycle, driven by CO2 biosphere–atmosphere interactions [68–70]; and δ is the fitting residual,
which consist of random error and extreme anomalies in surface carbon uptake/release. Parameter
values in Equation (1) are optimized to reduce the residuals between least square fitting using Equation
(1) and the GM-XCO2 observations. An example fitting in one grid can be seen in He et al. [27].

3.2. Spatial-Temporal Extreme High XCO2 Detection

We define extreme high XCO2 as the spatiotemporal continuum units whose fitting residuals
deviate outside of the normal range of high probability values [7,30]. For each grid, we calculate a Z
score of fitting residuals to standardize across differences in the magnitude of residuals according to
Equation (2). The Z score, Z(i, j, t), is calculated from the XCO2 fitting residuals, δ but also described as
dXCO2 throughout the manuscript, in a grid with latitude i, longitude j, and time t, and mean(δ (i, j))
and std(δ (i, j)) represent the mean and standard deviation value of the time series in location (i, j).

Z(i, j, t) = (δ(i, j, t)−mean(δ(i, j)))/std(δ (i, j)), (2)

We selected the Gaussian model, a simple spatiotemporal outlier detection technique to define
anomalously high XCO2 in Equation (3a). This test identifies grids where dXCO2 (or δ) is much larger
than a threshold, µ1, and has a Z score of the dXCO2 variability that exceeds a threshold, µ2. In this
study, µ1 is set to be 1.0, according to a priori knowledge of XCO2 concentration’s precision from
GOSAT retrievals, and µ2 is set to 1.96, which represents the 95% threshold in the Gaussian distribution.
The logic test is described using ‘bool’; true = 1 and false = 0. The connectivity of the extreme units
are tested as well. D(∆i, ∆j, ∆t) represents the spatiotemporal distance between grids (Equation (4)).
The distance threshold is d and the connectivity threshold is n. Thresholds d and n were set to be 1
(minimum distance) and 3 (mid-value of range from 0 to 6), respectively. In order for an event to count
as an extreme event, Equations (3a)–(3c) must all be true.

bool
(
δ
(
i0, j0, t0

)
> µ1

)
× bool

(
Z
(
i0, j0, t0

)
> µ2

)
= 1, (3a)

∑i=i0+d
i=i0−d ∑j=j0+d

j=j0−d ∑t=t0+d
t=t0−d{bool(δ(i, j, t) > µ1)× bool(Z(i, j, t) > µ2) > n}, (3b)

Where D
(
i− i0, j− j0, t− t0

)
< d, (3c)

D(∆i, ∆j, ∆t) =
√
(∆i)2 + (∆j)2 + (∆t)2, (4)

In addition, three-dimensional extreme dXCO2 can be inspected with the steps above. We defined
the extreme XCO2 events as the space-time continuous unit, e.g., if one grid is selected as extreme high
dXCO2, there are six directions for expansion. If any grid, within the six directions, is also an extreme
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high dXCO2, they are included in the same unit. They can further expand in time as well, until no other
grid are connected to the unit and we count the total number of grid units to determine the magnitude
of the extreme event. Identified units of the space-time continuous grids are then the extreme high
XCO2 units. This procedure is the flood-fill algorithm described in Zscheischler et al. [30]. We used the
function of bwconncomp from Matlab to execute the algorithm described above. The work flow of the
extreme events detection method is summarized in Figure 1.
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Figure 1. Flowchart showing the basic steps for the end-to-end extreme XCO2 detection and evaluation.

3.3. Sensitivity Test of XCO2 to Changes in Surface CO2 Fluxes

We investigated the sensitivity of the XCO2 response to various local CO2 flux change as a result of
atmospheric transport which tend to smooth out anomalous CO2 concentration. We used GEOS-Chem
v11.1 and surface fluxes described in Section 2 to calculated predicted XCO2 responses. The predicted
XCO2 output was compared to its normal value, described in Section 3.1, to get the changes in XCO2

(dXCO2). The method of extreme XCO2 detection shown in Section 3.2 was applied to discuss whether
the predicted dXCO2 was detectable. We repeated 2009 SiB3 biospheric fluxes and tested enhancements
of 25%, 37.5%, 50%, 62.5%, and 75% over the 2009 predictions from July to September of 2009 in six
unique regions (as shown in Figure S3): including Eurasia (35◦–75◦E, 45◦–61◦N); North America
(65◦–105◦W, 40◦–55◦N,); South Asia (65◦–106◦E, 13◦–28◦N); South America (35◦–75◦W, 3◦–18◦S); South
Africa (10◦–40◦E, 10◦–30◦S) and Australia (120◦–150◦E, 15◦–35◦S). The resulting dXCO2 values are
calculated from each of these model simulations

4. Results

4.1. Extracted Spatiotemporal Continuum Extreme High XCO2

Here, we show the 10 largest extreme high XCO2 units (referred to as ‘Ex-1’ through ‘Ex-10’)
in Figure 2. The selected high XCO2 units have grid sums numbering more than 2000 in time and
space, and they are identified by their rank number. The spatial distribution of these 10 largest units is
separately shown in Figure 2b. There are three (Ex-1, Ex-7, Ex-8), one (Ex-9) and six units (Ex-2, Ex-3,
Ex-4, Ex-5, Ex-6, Ex-10) that occurred over the period of 2009–2010, 2013, and 2015–2016, respectively,
as shown in Figure 2a. The largest event, Ex-1, occurred in Eurasia, with mixed land cover of forest,
cropland and other vegetation, spread from July to October in 2010. It has a large special extent but is
relatively concentrated in time. That is consistent with the influence of high temperatures and wildfire
in the region [15]. The Ex-7 was distributed over north-eastern North America covered mostly in
forest, occurred in the similar period of Ex-1. Ex-8 happened over eastern Australia shrub-land in
late of 2009. Ex-9 distributed in the similar space of Ex-7, but happened in mid-2013. The five units
(Ex-2, Ex-3, Ex-4, Ex-6, and Ex-10) happened in the tropical continents (Australia sparse shrub-land,
southern Africa savanna and shrub-land, eastern and southern South America savanna, grassland and
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shrub-land, south-eastern Asia forest and cropland, respectively). They occurred from January to May
of 2016, although with different duration within that window. These events correspond to the large
CO2 release related to the 2015–2016 EI Niño [22]. Ex-5 occurred over Central Asia bare land in early
2016. In addition, some units (Ex-2 and Ex-8, or Ex-7 and Ex-9) are overlapped in space.

Time series of mean dXCO2 and XCO2 over each detected unit are shown in Figure 3. Extremes
could happen in more than one area during one time period, and more than one time period in one
area. Mean dXCO2 and corresponding Z scores within detected units both in time and space are
summarized in Table 2. The mean dXCO2 within detected grids was approximately 1.4–1.8 ppm over
the Northern Hemisphere (NH) and 1.2–1.4 ppm over the Southern Hemisphere (SH). Units over forest
and cropland (Ex-1, Ex-7, Ex-10) are larger than 1.6 ppm, and those over savanna and shrub-land (Ex-2,
Ex-3, Ex-4, Ex-6, Ex-8) are around 1.28–1.4 ppm. The mean Z score for all the 10 extremes are around
2.3–2.5 (high values indicate a high probability of extreme high XCO2).
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Figure 2. The duration (a) and spatial distribution (b) of the ten largest extreme events (Ex). Those
occurring in 2009–2010 are outlined in black (Ex-1, Ex-7, Ex-8), 2013 is in blue (Ex-9) and 2015–2016 are
in red (Ex-2, Ex-3, Ex-4, Ex-5, Ex-6, Ex-10). The main land-cover type over the ten selected extreme units
was based on MCD12C1 in 2009 from the Moderate Resolution Imaging Spectroradiometer (MODIS).
(a) Influenced duration of largest 10 extreme high XCO2 units; (b) Largest 10 extreme high XCO2 units
with influenced grids in space.
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Figure 3. Temporal change of spatial mean dXCO2 (red line) and XCO2 (black line) over the covered
area, with influenced time more than 15 days, for the ten largest events from June 2009 to May 2016.
Extreme high XCO2 is characterized with dXCO2. The duration of the extreme events are highlighted
with dashed vertical lines. (a) Ex-1: Forest and Cropland; (b) Ex-2: Sparse Shrub-land; (c) Ex-3:
Savanna and Shrub-land; (d) Ex-4: Savanna; (e) Ex-5: Bare land; (f) Ex-6: Grassland and Shrub-land;
(g) Ex-7: Forest; (h) Ex-8: Shrub-land and Savanna; (i) Ex-9: Forest and Shrub-land; (j) Ex-10: Forest
and cropland.

4.2. Attribution of Detected High XCO2 Units by Surface Extremes

We attribute extreme high XCO2 units to local reduced carbon uptake and/or increased carbon
release, within at least a portion of the region identified. Some potential local drivers, including
temperature, drought index, BA and GPP, are used to discuss the possible local extreme climate over
detected extreme XCO2 units. Monthly mean values of parameters and its normal value (calculated
with all data in a given month during the study period) over the detected extreme high XCO2 units
from 2009 to 2016 are shown in Figures 4 and 5. The statistics of the driver anomalies during detected
extreme periods and its comparison to the overall fluctuation is shown in Table 2.
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Table 2. Time and space features of detected extreme units (Ex) 1 through 10. Their land over types, period, grids number (NUM), location, dXCO2, Z score, and
difference between monthly data and its normal value over significant different period about surface skin temperature (∆Temp), self-calibrating Palmer drought
severity index (scPDSI) (negative for drought and vice versa), burned area (∆BA) and gross primary production (∆GPP) during the main detected period over these
units. Positive values indicate increasing values during the extreme event. Bold items indicate likely contribution to the atmospheric XCO2 increase, because they
represent forcing that likely increases CO2 flux to the atmosphere.

Period Grids NUM (Location) dXCO2 (ppm) Z Score ∆Temp (K) scPDSI ∆BA (km2/grid) ∆GPP (gC/m2)

Ex-1: Forest and Cropland 10 July~10 October
11361

(35–60◦N;
21–134◦E)

1.77 ± 0.39 2.43 ± 0.39 1.22 ± 1.60 −1.11 ± 0.18 8.77 ± 7.82 −5.85 ± 4.94

Ex-2: Sparse Shrub-land 16 January~16 April
6527

(11–35◦S;
113–153◦E)

1.28 ± 0.21 2.31 ± 0.30 1.88 ± 0.70 −1.68 ± 0.14 −12.1 ± 20.39 −5.99 ± 3.32

Ex-3: Savanna and Shrub-land 1 February~16 May
5443

(5–35◦S;
12–38◦E)

1.37 ± 0.27 2.38 ± 0.36 1.93 ± 0.96 −2.10 ± 0.02 1.63 ± 2.43 −19.15 ± 13.64

Ex-4: Savanna 15 November~16 May
4023

(5–25◦S;
36–63◦W)

1.40 ± 0.23 2.32 ± 0.33 1.56 ± 1.84 −1.31 ± 0.46 1.64 ± 2.82 −26.66 ± 18.97

Ex-5: Bare land 16 March~16 May
3485

(26–45◦N;
48–84◦E)

1.49 ± 0.30 2.37 ± 0.34 0.56 ± 0.86 0.63 ± 0.13 7.32 ± 19.17 −0.37 ± 0.72

Ex-6: Grassland and Shrub-land 16 February~16 May
2887

(17–35◦S;
48–72◦W)

1.30 ± 0.27 2.48 ± 0.42 0.54 ± 1.84 1.53 ± 0.19 −0.71 ± 0.58 −16.02 ± 6.15

Ex-7: Forest 10 August~10 October
2727

(31–55◦N;
68–102◦W)

1.68 ± 0.34 2.32 ± 0.27 1.13 ± 1.11 −0.71 ± 0.21 −0.01 ± 0.03 −4.99 ± 9.74

Ex-8: Shrub-land and Savanna 9 September~9 December
2498

(12–35◦S;
123–152◦E)

1.39 ± 0.25 2.36 ± 0.34 1.78 ± 0.80 −1.98 ± 0.44 57.47 ± 108.69 −11.50 ± 5.31

Ex-9: Forest and Shrub-land 13 April~13 July
2297

(39–60◦N;
61–101◦W)

1.40 ± 0.25 2.31 ± 0.31 −0.39 ± 0.85 −0.65 ± 0.28 15.35 ± 21.58 −2.57 ± 2.15

Ex-10: Forest and cropland 16 March~16 May
2236

(6–28◦N;
93–109◦E)

1.61 ± 0.29 2.31 ± 0.29 2.55 ± 1.07 −0.94 ± 0.10 −3.62 ± 25.08 −26.91 ± 20.88
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indicates each extreme high XCO2 unit.
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6~10. Red line is the observed dataset and the blue line is seasonal mean data over the 8 years, calculated using the observed data. Time within black dashed lines
indicates each extreme high XCO2 unit.
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We find that abnormal increased temperature (1.22 ± 1.60, 1.78 ± 0.80 K), moderate/severe
drought (−1.11 ± 0.18, −1.98 ± 0.44), increased wildfire (8.77 ± 7.82, 57.47 ± 108.69 km2/grid),
increased CO2 release, and reduced GPP (−5.85 ± 4.94, −11.50 ± 5.31 gC/m2), emerge together
over the time and space of units Ex-1 and Ex-8. All of them could contribute to the abnormal XCO2.
In 2016 in the SH, XCO2 anomalies in Ex-2, Ex-3 and Ex-4 resulted from a combination of influences of
abnormal increased temperature (1.56 to 1.93 K), severe drought (−1.31 to −2.10), reduced GPP (−5.99
to −26.66 gC/m2). XCO2 anomaly over Ex-6 could be explained by flooding indicated by abnormal
scPDSI (−0.72 compared to a mean 1.53) and reduced GPP (−16.02± 6.15 gC/m2). The XCO2 anomaly
in Ex-10 could be explained by the increased temperature (2.55 ± 1.07 K) and large GPP reduction
(−26.91 ± 20.88 gC/m2). The XCO2 anomaly in Ex-9 could be explained by increased fire (with
increased BA of 15.35 ± 21.58 km2/grid), which is consistent with the wild fire that occurred in eastern
Canada during that period discussed in Erni et al. [71]. Detected abnormal XCO2 over Ex-7 could be
influenced by reduced local carbon uptake (with GPP of −4.99 ± 9.74 gC/m2) and nearby high XCO2

diffusion, transported from Eurasia as discussed in Guelert et al. [26]. However, no significant surface
change is found over Ex-5, although the GPP is slightly reduced (−0.37 ± 0.72 gC/m2). Some changes
in the bare land or CO2 transported in from nearby are discussed in Section 5.1.

4.3. Comparing Satellite Observations and Model Simulations

Here we compare the number of extreme high XCO2 grids identified from GM-XCO2 and
CarbonTracker 2016 with the monthly Southern Ocillation Index (SOI), related to El Niño and La Niña
conditions (Figure 6). The largest extreme event in a high XCO2 grid number of satellite and model
simulations are distributed over summer (around August to September) of 2010. The anomalous
grid number of GM-XCO2 increases from 300 around July to 1100 around September, and dropped
to lower than 300 in October. A relatively narrow extreme XCO2 can be found over late spring and
early summer of 2013 both in GM-XCO2 and CarbonTracker. Another extreme XCO2 period was
found in January–May 2016, which is up to 1300 grid number, from GM-XCO2 satellite observations.
Note that CarbonTracker fluxes were available through 2015 and are not comparable to the 2016 events.
Moreover, high values of dXCO2 Z scores, likely to be extreme, were found over NH in mid-2010,
SH and low latitude of early 2016 both in original ACOS-GOSAT XCO2 and GM-XCO2, shown in
Figure S4.

Extreme XCO2 events in 2009–2010 in the northern hemisphere occurred during a weak El Nino
transition to a strong La Niña. The 2013 event was during weak La Niña conditions, and the 2015–2016
events in the southern hemisphere followed strong El Niño conditions. This analysis shows the global
pattern of influence of these characteristic climate patterns on extreme CO2 fluxes.
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4.4. Sensitivity Test of XCO2 Response to Local Biosphere Flux Change with Goddard Earth Observing System
(GEOS)-Chem

We designed a sensitivity test for XCO2 response to local CO2 flux changes over six regions
shown in Figure S3. The extreme detection method was applied for evaluating how much local CO2

flux change is required to make the increased XCO2 detectable. Increased XCO2 are predicted using
the GEOS-Chem atmospheric transport model by assuming different carbon flux inputs, described
in Section 3.3. CO2 fluxes with emission increases of 25%, 37.5%, 50%, 62.5% and 75% were added
to the model input to create different XCO2 simulations. The increased XCO2 (∆XCO2) response to
different local land biosphere CO2 flux changes are shown in Figure 7. Increased XCO2 is linear to the
local CO2 change with atmospheric transport over different regions, but the slope varies by regions.
The slopes ranged from 0.32 ppm/ (10−8 kg/m2/s) in North America to 1.05 ppm/ (10−8 kg/m2/s)
in South Africa. The shallower slopes from South America, North America, Eurasia and South Asia
flux anomalies, compared to South Africa and Australia shows that CO2 anomalies in the atmosphere
are spread out faster in the northern mid-latitudes. Therefore, larger flux anomalies are required to
detect extreme events in XCO2 in mid-latitudes. The strong linear relationship between XCO2 increase
response to local CO2 flux change, shows that XCO2 anomalies can be used for local-surface CO2 flux
change detection.
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(a) 

Figure 7. Increased XCO2 (∆XCO2) corresponding to enhancements of local CO2 fluxes (∆CO2 Flux)
in regions of interest. Different color lines indicate different regions (black: Eurasia; green: North
America; red: South Asia; blue: South America; cyan: South Africa and magenta: Australia). The black
dashed line shows the one-to-one relationship.

We show the spatial extent of extreme XCO2 detected results for different emission enhancements
added in Figure 8, with the sensitivity test method shown in Section 3.3. Detected grids number
increase with local CO2 flux increase. The period of detected anomalous XCO2 could last a long time,
even after the increased CO2 release stopped. The flux enhancement stopped in September, but the
anomaly was still detectable through December. The period and location of averaged increased XCO2

(South America: 1.52 ppm and South Asia: 1.09 ppm) over tropical forest areas can be identified, with a
25% increase in local CO2 emission (averaged as 4.59 × 10−8 kg/m2/s and 2.28 × 10−8 kg/m2/s).
With an emission increase of 37.5% of averaged local biospheric CO2 flux (Eurasia: 3.79 × 10−8

kg/m2/s; North America: 5.52 × 10−8 kg/m2/s) makes the averaged increased XCO2 (1.52 and
1.77 ppm) over tropical and northern hemisphere be detectable. Local CO2 emission and transported
CO2 could make the increased atmospheric XCO2 detectable over South Africa and Australia. So, the
CO2 variation with significant local CO2 flux change can be detectable, in XCO2.
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Figure 8. Detected results of extreme high XCO2 grids number with different emission increases added
to the input CO2 flux, from 1 July to 31 September 2009, described in Section 3.3. Temporal statistical
grid number is shown in (a), and spatial distribution of detected emission ratio is shown in (b–e).
Corresponding changed XCO2 are shown in Figure S3. (a) Time series of influenced grids of various
increases in biospheric CO2 fluxes as percentages added as emission; (b) detected grids with 25% CO2

flux as emission; (c) detected grids with 37.5% CO2 flux as emission; (d) detected grids with 50% CO2

flux as emission; (e) detected grids with 62.5% CO2 flux as emission.

5. Discussion

5.1. Spatial Patterns of Extreme High CO2 Concentrations during El Niño Southern Ocillation (ENSO) Events

In order to examine the potential influence of El Niño Southern Ocillation (ENSO) events during
the periods of high values of extreme XCO2 grids number shown in Figure 6, we displayed the mean Z
score of GM-XCO2 during July–September 2010 (Figure 9a) and March–May 2016 (Figure 9b). A high
Z score indicates a strong likelihood of a high XCO2. During July–September 2010, high Z scores
were concentrated over western Russia detected as Ex-1. High temperature, burned area, and drought
occurred over western Russia in the 2010 summer, which is consistent with results from prior research
on strong CO2 release [15,16,72]. The XCO2 anomalies from 2009 to 2010 over this region previously
identified from the GOSAT observations [26]. As the ∆Temp, scPDSI, and ∆GPP shown in Figure 9c,e,g,
significant high temperature, severe drought and reduced GPP happened over western Russia, which
is consistent with the high XCO2 shown in (a). The detected Ex-1 (the biggest one) shown in Section 4.1
cover these area and period. While, the range of Ex-1 covers most of this latitude, that could be
the result of atmospheric transport, and effect of drought-induced CO2 emissions in eastern Eurasia,
discussed in Barriopedro et al. [73]. The small region of high XCO2 in eastern North America is not
associated with a high temperature or drought event. That high XCO2 is possible due to reduced GPP
over that region shown in (g) or/and a result of the transport and dilution of the Eurasian anomaly as
described in Guerlet et al. [26].

During March–May 2016, high Z scores occurred generally over tropical land areas, detected
as Ex-2, Ex-3, Ex-4, Ex-6 and Ex-10, and the influenced grids exceed that in summer 2010, which
indicated that affected areas were more widespread. This shows the influence of the extreme El Niño
of 2015–2016 [19,74,75]. Although, CO2 release over some area was well been evaluated [22,26], there
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are some high XCO2 regions that have not been examined in great detail in the literature, such as
southern South America and Australia. We can find extreme high temperature, severe drought and
reduced GPP shown in eastern South America, southern Africa, Australia and southeastern Asia,
shown in Figure 9d,f,h. Extreme high XCO2 and low temperature, wet scPDSI conditions and reduced
GPP shown in southern South America, which could be induced by the worst flood in decades [64].
The high XCO2 of detected Ex-6 could be contributed by both drought in mid-South America and
flooding in southern America. In addition, Ex-5 over bare land was detected, with less local CO2 flux in
response to climate change [76]. It could be a result of local soil respiration increase and CO2 diffusion
from nearby area like India and south-eastern Asia. High temperature in western North America
during springtime can contribute to vegetation growth, which has little effect on CO2 increase.
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Figure 9. Spatial distribution of the Z score of GM-XCO2 fitting residuals (dXCO2) (an important
criteria for extreme detection) during July–September of 2010 and March–May of 2016 (extremely high
value of anomaly XCO2 grids) are shown in (a,b). Positive (red) values represent high possibility of
being high XCO2 and verse vice. And corresponding value of differences between observation and
normal state in surface skin temperature (∆Temp (K)), gross primary production (∆GPP (gC/m2))
are shown in (c,d,g,h). Positive (red) values indicate high temperature and low GPP, and versa vice.
Self-calibrating Palmer Drought Severity Index (scPDSI) are shown in (e,f). Negative (red) value
indicates drought, and versa vice. (a) Z score of GOSAT dXCO2 in July–September 2010; (b) Z score
of GOSAT dXCO2 in March–May 2016; (c) mean increased Temp. in July–September 2010; (d) mean
increased Temp in March–May 2016; (e) mean scPDSI in July–September in 2010; (f) mean scPDSI
in March–May in 2016; (g) mean reduced GPP in July–September in 2010; (h) mean reduced GPP in
March–May in 2016.
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5.2. Detectable and Sensitivity of XCO2 in Response to Local CO2 Flux Change

In order to identify local CO2 flux changes using the XCO2 extreme detection method, we need
to understand their relationship [77]. A significant positive correlation between increased XCO2 and
local CO2 flux change can be found in Figure 7, however the magnitude of that relationship varies
across the six regions examined. These differences are likely due to different patterns of atmospheric
transport [78]. For example, atmospheric inversions have historically been constrained by surface CO2

concentrations to infer surface fluxes. Inversion model inter-comparisons, like the Atmospheric Tracer
Transport Model Intercomparison Project (TRANSCOM) found that it was difficult to constrain surface
fluxes in the tropics because high rates of vertical transport of air masses results in low sensitivity of
the surface CO2 monitoring fluxes to changes in local surface fluxes [79,80]. However, satellite column
observations, such as from ACOS-GOSAT, are sensitive to CO2 variations throughout the boundary
layer and free troposphere [81]. Therefore, XCO2 anomalies are more sensitive to fluxes in the tropics
than in the mid-latitudes, the opposite of the sensitivity biases in atmospheric inversions using surface
observations. Our results also show that regions with large CO2 flux magnitudes, like the topics, are
more likely to produce a detectable change in XCO2.

6. Conclusions

Here we present a novel method for detecting large regions of extreme of carbon source and sink
changes in time and space using satellite retrievals of extreme high atmospheric total column CO2

concentrations. Mean dXCO2 within detected units are around 1.4~1.8 ppm over NH and 1.2~1.4 ppm
over SH, and it is different over various land-cover types. Detected XCO2 anomalies can be generally
attributed with surface parameters, related to heatwave, drought, fire, and reductions in vegetation
photosynthesis. However, different combinations of main drivers cause different events. Periods with
many extreme grid detections are identified using the spatial pattern of dXCO2’s Z score. We find
that western Russia and tropical land areas are the main region of carbon release for 2009–2010 and
2015–2016, respectively. We can use this method to examine the spatial patterns of CO2 flux changes
due to EI Niño or La Niña events.

The detection method could be sensitive for 25% or more local flux emission enhancements over
tropical forest areas, and 37.5% for boreal forest area, as determined by the GEO-Chem sensitivity test.
We show the detected temporal and spacial distribution can be influenced by the magnitude of CO2

emission and atmospheric transmission.
Furthermore, the current detection method can be extended to identify periods of extreme low

XCO2. More extreme XCO2 could be detected and better evaluated with long time series and more
precise observations and data aggregation becoming available from various greenhouse gas satellites,
such as current the Orbiting Carbon Observatory-2 (OCO-2) and TanSat, forthcoming GOSAT-2 and
the Geostationary Carbon Cycle Observatory (GeoCarb), and previous observations from the Scanning
Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). In addition, it could
be applied to carbon monoxide (CO) or other data for extreme fire or anthropogenic emission detection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/6/839/s1,
Figure S1: The relationship between predicted XCO2 and observed XCO2 values in cross-validation of global
land mapping of XCO2. The color grids represent the density of data distribution. The dotted line is derived
from linear regression of predicted values of XCO2 (Y) and the observed values of XCO2 (X), which shows a
significant linear relationship with R2 equals 0.94 (p-value < 0.01) and good consistency of observed XCO2 and
predicted XCO2 with MAPE equal to 0.85. The solid line shows the one-to-one line. Figure S2: Temporal variation
comparison for the 13 TCCON sites. As shown in these panels, the original ACOS-GOSAT XCO2 retrievals
within 500 km of the TCCON site are in gray dots. The TCCON data, smoothed by applying the ACOS-GOSAT
averaging kernel, are indicated by blue dots. The data are chosen using coincidence criteria of within ±2 h of
GOSAT overpass time, and a 3-day (one time-unit) mean is calculated for the comparison. The predicted TCCON
site XCO2 time series using the mapping approach are indicated by the red dots. Figure S3: Local biosphere
CO2 flux for GEOS-Chem model simulation. They are mean bisospheric CO2 flux and corresponding XCO2
output shown in (a) and (b). Different enhancements of local biospheric CO2 flux as emission input for simulating
different carbon sources/sinks changes are shown in (c). Different XCO2 output for different CO2 flux change are

http://www.mdpi.com/2072-4292/10/6/839/s1


Remote Sens. 2018, 10, 839 17 of 21

shown in (d). Figure S4: Latitudinal-temporal Z score of XCO2 fitting residuals from original ACOS-XCO2 (a) and
GM-XCO2 (b). Red represents high possibility of extreme highly increased XCO2.
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