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Abstract: Depending on the band position on the electromagnetic spectrum, optical and electronic
characteristics, sensors collect the reflected energy by the Earth’s surface and the atmosphere.
Currently, the availability of the new generation of medium resolution, such as the Multi-Spectral
Instrument (MSI) on board the Sentinel-2 satellite, offers new opportunities for long-term
high-temporal frequency for Earth’s surfaces observation and monitoring. This paper focuses on
the analysis and the comparison of the visible, the near-infrared (VNIR), and the shortwave infrared
(SWIR) spectral bands of the MSI for soil salinity discrimination in an arid landscape. To achieve
these, a field campaign was organized, and 160 soil samples were collected with various degrees of
soil salinity, including non-saline soil samples. The bidirectional reflectance factor was measured
above each soil sample in a goniometric laboratory using an ASD (Analytical Spectral Devices)
spectroradiometer. In the laboratory work, pHs, electrical conductivity (EC-Lab), and the major soluble
cations (Na+, K+, Ca2++, and Mg2+) and anions (CO3

2−, HCO3
−, Cl−, and SO4

2−) were measured
using extraction from a saturated soil paste, and the sodium adsorption ratio (SAR) was calculated
using a standard procedure. These parameters, in addition to the field observations, were used to
interpret and investigate the spectroradiometric measurements and their relevant transformations
using the continuum removed reflectance spectrum (CRRS) and the first derivative (FD). Moreover,
the acquired spectra over all the soil samples were resampled and convolved in the solar-reflective
spectral bands using the Canadian Modified Herman transfer radiative code (CAM5S) and the
relative spectral response profiles characterizing the Sentinel-MSI band filters. The statistical analyses
conducted were based on the second-order polynomial regression (p < 0.05) between the measured
EC-Lab and the reflectances in the MSI convolved spectral bands. The results obtained indicate the
limitation of VNIR bands and the potential of SWIR domain for soil salinity classes’ discrimination.
The CRRS and the FD analyses highlighted a serious spectral-signal confusion between the salt
and the soil optical properties (i.e., color and brightness) in the VNIR bands. Likewise, the results
stressed the independence of the SWIR domain vis-a-vis these soil artifacts and its capability to
differentiate significantly among several soil salinity classes. Moreover, the statistical fit between
each MSI individual spectral band and EC-Lab corroborates this trend, which revealed that only the
SWIR bands were correlated significantly (R2 of 50% and 64%, for SWIR-1 and SWIR-2, respectively),
while the R2 between the VNIR bands and EC-Lab remains less than 9%. According to the convergence
of these four independent analysis methods, it is concluded that the Sentinel-MSI SWIR bands are
excellent candidates for an integration in soil salinity modeling and monitoring at local, regional,
and global scales.
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1. Introduction

Salinity can temporarily or permanently modify the state of the surface and of the soils below [1].
For landscape vulnerable to salinization, there are methods available to slow down the processes
and, sometimes, even reverse them. However, remedial actions require reliable information to
help set priorities and to choose the type of action that is most appropriate for a specific location.
In affected areas, farmers, soil managers, scientists, and agricultural engineers need accurate and
reliable information on the nature, extent, magnitude, severity, and spatial distribution of the salinity
against which they could take appropriate measures [2]. The mitigation measures cannot be applied to
the affected soils without adequate information and damage becomes irreversible if left untreated for
too long. Soil salinity is highly dynamic and varies considerably in both time and space depending on
many factors. Consequently, the proper management is not restricted only to accurate and reliable
information, but also up-to-date and ongoing. Since salinization, its effects, and whatever mitigation
measures are taken are all dynamic processes they must be monitored regularly [3].

The measurement of electrical conductivity (EC) of extract from a saturated paste provides
reliable information of soil salinity [4]. Nevertheless, the cost of such laboratory analysis based
on conventional methods becomes prohibitive when it is associated with the regular monitoring
necessary for saline soil management. This method is financially expensive, time consuming, and needs
considerable human resources for land surveying and soil sample collection, especially for large
areas [1]. In addition, the spatiotemporal dynamic nature of soil salinity makes it very difficult to
use conventional methods for comparisons over large territory [5]. Several authors have examined
the advantages of remote sensing methods and sensors for the assessment of soil degradation due
to salinity [1,6–19]. Remote sensing methods are relatively easy to apply and reliable in certain
conditions. The main advantage of remote sensing is represented by providing an opportunity for the
mapping of large areas at relatively low cost, collecting information at regular intervals and, therefore,
monitoring becomes easier. This allows not only for the appropriate remedial action to be taken,
but also for the monitoring of the effectiveness of any ongoing remediation or preventative measures,
which facilitate management and decision-making [20].

Actually, the availability of the new generation medium-resolution Multi-Spectral Instrument
(MSI) installed on board the Sentinel-2 satellite platform offers new opportunities for long-term
high-temporal frequency for observation and monitoring of the Earth’s surface, such as soil salinity
management, natural resource monitoring, and environmental impact assessment [21]. With its relative
broad spectral bands and medium pixel size ensuring a regional and global medium scale mapping,
the MSI allows coverage of the Earth every 10 days in 13 spectral bands. This was developed to
significantly increase the temporal resolution to five days by combining with the Operational Land
Imager (OLI) sensor on board Landsat-8, which constitutes a continuous record of the Earth’s surface
reflectivity from space using the Landsat sensor series since 1972. Indeed, the spectral resolutions
and configurations of these two sensors (MSI and OLI) were designed in such a way that there is a
significant match between their homologous spectral bands [22]. In the context of the soil salinity
assessment and management at the medium scale, the aim of this research focuses on the investigation
of the potential and limits of sentinel-MSI VNIR and SWIR spectral bands sensitivity for soil salinity
discrimination in an arid landscape.

2. Materials and Methods

The used methodology is summarized in Figure 1, involving five fundamental steps: (1) A field
campaign was organized and a total of 160 soil samples were collected with various salinity levels,
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from extreme salinity (Sabkha) to non-saline soil (agricultural fields). Observations and remarks about
each soil sample were noted, photographed and its geographic location was recorded using GPS; (2) The
bidirectional reflectance factor was acquired above each soil sample in a Goniometric-Laboratory using
an ASD (Analytical Spectral Devices) FieldSpec-4 high resolution (Hi-Res) spectroradiometer [23].
The spectra of the representative salinity classes were transformed using the continuum-removed
reflectance spectrum (CRRS) [24], and the first derivative (FD) [25]. Then, all the measured spectra
were resampled and convolved in the solar-reflective spectral bands of Sentinel-MSI sensors using the
Canadian Modified Herman transfer radiative code (CAM5S) [26] and the relative spectral response
profiles characterizing the filters of each band of MSI; (3) In the laboratory, the soil reaction (pHs),
the electrical conductivity (EC-Lab), and the major soluble cations (Na+, K+, Ca2++, and Mg2+) and
anions (CO3

2−, HCO3
−, Cl−, and SO4

2−) extracted from a saturated soil paste were measured, as well
as the Sodium Adsorption Ratio (SAR) was calculated [27]; (4) These analyses and the field observations
relative to each soil sample were used for interpretation and examination of the measured spectra
and their transformations (CRRS and FD); (5) Finally, statistical analyses were conducted using
second-order polynomial regression (p < 0.05) between the measured EC-Lab and the resampled and
convolved reflectances in the MSI spectral bands were applied to corroborate or to deny which spectral
domain and which spectral bands are significant for soil salinity discrimination.

Figure 1. Flowchart of the methodology.

2.1. Study Site

The Kingdom of Bahrain (25◦32′ and 26◦00′N, 50◦20′ and 50◦50′E) is an archipelago of 33 islands
located in the Arabian Gulf, east of Saudi Arabia and west of Qatar (Figure 2) with a total land
area of about 778.40 km2. According to the aridity criteria and the great variations in climatic
conditions, Bahrain has an arid to extremely arid environment [28]. The climate is characterized by high
summer temperatures of an average 45 ◦C during June-September and an average of approximately
17 ◦C in winter from December to March. Rain is sparse, and occurs primarily from November
to April, with an annual average of 72 mm, sufficient only to support the most drought-resistant
desert vegetation. Mean annual relative humidity is over 70% due to the surrounding Arabian
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Gulf water, and the annual average potential evapotranspiration rate is 2099 mm [29]. Under such
climatic conditions, where precipitation is excessively low to maintain a regular percolation of
rainwater through the soil, soluble salts are accumulated in the soil, influencing soil properties
and environment causing low soil productivity. Indeed, these factors have significant impacts on land
degradation, crop production, economic aspects, and infrastructure, as well as ecosystem functionality,
human wellbeing, and sustainable development [30]. Geologically, Bahrain is characterized by Eocene
and Neocene rocks, which are partly covered by Quaternary sediments and a complex of Pleistocene
deposits. The dominant rocks are limestone and dolomitic-limestone with subsidiary marls and shales.
The leading structure is the north–south axis of the main dome, with minor cross-folds predominantly
tilting from northeast to southwest. The beds are gently inclined towards the coast from the center of
the main island. The fringes of Bahrain are covered by more recent marine and Aeolian sand dunes,
which were derived from the Arabian land connection across the present Arabian Gulf.

Figure 2. Study site (Kingdom of Bahrain).

2.2. Soil Sampling and Laboratory Analyses

The soils of Bahrain are characterized by five different classes associated with moderate to shallow
depths and are closely related to the terrain geology and geomorphology [31]. The natural Solonchak
describes soils with no agricultural activities and retain a high gypsum content (high and very high
salinity). Then, there is the cultivated Solonchak soil class, which is located in areas either currently or
previously exposed to agricultural activities. The Regosols soil class with moderate salinity is depicted
as a mixture of raw minerals as well as the natural Solonchak soils, with the possibility for growing
scattered halophytic plants. The miscellaneous land class that is represented by a composition of silts
and fine sands with low salinity is suitable for agriculture. Finally, there is the non-saline soil class,
which is imported to build artificial islands.

A total of 160 samples were collected during the period from 2 to 7 April 2016, based on the
spatial representativeness of the major soil classes as discussed above, and considering various degrees
of salinity and the non-saline soil (Figure 2). Samples were collected from the upper layer (0 to 10 cm
deep) considering an area about 50 × 50 cm. Observations and remarks about each sample (color,
brightness, texture, etc.) were noted. The location of each point was automatically labeled and recorded
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using a 35-mm digital-camera equipped with a 28-mm lens and accurate GPS survey (σ ≤ ±30 cm)
connected in real-time to the GIS database.

The most common and used approaches to determine the degrees of soil salinity and properties
include the soil reaction (pHs), the EC-Lab, and the SAR [4]. After spectroradiometric measurements,
which are described below, soil samples were air-dried, crushed, and then sieved to obtain the <2mm
fraction. Standard laboratory methods were used to measure the pH. Moreover, the saturation
extract collected from saturated soil paste was analyzed for the EC-Lab, and the major soluble cations
(Na+, K+, Ca2+, and Mg2+) and anions (CO3

2−, HCO3
−, Cl−, and SO4

2−) using standard USDA
procedures [27]. The SAR was calculated by computing Na+, Ca2++, and Mg2+ concentrations
(in meq/L) from saturation extract, in the standard equation. The EC-Lab was used for statistical
correlations considering the MSI spectral bands individually.

2.3. Spectroradiometric Measurements

Spectroradiometric measurements were acquired in the goniometric laboratory at the Arabian
Gulf University, Kingdom of Bahrain. The bidirectional reflectance spectra were measured above
each soil sample using an ASD (Analytical Spectral Devices Inc., Longmont, CO, USA) FieldSpec-4
Hi-Res (high resolution) spectroradiometer [23]. This instrument is equipped with two detectors
operating in the VNIR and SWIR, between 350 and 2500 nm. It acquires a continuous spectrum with a
1.4 nm sampling interval from 350 to 1000 nm and a 2 nm interval from 1000 to 2500 nm. The ASD
resamples the measurements in 1-nm intervals, which allows the acquisition of 2151 contiguous
bands per spectrum. The sensor is characterized by the programming capacity of the integration
time, which allows an increase of the signal-to-noise ratio (SNR), as well as stability. The data were
acquired at nadir with a field of view (FOV) of 25◦ and a solar zenith angle of approximately 5◦ by
averaging 40 measurements. The ASD was installed at a height of 60 cm approximately over the target,
which makes it possible to observe a surface of approximately 700 cm2. A laser beam was used to
locate the center of the ASD-FOV. The reflectance factor of each soil sample was calculated by rationing
target radiance to the radiance obtained from a calibrated “spectralon panel” in accordance with the
method described in [32]. Corrections were made for the wavelength dependence and non-Lambertian
behavior of the panel.

2.4. Continuum-Removed Reflectance Spectrum

Several methods were developed to process spectral signatures to retrieve information regarding
the change in reflectance over a specific bandwidth [33,34]. For spectral signatures between 350 and
2500 nm, absorption bands, such as position, depth, width, and asymmetry of the features, were used
to quantitatively estimate the mineral or chemical composition of samples from the measured spectra
in the field and/or in the laboratory. To enhance these absorption features, many approaches were
proposed, such as the relative absorption-band-depth [35], the spectral feature fitting technique [36],
and the Tricorder and Tetracorder algorithms [37,38]. These approaches work on so-called CRRS,
thus acknowledging that the absorption in a spectrum has two components: a continuum and
individual features [24,34,39]. A continuum is a mathematical function used to isolate a particular
absorption feature for analysis. It corresponds to a background signal unrelated to specific absorption
features of interest [40]. According to Clark et al. [24], CRRS normalizes the original reflectance spectra
and helps to compare individual absorption features from a common baseline. The continuum is a
convex hull fit over the top of a spectrum under study using straight-line segments that connect local
spectra maxima. The first and last spectral data values are on the hull; therefore, the first and last bands
in the output continuum-removed data file are equal to 1.0. In other words, after the continuum is
removed, a part of the spectrum with no absorption features will have a value of 1, whereas complete
absorption (albeit unlikely to actually occur) would be near 0, with most absorptions falling somewhere
in between. The spectral continuum can be thought of as what the original spectrum would look like if
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there were no absorption band. The continuum-removed spectrum is the original spectrum divided by
the continuum [40]:

Scr = (S/C) (1)

where Scr is the CRRS, S is the original spectrum, and C is the continuum curve. In this study,
the continuum algorithm already developed [24] and implemented in ENVI was used [40].

2.5. First Derivative

The spectral derivative is a powerful mathematical method commonly used in hyperspectral
remote sensing data analysis. It reduces the fluctuations, filters the noise (SNR) in the spectral signature,
and enhances the more important and significant absorption features related to a specific target (or
application). It uses first, or higher, derivatives of absorption bands with respect to the wavelength for
qualitative and quantitative analyses [41–43]. This process yields helpful features, such as maxima,
minima, and points of inflection of the original spectral signature. First derivative (FD) may swing with
greater amplitude than the original spectra. For example, a spectrum suddenly changes from a positive
to a negative slope, such as at the peak of a narrow feature. The more distinguishable derivatives
are especially useful for separating out peaks of overlapping bands [44]. FD is the rate of change of
absorption features between 350 and 2500 nm, it starts and finishes at zero. It also passes through zero
at the same wavelength as λmax of the absorption feature. Either side of this point are positive and
negative bands with maximum and/or minimum at the same wavelengths as the inflection points
in this specific feature. This bipolar function is characteristic of all odd-order derivatives [45]. In this
study, FD was implemented in the MATLAB environment [46] using finite approximation to calculate
the change in reflectance over a bandwidth ∆λ, defined as ∆λ = λj − λi, where λj > λi:

dsi
dλi

=
s
(
λj
)
− s(λi)

∆λ
(2)

where s is the spectrum used for the derivative transformation.

2.6. Sentinel-MSI Simulated Data

The Sentinel-2 satellite was launched on 23 June 2015 with the MSI on board. The synergy between
Sentinel-MSI and Landsat-OLI significantly increase the temporal resolution for several environmental
and natural resource applications, such as the vigor of vegetation cover, emergency management,
soil salinity dynamics, water quality, and climate change impact analysis at local, regional, and global
scales. Sentinel-MSI is the result of close collaboration between the European Space Agency,
the European Commission, industry, service providers, and data users. The MSI images the Earth’s
surface reflectivity with a large field of view in 13 spectral bands in the VNIR and the SWIR at 10, 20,
and 60-m pixel sizes. The swath of each Sentinel-MSI scene is 290 km, permitting global coverage of
the Earth’s surface every 10 days. The MSI radiometric performance is coded in 12 bits, enabling the
image acquisition in 4095 digital numbers, ensuring radiometric accuracy of less than 5% and an
excellent signal-to-noise ratio [47]. Table 1 summarizes the effective bandwidth characteristics for MSI.

The measured bidirectional reflectance factors using the ASD have a 1-nm interval, which allows
the acquisition of 2151 contiguous hyperspectral bands per spectrum. However, most multispectral
remote sensing sensors measured the reflectance that is integrated over broad bands. Consequently,
the measured spectra over each soil sample was resampled and convolved to match the MSI
solar-reflective spectral responses characteristics (Figure 3a). In the first step, the resampling procedure
considers the nominal width of each spectral band (Table 1). Then, the convolution process was
executed using the modified radiative code CAM5S [26]. This fundamental step simulates the signal
received by the MSI sensor at the top of the atmosphere from a surface reflecting solar and sky
irradiance at sea level considering the relative spectral response profiles characterizing the filters of
each sensor band (Figure 3a), and assuming ideal atmospheric conditions without scattering and
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absorption. Considering the 160 soil samples, these simulated reflectances in each spectral band of
the MSI were fitted with the salt content measured in the laboratory (EC-Lab) using second regression
analyses (p < 0.05). In addition to CRRS and FD, such a statistical examination step was used to evaluate
the strength of the relationship (correlation coefficient) between the EC-Lab and the reflectances in each
Sentinel-MSI band, i.e., the measurement of the sensitivity of each spectral band and its capability to
discriminate among various salt-affected classes.

Table 1. The Sentinel-MSI effective bandwidths.

Spectral Bands Sentinel-MSI

λ Centre (nm) ∆λ (nm) Pixel Size (m)

Coastal-Aerosol 443 20 60
Blue 490 65 10
Green 560 35 10
Red 655 30 10
Red-Edge-1 705 15 20
Red-Edge-2 740 15 20
Red-Edge-3 783 20 20
NIR-1 842 115 10
NIR-2 865 20 20
Water-vapor * 945 20 60
Cirrus * 1375 30 60
SWIR-1 1609 85 20
SWIR-2 2201 187 20

* The cirrus and water vapor bands were note considered in this study.

Figure 3. Cont.
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Figure 3. Sentinel-MSI relative spectral response profiles characterizing the filters of each spectral band
(a), and the spectral signatures of eight soil samples (b) with different electrical conductivity (EC-Lab)
values (see photos in Figure 4, and description in Table 2).

Figure 4. Photos of the eight representative soil-salinity classes described in Table 2.
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Table 2. Description of the eight considered soil-salinity samples.

Sample Munsell Color Standard Color Texture Remarks

A 10YR 7/6 Yellow Sandy Sandy soil without gypsum and shells
B 10YR 8/1 White Sandy-Clay-Loam With small amount of gypsum crystals and shells
C 10YR 7/2 Light-gray Loamy-Sandy Sandy soil with small amount of gypsum crystals and shells
D 10YR 7/2 Light-gray Sandy-Loam Beginning of salt crust formation. Small amount of gypsum crystals and shells
E 10YR 7/2 Light-gray Sandy-Clay-Loam Beginning of salt crust formation. Small amount of gypsum crystals and shells
F 10YR 7/2 Light-gray Sandy-Clay-Loam Crust of salt with gypsum, calcium carbonate, and small amount of shells
G 5Y 8/1 White Sandy Pure gypsum crystal deposited by wind erosion
H 10YR 8/1 White Pure salt (halite) Sabkha

3. Results and Discussion

3.1. Spectral and Laboratory Analyses

Globally, the spectral signatures of the 160 considered soil samples are controlled by the type of
salt existing in each soil sample, such as sulfates, chlorides, and/or carbonates. The results showed
different amplitudes and several absorption features depending on the chemical compositions and the
mineralogy of the existing salts in the selected soil samples. Moreover, the spectral signatures are also
influenced by several factors, such as mineralogical composition, impurity, structure, and texture of
the soil and salt crystals, and the soil optical properties (color brightness, roughness, organic matter,
moisture, etc.). Furthermore, the laboratory analyses of all soil samples revealed that the EC-Lab
values are distributed in a wider range, between 2.6 and 850 dS/m. The lowest values represent the
samples of agricultural fields, while the highest indicated the Sabkha, which is pure salt. The pH is
ranging from neutral to very strongly alkaline, between 7.09 and 8.59. Overall, the laboratory analyses
showed that the solution chemistry was dominated by cations (Na+ > Ca2+ + Mg2+ > K+) and anions
(Cl− > SO4

2− > HCO3
−); CO3

2− was undetectable. The trend showed a very high concentration of
sodium (Na+), which generally exceeds the sum of both calcium (Ca2+) and magnesium (Mg2+),
in addition to dominant chloride (Cl−), which exceeds sulfate (SO4

2). Sodium exhibited the highest
concentration due to the greater solubility of Na+ salts in the saturated paste compared to other
minerals. This was reflected in the high SAR values ranging between 6 and 1094 (mmoles/L)0.5.

To facilitate the spectral analyses and presentation, the 160 soil samples were classified into eight
significant and representative classes based on the spectral signatures behavior and the results of
the chemical laboratory analyses results. Figure 4 illustrates the photos that represent these eight
nominated classes, and Table 2 summarizes their characteristics descriptions. The textures represent
a mixture of sand, loamy-sand, gypsum, calcium carbonate, small amount of shells, and pure salt.
Figure 3 illustrates their spectral signatures and the relative spectral response profiles characterizing
the filters of MSI and the position of each spectral band in the electromagnetic spectrum. To carefully
analyze these spectra according to the salt mineralogy, it should be considered that gypsum reveals
significant absorption features at 1000, 1210, 1450, 1490, 1540, 1748, 1780, 1945, 1975, 2175, 2215, 2265,
and 2496 nm. Strong water absorption features characterize four of them (975, 1190, 1450, and 1945
nm), and only three weak bands near 1350, 1800, and 2208 nm were observed (atmospheric water
vapor absorption features at 1440 and 1920 nm are note considered in this analysis). These observations
corroborate findings of other studies [48–51]. For the halite (NaCl), several absorption features are
also manifested in the SWIR region (980, 1190, 1450, 1800, and 1950 nm). However, several authors
reported the halite absorption features at 1400, 1900, and 2250 nm [6,50,51], halite and sylvite at
1440 and 1933 nm, and bischofite (MgCl2·6H2O) at 1190 and 1824 nm. These specific absorption
features are identified accurately in controlled environment and for a specific contiguous hyperspectral
wavebands in nm. This situation is different and more complicated in the real world using multispectral
broadband because variations in the soil reflectance cannot be attributed to a single and unique salt
type or soil property within individual pixels of 100, 400, or 900 m2. In addition, depending on
the positions of the bands in the electromagnetic spectrum, each sensor collects the electromagnetic
radiation that is reflected by salt-affected soil differently. According to this preliminary analysis,
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these spectral signatures illustrate clearly that the saline soil or the salt-crusts exhibit narrow diagnostic
absorption features, particularly in the SWIR region, 1000 to 2500 nm. However, the reflectance
changed proportionally as the salt concentrations increased in the soil samples from 26 to 507 dS/m
(Table 3). This observation is consistent with many other studies indicating the importance of the
spectral domain between 1200 and 2500 nm for soil salinity characterization [18,52–54].

Table 3. Laboratory determination of EC-Lab, pH, and ion content of the eight selected soil samples
that are presented in Figures 3 and 4.

Sample pH EC-Lab
Cl− HCO3

− SO4
−2 Ca2+ K+ Mg2+ Na+ SAR

(mmoles/L)0.5
(mg/L) (mg/L)

A 8.33 26.0 9567.5 305.1 4624.7 563.6 367.6 558.2 6599.4 46.9
B 8.10 55.6 23,209.9 305.1 6771.7 392.5 697.2 1247.9 15,164.8 84.5
C 7.71 119.6 56,341.7 305.1 30,495.2 1787.8 1132.9 2327.9 44,057.0 162.0
D 7.47 195.3 120,833.4 305.1 27,527.6 2056.0 1840.0 4484.8 79,607.6 225.9
E 7.57 333.0 142,094.4 305.1 6696.6 1342.3 1236.1 2487.4 86,990.4 325.2
F 7.35 406.5 185,325.1 305.1 68,488.8 1580.3 3105.0 4643.2 140,500.0 403.6
G 7.60 445.5 135,716.1 610.2 1700.0 1128.1 843.4 1239.7 84,795.9 415.2
H 7.60 507.0 142,803.1 610.2 17,107.4 1227.2 1644.9 1399.0 95,860.0 444.7

Otherwise, in the VNIR region, the spectra of the selected eight soil classes with different salt
content showed a severe confusion caused by the soil optical properties (i.e., color, brightness, texture,
etc.) dominating the signal in this spectral region. For example, the spectra of the sample “D”
(195 dS/m) coincide with that of sample “H” (507 dS/m), although they do not have the same EC-Lab
values, because the soil characteristics play a fundamental role in this confusion (Figure 3b and Table 3).
In fact, sample “D” is a sandy soil characterized by small amount of gypsum crystals and shells,
and the beginning of salt crust formation (light gray and white color, 10YR 7/2), while sample “H” is a
pure salt-sabkha (white color, 10YR 8/1). Similar confusion is observed between the opposite sample
classes “A” and “H”, respectively, with 26 and 507 dS/m EC-Lab values. Moreover, the samples “A”
and “G” are sandy soils with EC-Lab of 26 and 445.5 dS/m, respectively; however, these two samples
exhibited approximately the same spectral behavior and amplitude in the VNIR according to their color
(Figure 3b and Table 3). Consequently, the separation between “D” and “H” or “A” and “G” samples
in the VNIR, in general, could not be applied, especially in the coastal and blue bands. However,
Figure 3b shows that the increase of EC-Lab values synchronize with the significant variation among
the salt-affected soil spectra, and progressively from the 1000 to 2500 nm portion of the spectrum.
For instance, in this SWIR domain, from “A” to “H” soil samples, the spectra changed progressively in
amplitude and shape as a function of EC-Lab (from 26 to 507 dS/m, see Table 3), as well as a function of
SAR (from 46.9 to 444.7 (mmoles/l)0.5). The observed ambiguity between “D” and “H” or “A” and “G”
samples in the VNIR, is completely dismissed in the SWIR and it is easy to see gradually the spectral
signature position of each sample according to its EC-Lab content. Definitely, the Sentinel-MSI SWIR-1
and SWIR-2 bands show the highest potential to efficiently discriminate among different degrees of
salinity in the soil (Figure 3b). These findings corroborate the results of other studies characterized
several soils rich in sulfate minerals, carbonates, and bicarbonates, sodium chloride, etc., in the SWIR
regions [1,6,14,15,48,50,51,55,56].

3.2. CRRS and FD Analyses

The derived CRRS of the eight considered soil samples are illustrated in Figure 5. The spectral
transformation shows a total absence of absorption features between 525 and 935 nm, but revealed
some features between 350 and 525 nm, and enhanced numerous and significant absorption bands
between 935 and 2500 nm (i.e., absorption features beyond 1350 nm were broadened). In such spectral
regions, the CRRS has shown that increases of salt in the soil (EC-Lab) induced automatic changes
in the depth of absorption features, particularly in the water absorption bands, which were shifted
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toward shorter wavelengths. Consistent absorption features are observed at wavelengths of 980,
1175, 1448, 1933, and 2430 nm, particularly for the pure salt sample (sodium chloride). Apparently,
these absorption peaks increase progressively as the salinity content increased in the soil sample.
These results of transformations are compatible with those obtained by Farifteh [51]. Furthermore,
the revealed bands between 350 and 525 nm are not conclusive, unfortunately, because the increase in
salinity content was found to be at a level that does not represent significant and separate features
among soil salinity classes. Indeed, in this specific electromagnetic window (coastal and blue bands)
the sample “H” which is 10 time more saline than the sample “B” (respectively EC-Lab of 507.0 and
50.5 dS/m) are showed similar absorption features. Moreover, the samples “A”, “C”, and “E” with
different salinity contents (EC-Lab of 26.2, 90.0 and 381.0 dS/m, respectively) presented comparable
absorption features (Figure 5). This similarity is automatically related to the color and the brightness
of the soil samples rather than salinity content degrees. In fact, “B” and “H” samples have the same
color (white, 10YR 8/1), while the samples “A”, “C”, and “E” are characterized by mixed color and
brightness: white-beige, light-gray, and light-gray-white (Table 2). Therefore, the CRRS analysis
corroborates the original spectral signature behavior that the Sentinel-MSI SWIR spectral domains are
more suitable for soil salinity discrimination.

Figure 5. Continuum removal reflectance spectrum of soils with different levels of salinity.

Figure 6 illustrates the FD of reflectance spectra of the eight soil-salinity classes (Table 2).
The results revealed that the FD enhances two absorption bands at 415 and 470 nm, as well as
various features between 950 and 2500 nm. In addition, the absorption features of soil minerals
broaden considerably when the absorbed moisture varies. However, it is very difficult to make a
clear distinction and separation among many absorption bands comparatively to CRRS. It looks
that the FD can detect small concentrations of soil constituents as it depends on the shape of the
characteristic absorption features, but not on the depth. Conversely, these features become more
ambiguous due to water content. These observations are consistent with the findings pointed out by
other studies [56,57]. Nevertheless, CRRS transformation provides globally better results in comparison
with the FD processing, since it is less susceptible to random variability in the spectra as reported
earlier [58]. Although the FD is not able to identify the best absorption features for salt-affected soil
discrimination, as it seems to be minimizing the effect of multiple scattering due to particle size [59]
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and provide an overall, but comprehensive, message that the SWIR regions are better than the VNIR
for soil salinity discrimination.

Figure 6. First derivative of reflectance spectra of soils with different levels of salinity.

3.3. Statistical Analysis between EC-Lab and Spectral Bands of MSI

Considering the 160 soil samples, several statistical functions were fitted between the measured
EC-Lab content and the resampled and convolved reflectances in the VNIR and SWIR bands of the
MSI sensor. A second-order polynomial regression (p ≤ 0.05) allowed the best fit. Obtained results
showed that the reflectances in the four visible bands (coastal, blue, green, and red) are insignificantly
correlated (R2 ≤ 0.05) with the salt content in the soil (Figure 7a–d). These very low correlations are
also achieved in the red-edge (R2 ≤ 0.07) and in the NIR (R2 ≤ 0.09) spectral bands (Figure 7e–i).
Indeed, the regressions presented in Figure 7a–i illustrate that, independently of the salt-content,
the 160 sampled points are scattered randomly without any trend or substantial relationship between
these bands’ reflectances and the EC-Lab. The statistical results corroborate the previous spectral
signatures and their transformation (CRRS and FD) analyses indicate that the Sentinel-MSI VNIR
spectral bands are not appropriate and not consistent for correct and accurate discrimination
among various soil salinity classes in arid landscape. Moreover, these findings are consistent
with Nawar et al. [13,60], which concluded that the visible bands of ETM+ and ASTER have the
lowest contribution to estimate soil salinity comparatively to the other spectral bands. Additionally,
recently Rahmati and Hamzehpour [19] revealed that no significant correlation (R2 ≤ 0.03) exists
between the measured EC-Lab and the reflectance in the visible bands of ETM+ sensor. Contrarily,
the Sentinel-MSI SWIR bands 1 and 2 have the highest power for soil salinity discrimination with
an R2 of 0.50 and 0.64, respectively (Figure 7g,k), which are consistent with several other studies
that showed the potential of these spectral wavebands of OLI, ALI EO-1, and WorldView-3 sensors
for salt-affected soil discrimination [14,15,61,62]. According to Nawar et al. [60], the SWIR bands of
ASTER, especially bands 9, 8, and 7 exhibited the highest contribution for soil salinity estimation.
Moreover, another study [19] indicated that the SWIR bands of the ETM+ sensor increases the accuracy
of the soil salinity prediction, whereas several other studies exploring hyperspectral remote sensing
showed that the bands within the SWIR regions are the best for evaluating the soil salinity [59,63,64].
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Figure 7. Second-order fitting between the measured electrical conductivity (EC-Lab) and the Sentinel-MSI
spectral bands (a–k).

3.4. Discussion

The multispectral remote sensing such as Sentinel-MSI or Landsat sensors series are the most
used technology to investigate the soil salinity detection and mapping. However, the broad bands of
these sensors lack the necessary sensitivity for precise quantification and discrimination of the varying
degrees of salinity in the soil particularly in the VNIR spectral domain. In such wavelengths, the main
factors affecting the salt-affected soil spectral signatures are represented by salt types, soil mineralogy,
level of moisture, organic matter content, color and brightness, roughness, and vegetation cover.
Obviously, these factors influence the signal gathered by the sensor in a specific pixel size causing
severe confusion between the salt in the soils and the soil optical properties as demonstrated in
the present study for Sentinel-MSI using four independent analyses (spectral signatures, CRRS, FD,
and statistics). Moreover, using other sensors such as TM and SPOT-HRV, has been reported [9] that
spectral confusion occurs in the VNIR bands between saline areas and desertified regions in Egypt.
Spectral confusion was also problematic, as pointed out in a study carried out by Verma et al. [7]
in which salinity was mapped in certain regions of India using TM demonstrating the difficulty
to highlight the difference between affected soils and fallow fields. During the attempts made by
Metternicht [65] and Metternicht and Zinck [2,8] to differentiate between different levels of soil salinity
in Australia, the results revealed that spectral confusion occurs especially in the VNIR spectral domain.
Likewise, using multispectral field measurements, Metternicht and Zinck [1] found spectral confusions
between salt crust and bright silt-loam textural crust, especially in the blue and green spectral bands.
Indeed, the surface brightness due to high silt content provides higher reflectance than the salty crust,
but normally non-saline crusts must have lower reflectance and a different spectral signature than the
salt crust. Hawari [50] and Farifteh [51] demonstrated the absence of the salt absorption features in
the VNIR domain in analyzing the spectral signatures of several types of salt minerals group (sulfate,
carbonate, borax, and halite).

Furthermore, the results of the proposed processing methods (spectra, CRRS, FD, and statistical
fits) confirmed the same conclusions that the SWIR regions, particularly the Sentinel-MSI SWIR-1 and
SWIR-2 bands, have the best potential for saline soils detection and discrimination. This finding is
attributed to the chemical composition and the mineralogy of the salt in the soils control significantly
the behavior of their spectral signatures generally in the SWIR wavelengths. In addition, in these
spectral regions the artefacts of soil optical properties are absent or insignificant. Thus, the findings of the
present study consistent with other studies that have been conducted in the field, laboratory, and using
real satellite data acquired with several sensors, such as TM, ETM+, OLI, ALI EO-1, and WorldView-3.
Chapman et al. [66] showed that the SWIR bands of TM provide excellent discrimination of evaporite
mineral zones in salt flats. Moreover, Drake [53] described the various absorption peaks of the salts found
in evaporite minerals in the SWIR wavelengths. The study undertaken by Hawari [50] showed that
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the absorption features between 1000 and 2500 nm are consistent with the detection of the gypsum,
halite, calcium carbonate, and sodium bicarbonate. Other studies focused on direct observations of
bare soils with different types of saline crusts and indirect observations of vegetation cover confirmed
that bands found in the SWIR were associated with information related to salt content differences
and provided some information on salt types [6,48,49,59,67,68]. Nawar et al. [13] demonstrated that
salt-affected soils exhibit two deep absorption features at 1415 and 1915 nm, and have several weak
absorption features near 1748, 2207, and 2385 nm. The study reported that on global scale, the spectral
signature amplitude decreases significantly with the level of soil salinity, especially in the SWIR domain.
Shrestha [69] concluded that the SWIR band was the most correlated with soil salinity by comparing
the six bands of ETM+. Using ALI EO-1, OLI and WorldView-3 sensors, Bannari et al. [14,15,61,62]
found that the SWIR bands of these sensors offers the best potential for soil salinity detection in
irrigated agricultural lands in North Africa, as well in the arid lands in the Middle East. Moreover,
Leone et al. [70], Odeh and Onus [71], and Zhang et al. [72] demonstrated that the SWIR bands could
be used for soil salinity estimation in agricultural fields better than other spectral domains. According
to Fan et al. [73], spectral indices operating in the VNIR of ETM+ sensor are negatively related to soil
salinity discrimination; however, the indices based on the SWIR showed a positive correlation.

In spite of the results obtained in this study, and all notable international works mentioned
above that suggested the bands within the SWIR wavelengths for soil salinity modeling and mapping,
other users of remote sensing advocated the importance of the VNIR bands. Indeed, Fan et al. [73]
estimated the soil salinity from the ALI EO-1 convolved field spectra in the Yellow River Delta in China,
and emphasized the importance of ALI blue and NIR bands for soil salinity discrimination. Madani [74]
found a strong relationship between soil salinity and all TM spectral bands, except the two SWIR bands
that were non-significant. Moreover, El-Harti et al. [75] found that the association of the OLI coastal
band with OLI VNIR bands is a good indicator for spatiotemporal monitoring of soil salinization in
irrigated agricultural lands. Likewise, Bai et al. [76] demonstrated that only the “magic” blue band
of the OLI sensor contributed significantly to soil salinity prediction. Contrariwise, Mashimbye [59]
indicated that the coastal band is more sensitive to the alkalinity (pH) than to the electrical conductivity
(EC-Lab). However, as demonstrated in this study and reported by Metternicht and Zinck [1], the blue
and the coastal bands are very sensitive to the soil optical properties characteristics and variation (color,
brightness, texture, etc.), which seems to be of limited contribution to discriminate among salt-affected
soil classes. In addition, it could be concluded that these wavelengths are very sensitive to atmospheric
scattering by tiny bits of dust and water vapor in the air, and even by air molecules, than the longer
wavelengths [77]. Nevertheless, during the conceptualization of most optical remote sensing sensors,
such as Sentinel-MSI, Landsat-OLI, or any other optical sensor, the spectral domains of coastal and
blue are dedicated especially for two specific applications, including shallow water and tracking fine
particles, like dust and smoke in the atmosphere [77]. Obviously, for remote sensing scientists and not
for those who use remote sensing as a tool, the goal of these two spectral bands is not concerned with
the soil mineralogy detection or quantification. Certainly, mapping soil salinity without consideration
of the concepts and theory of spectroradiometry and remote sensing sciences will not make the proper
choice of the appropriate spectral bands for the soil salinity model exploiting the new generation of
remote sensing sensors.

4. Conclusions

This research focused on the potential and the limit of the VNIR and the SWIR spectral bands of
MSI sensor on board of Sentinel-2 for soil salinity discrimination and distinction in an arid landscape.
The spectral signatures of 160 soil samples with different degrees of salinity and non-saline soil were
measured and transformed using CRRS and FD methods. Then, the measured spectra of all considered
soil samples were resampled and convolved in the spectral bands of MSI sensor using the Canadian
Modified Herman transfer radiative code and the relative spectral response profiles characterizing
the Sentinel-MSI band filters. Subsequently, statistical fits were established between the measured
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electrical conductivity in the laboratory (EC-Lab) and the resampled and convolved reflectances in the
VNIR and the SWIR bands of MSI sensor. Results showed that the salt-affected soil signal measured
and convolved in the Sentinel-MSI bands is controlled not only by the salt content existing in the
soil, but also by the soil mineralogical composition and optical properties (color, brightness, texture,
roughness, etc.), particularly in the VNIR wavelengths. Indeed, spectral signatures exhibited a serious
spectral-signal confusion among non-saline and saline-soil samples, as well the CRRS and the FD
transformations highlighted this confusion especially in the VNIR bands. The statistical analyses
corroborated this limitation indicating that the EC-Lab and the reflectances in the visible bands (coastal,
blue, green, and red) are non-significantly correlated (R2 ≤ 0.05). These very low correlations are also
obtained in the red-edge (R2 ≤ 0.07) and in the NIR (R2 ≤ 0.09) bands. Contrariwise, when the EC-Lab
and the SAR values were increased in the soil, the spectral signatures were changed progressively
and significantly in amplitude and shape, particularly in the SWIR region (from 1000 to 2500 nm
portion of the spectrum). Definitely, the position of the Sentinel-MSI relative spectral response profiles
(characterizing the filters of each spectral band) in the spectral signatures showed the potential of
the SWIR-1 and SWIR-2 bands to separate efficiently among different degrees of salinity in the soil.
Likewise, the CRRS and FD processing stressed the independence of the SWIR domain vis-a-vis
the soil artifacts, and corroborated its capability to differentiate significantly among several soil
salinity classes. Moreover, statistical fits confirm the effectiveness of Sentinel-MSI SWIR-1 and
SWIR-2 band potential for soil salinity classes’ prediction with a significant correlation (R2 of 0.50
and 0.64, respectively). Undoubtedly, the synergy between these two bands of Sentinel-MSI and their
homologues in Landsat-OLI, which constitute a continuous record of the Earth’s surface reflectivity
from space using the Landsat sensor series since 1972, will significantly increase the temporal resolution
for soil salinity dynamic monitoring at the global, regional, and local scales.
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