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Abstract: Traditional NDVI-Ts space is triangular or trapezoidal, but Liu et al. (2015) discovered that
the NDVI-Ts space was bi-parabolic when the study area was covered with low biomass vegetation.
Moreover, the numerical value of the indicator was considered in most of the study when the
drought conditions in the space domain were evaluated. In addition, quantitatively assessing the
spatial-temporal changes of the drought was not enough. In this study, first, we used MODIS NDVI
and Ts data to reexamine if the NDVI-Ts space with “time” and a single pixel domain is bi-parabolic
in the Shaanxi province of China, which is vegetated with low biomass to high biomass. This is
compared with the triangular NDVI-Ts space and one of the well-known drought indexes called the
temperature-vegetation index (TVX). The results demonstrated that dry and wet edges exhibited a
parabolic shape again in scatter plots of Ts and NDVI in the Shaanxi province, which was linear in
the triangular NDVI-Ts space. The Temperature Vegetation Dryness Index (TVDIc) was obtained
from bi-parabolic NDVI-Ts andTVDIt was obtained from the triangular NDVI-Ts space and TVX
were compared with 10-cm depth relative soil moisture. By estimating the 10-cm depth soil moisture,
TVDIc was better than TVDIt, which were all apparently better than TVX. Second, combined with
MODIS data, the drought conditions of the study area were assessed by TVDIc between 2000 to 2016.
Spatially, the drought in the Shaanxi Province between 2000 to 2016 were mainly distributed in the
northwest, North Shaanxi, and the North and East Guanzhong plain. The drought area of the Shaanxi
province accounted for 31.95% in 2000 and 27.65% in 2016, respectively. Third, we quantitatively
evaluated the variation of the drought status by using Gradient-based Structural Similarity (GSSIM)
methods. The area of the drought conditions significantly changed and moderately changed at 5.34%
and 40.22%, respectively, between 2000 and 2016. Finally, the possible reasons for drought change
were discussed. The change of precipitation, temperature, irrigation, destruction or betterment of
vegetation, and the enlargement of opening mining, etc., can lead to the variations of drought.

Keywords: Temperature Vegetation Dryness Index (TVDI); MODIS; bi-parabolic NDVI-Ts space;
gradient-based structural similarity (GSSIM); drought quantitative assessing

1. Introduction

Drought is a natural phenomenon that entails a lack of water. It is commonly divided into three
types including meteorological drought (lack of precipitation), hydrological drought (decreasing of
river flow, lake or reservoir capacity, and groundwater level), and agricultural drought (shortage
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of available soil moisture for the plant) [1,2]. The drought in this context is agricultural drought.
As a popular and dangerous natural disaster, it can result in many hazards for farming, which makes
the environment worse and potentially causes other natural disasters to happen. As such, it is very
important to assess the spatial-temporal variations of droughts [3].

Remote sensing techniques can quickly monitor drought conditions in a large area [4]. Since the
1970s, many methods based on the vegetation index, land surface temperature (Ts), and albedo such
as the Normalized Difference Vegetation Index (NDVI) [5], Perpendicular Vegetation Index (PVI) [6],
the Vegetation Condition Index (VCI) [7–10], the Normalized Difference Water Index (NDWI) [11],
Vegetation Condition Albedo Drought Index (VCADI) [12], and the Temperature Condition Index
(TCI) [7,13] have been applied to evaluate the vegetation status and drought conditions. Most studies
have pointed out that it is insufficient to monitor drought conditions with a single index. Ts and
vegetation information have been combined for assessing droughts [1,2,4,14,15].

Goward et al. (1985), Hope et al. (1986), and Nemani et al. (1989) found that the slope of
the Ts/NDVI curve could provide some soil moisture information [16–18]. In the study of Price
(1990) and Carlson et al. (1994), a triangle was shaped in the scatterplots of NDVI and Ts [19,20].
A trapezoid was explored in scatterplots of NDVI and Ts in the research of Goward and Hope
(1989) and Moran et al. (1994) [21,22]. The temperature vegetation dryness index (TVDI) [23] and the
vegetation temperature condition index (VTCI) [24] obtained from the triangular NDVI-Ts space were
developed to estimate drought or soil moisture conditions. The principle of VTCI is almost the same
as TVDI and VTCI = 1-TVDI. These two indexes were only acquired from remotely sensed data and
are widely applied to evaluate the drought status and assess its impacts [25–30].

In the triangular or trapezoidal NDVI-Ts space, the dry and wet edges are linear. However,
the dry edge was not always linear. The dry edge was shaped in a parabola in the triangular NDVI-Ts

space [19]. When the NDVI values were very low or high, the dry edge was demonstrated in nonlinear
in the study of Carlson et al. (1994) [20]. A fourth-order polynomial was used to fit the dry edge in the
NDVI-Ts space [31]. A bi-parabola was found in the NDVI-Ts space when the study area was covered
with low biomass vegetation [32]. Moreover, most of studies only considered the numerical value of
the indicator when evaluating drought conditions in the space domain, but quantitatively assessing
the spatial-temporal changes of drought was not enough. Structural similarity (SSIM) was used to
quantitatively and accurately describe the spatial distribution characteristics of the drought status in
the Guanzhong plain of China [33]. However, gradient-based structural similarity (GSSIM) can better
evaluate the quality of the image [34,35]. The structural information of the remote sensing image can
reflect the spatial structure in the corresponding scene and the remote sensing images in the same area
have the same or similar spatial structure. SSIM and GSSIM are used to measure the similarity of the
structure information and structural characteristics of images [33,34,36].

In this study, a time-domain and pixel by pixel bi-parabolic NDVI-Ts space in which NDVI and Ts

data from different time periods were mixed was re-examined in the Shaanxi province, China, which
was vegetated from a low biomass to a high biomass. It was compared with the triangular NDVI-Ts

space and one of the well-known drought index called the temperature-vegetation index (TVX) [37,38].
TVDIc from the bi-parabolic NDVI-Ts space were applied to monitor distribution characteristics of
drought between 2000 to 2016. Then, the GSSIM value of TVDIc was calculated in 2000 to 2005, 2005 to
2010, 2010 to 2015, and 2000 to 2015, respectively, and analyzed the structural characteristics of TVDIc

in two phases. The spatial and temporal distribution features of the drought in the Shaanxi Province
was quantitatively and accurately described based on GSSIM and compared with the change trend
of drought based on the linear regression analysis method [39,40]. Finally, we discussed the possible
reasons for drought changes.
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2. Study Area and Data

2.1. Study Area

The Shaanxi province (105◦29′–111◦15′E, 34◦42′N–39◦35′N) is located in Northwest China and
covers an area of 205,800 km2. The elevation is higher in North and South Shaanxi when compared
to the central region. From the north to the south, Shaanxi province are classified into three parts
including the plateau areas in the north (called Shaanbei area), plain areas in the central region (called
Guanzhong plain), and mountainous areas in the south (called Shaannan area) (Figure 1a). Shaanbei
area riches in coal resources with windy desert soil lack water and vegetation cover. The Guanzhong
plain is an important grain production base while Qinling-Dabashan Mountains are located in the
Shaannan area with high vegetation cover (Figure 1b). It extends in three climatic zones from the
north to the south, the middle temperate zone in the Shaanbei area, the warm temperate zone in the
Guanzhong plain, and the subtropical zone in the Shaannan area. The annual average temperature
and precipitation are about 13 ◦C and 580 mm, respectively, which decrease from the south to the
north in the Shaanxi province [41].
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Ts space method. The projection system of these products are sinusoidal and geometrical. A radio-
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MYD13A2 and eight-day composited product MYD11A2, respectively, by using the MODIS 
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Figure 1. The study area. (a) Location of Shaanxi province in China and (b) the land cover types of
Shaanxi province (https://search.earthdata.nasa.gov/).

2.2. Data

To produce dryness maps of the Shaanxi province, two tiles of moderate resolution imaging
spectroradiometer (MODIS) data (h26v05, h27v05) acquired from 2000 to 2016 were used.
The vegetation and land surface temperature (Ts) products with 1000 m resolution (MOD13A2 and
MOD11A2, respectively) were downloaded from https://search.earthdata.nasa.gov/. Reflectance
of red and NIR bands at 250 m resolution in an eight-day gridded level-3 product MOD09Q1 and
MOD11A2 and filed measured soil moisture in April 2013 were used to verify the bi-parabolic NDVI-Ts

space method. The projection system of these products are sinusoidal and geometrical. A radio-metrical
correction has been made [1].

First, we derived NDVI and Ts between 2000 to 2016 from a monthly composited product MYD13A2
and eight-day composited product MYD11A2, respectively, by using the MODIS Reprojection Tool (MRT)
(https://lpdaac.usgs.gov/tools/modis_reprojection_tool). The reflectance of Red and NIR bands were
obtained from MOD09Q1 and resampled into 1000 m resolution by the MRT tool. At the same time,
the sinusoidal projection of MODIS was converted into albers equal area projection with WGS-84
datum. Second, the maximum value composite method (MVC) was applied to composite 12 scenes
NDVI images and 46 scenes Ts images into one image in a year, respectively [42]. MVC can effectively
reduce the influence of cloud, atmosphere, the sun height angle [43,44], and the study area was

https://search.earthdata.nasa.gov/
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extracted using the vector boundary of the Shaanxi province. Third, taking an interval of 0.01, the java
program language was used to obtain the maximum and minimum temperature corresponding to the
same NDVI. Then dry and wet edges were acquired from the scatter plots of the NDVI-Ts space.

The filed measured soil moisture, the precipitation, annual average temperature, and temperature
anomaly from 2000 to 2013 in the Shaanxi province (Figure 1a) were all obtained from the
meteorological station (http://data.cma.cn/).

3. Methodology

3.1. The Technical Route

Figure 2 shows the flowchart of constructing bi-parabolic NDVI-Ts space in this study. We first
derived yearly maximum NDVI and Ts images between 2000 to 2016 from MOD13A2 and MOD11A2,
respectively (see in Section 2). We then constructed scatter plots of NDVI-Ts space and re-examined
if NDVI-Ts space was shaped in bi-parabola in the Shaanxi province (see in Section 4.1.1). Then we
constructed TVDIc and compared it with TVX and TVDIt (see Section 5.1). We used filed measured
soil moisture in April 2013 to validate TVDIc, TVX, and TVDIt (see in Section 4.3). TVDIc was
used to evaluate the spatial and temporal evolution of drought from 2000 to 2016 in the study area
(see Section 4.1.2). In Sections 4.2 and 5.2, we quantitatively and accurately described drought
characteristics based on GSSIM and compared it with the change trend of drought based on the
linear regression analysis method. Finally, we analyzed the driving forces for drought variations
(see Section 5.3).
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Figure 2. The flow chart of constructing bi-parabolic NDVI-Ts space.
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3.2. TVDI in Bi-Parabolic NDVI-Ts Space

TVDI, which was acquired from the triangular NDVI-Ts space, was first developed by
Sandholt et al. (2002) [23].

TVDI =
Ts − Tsmin

Tsmax − Tsmin
, (1)

where
Tsmax = a1 + b1 ×NDVI
Tsmin = a2 + b2 ×NDVI

, (2)

where Ts is the remotely sensed surface temperature, Tsmin formed the wet edge and represents the
minimum surface temperature, and Tsmax formed the dry edge and represents the maximum surface
temperature. a1 and b1 are the linear fitting coefficient of the dry edge. a2 and b2 are the linear
fitting coefficient of the wet edge. A linear least squares estimation was carried out to estimate the
coefficients for the dry and wet edges and these coefficients can be obtained from scatter plots of the
NDVI-Ts space.

TVDI ranges from zero to one. The bigger TVDI indicates that Ts gets to the dry edge and the
drought gets worse. Conversely, the smaller TVDI demonstrates that Ts gets to the wet edge and the
drought eases.

However, Liu et al. (2015) found that the NDVI-Ts space was bi-parabolic and the dry or wet
edges were not linear (Figure 3), which can be expressed by Equation [32].

Tsmax = a1 ×NDVI2 + b1 ×NDVI + c1

Tsmin = a2 ×NDVI2 + b2 ×NDVI + c2
, (3)

where a1, b1, c1, a2, b2, and c2 define the dry and wet edges as the parabolic fit, which can be acquired
from scatter plots of the NDVI-Ts space.
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3.3. Gradient-Based Structural Similarity (GSSIM)

Based on the SSIM, Yang et al. (2006) proposed an improved image quality assessed method
called gradient-based structural similarity (GSSIM) basing on the edge information, which is the
most important image structure information [34]. GSSIM combines the information of luminance
comparison l(x, y), contrast comparison c(x, y), and gradient-based structure comparison g(x, y) in the
image, which is shown in the equation below.
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GSSIM(x, y) = [l(x, y)]α[c(x, y)]β[g(x, y)]γ (4)

where

l(x, y) =
2µxµy + c1

µ2
x+µ2

y+c1
(5)

c(x, y) =
2σxσy+c2

σ2
x+σ2

y+c2
(6)

g(x, y) =
2∑jΣiGx(i, j)Gy(i, j) + c3

∑jΣi[Gx(i, j)]2+∑jΣi
[
Gy(i, j)

]2
+c3

(7)

where µx and µy are the mean value of TVDI in two phases, respectively, which reflects the luminance
comparison information. σx and σy are standard deviation of TVDI in two phases, respectively, which
reflects the contrast comparison information. Gx(i, j) and Gy(i, j) represents the gradient value of the
pixel in the rowi and columnj of TVDI imageries in two phases, respectively. c1, c2, and c3 are small
constants that prevent the denominator from being zero, respectively, and c1 = (K1L)2, c2 = (K2L)2 and
c3 = c2/2 with K1, K2 ≤ 1 and L is the range of a gray level in the image. The parameter of α, β, and γ

are greater than zero. In this paper, α = β = γ = 1 and c1 = c2 = 0.0001 and c3 = 0.0005 [33]. The higher
the GSSIM value is, the more similar the TVDI value in two periods will be. This indicates that the
drought conditions are closer with TVDI in the former period and the soil moisture status will not
change much more.

3.4. Linear Regression Analysis

The linear regression analysis method can acquire regression slopes of all pixels based on a time
series of satellite data, which can describe the change trends of NDVI [39,40]. We replace the NDVI by
TVDI and the regression slopes can be obtained by

slope =
n×∑n

i=1 i× TVDIi −∑n
i=1 i×∑n

i=1 TVDIi

n×∑n
i=1 i2 − (∑n

i=1 i)2 (8)

where the slope is the regression slopes, TVDIi represents the TVDI image in a year, the parameter i is
the number of the year, and i = 1, 2, 3, 4, . . . 17.

3.5. Pearson Correlation Analysis

The Pearson correlation can assess the correlation between two parameters or images [45,46],
which is expressed below.

r =
N×∑ xiyi −∑ xi ∑ yi√

N×∑ x2
i − (∑ xi)

2 ×
√

N×∑ y2
i − (∑ yi)

2
(9)

where r is the Pearson correlation coefficient of two parameters, which ranges from −1 to 1. Higher
values correspond to a better coherence between the inter-compared data sets. xi represents the TVDI
image in a year and i is the same as in Equation (8). yi represents the annual average precipitation,
the annual average temperature, and temperature anomaly images, respectively, which can be acquired
by the inverse distance weighted method combined in GIS software.
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4. Results

4.1. Spatio-Temporal Dynamic Changes of Drought

4.1.1. Scatter Plot of NDVI-Ts Space

We obtained the scatter plots of NDVI-Ts space between 2000 to 2016 by the java program language
and the dry and wet edges fitting equations were defined by Excel. Figure 4 shows that the dry edge is
clearly parabolic and the wet edge is characterized as a downward parabola. It indicates that NDVI-Ts

space is roughly bi-parabolic. The coefficient of determination of most dry edges is high (R2 > 0.74)
and R2 of most wet-edges is above 0.50, which indicates that the second-order polynomial can describe
the trend of dry and wet edges.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 22 
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(n) 2013, (o) 2014, (p) 2015, (q) 2016.

4.1.2. Temporal and Spatial Evolution of Drought

Acquiring the fitting equation of dry and wet edges from Figure 4, TVDI images between 2000
to 2016 were obtained from Equation (1) and were mapped in GIS software. With an interval of 0.2,
drought was classified into five categories [32]: very wet, wet, no dry, dry, and very dry. Figure 5
and Table 1 show the spatial distribution of TVDI and the proportion of drought types in the Shaanxi
province between 2000 to 2016, respectively.
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(m) 2012, (n) 2013, (o) 2014, (p) 2015, (q) 2016.
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Table 1. The proportion of drought types in the Shaanxi province between 2000 to 2016.

Drought Types and Proportion (%)

Very Wet Wet No Dry Dry Very Dry Drought Affected Area

2000 1.31 12.01 43.32 35.75 7.19 42.94
2001 1.24 14.65 40.72 34.83 8.13 42.96
2002 0.66 13.16 56.52 24.27 5.05 29.32
2003 1.95 30.72 44.42 18.38 4.34 22.72
2004 1.15 13.65 53.03 26.78 5.07 31.84
2005 3.00 22.38 36.52 29.10 8.55 37.65
2006 1.66 30.65 35.94 25.83 5.55 31.38
2007 2.31 18.63 50.30 23.96 4.25 28.20
2008 2.20 29.94 47.53 15.62 4.29 19.91
2009 2.31 24.83 36.44 30.55 5.44 35.99
2010 3.35 22.80 36.02 33.08 4.58 37.66
2011 3.74 28.60 39.70 23.32 4.22 27.55
2012 2.42 28.90 37.55 27.37 3.37 30.75
2013 2.68 22.87 45.33 22.97 5.93 28.90
2014 1.95 28.69 52.42 14.66 1.85 16.50
2015 0.58 9.14 59.65 26.79 3.51 30.29
2016 1.28 22.22 48.56 24.25 3.28 27.54

In space, the drought in the Shaanxi province mainly occurred in the Shaanbei area, central
and eastern regions of the Guanzhong plain, and eastern parts of the Shaannan area. There was no
drought in most areas of Shaannan and southern and northern parts of the Guanzhong plain in the
past seventeen years.

(i) The proportion of drought affected areas in the Shaanxi province fluctuated between 16.50%
and 42.96% in the past 17 years and the mean value of proportion was 30.71%. The drought area was
the smallest in 2014, which was 16.50% and the drought area was up to 42.96% in 2001.

(ii) Drought area accounted for 42.94% in 2000, which was mainly concentrated in the Shaanbei
area, central and eastern parts of the Guanzhong plain, and some parts in the eastern region of
Shaannan area. The drought situation in 2001 was more severe than of the one in 2000. It accounted
for 42.96%, which mainly occurred in the Shaanbei area and the Guanzhong plain. In the following
three years, the drought conditions were significantly released in the Shaanbei area, but droughts were
distributed in the Yulin city and central parts of the Guanzhong plain, which accounted for 29.31%,
22.71%, and 31.84%, respectively. It aggravated in 2005, which was 37.65%. The drought was eased
year by year, which accounted for 31.38%, 28.20%, and 19.91%, respectively, between 2006 to 2008.
The drought was aggravated in the Shaanbei area the following two years, which were 35.99% and
37.66%, respectively. The drought condition eased in the Shaanbei area, which was more severe than
in the Guanzhong plain from 2011 to 2013. Drought eased in the whole province, which accounted
for 16.50% in 2014 and was the smallest drought in the past 17 years. In 2015, the wet area decreased
in Yan’an city and the Shaannan area and the area of the drought enlarged in Shaanbei, which was
30.29%. The wet area was increased and the drought conditions were slightly eased in the Shaanbei
area and the central parts of the Guanzhong plain in 2016, which accounted for 27.54%.

4.2. Quantitative Analysis of Spatial Distribution of Drought

Based on Equation (4), GSSIM imageries were obtained by Matlab software between two years
including 2000–2005, 2005–2011, 2011–2016 and 2000–2016 and mapped in GIS software. GSSIM was
classified into three categories: (i) mutation (0 < GSSIM ≤ 0.25) [33], which indicated that the value
of TVDI in two years has mutated and the drought status has changed significantly; (ii) Moderate
change (0.25 < GSSIM ≤ 0.65), which showed that the value of TVDI in two years has been altered and
drought conditions had changed moderately, (iii) Low change (0.65 < GSSIM ≤ 1), which indiated that
value of TVDI in two years are similar and the drought status is almost unchanged.
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Figure 6 shows that the distribution of the mutated area is similar in four periods. It is mainly
located in the north and east of Yulin city including both sides of the boundary between Yulin and
Yan’an cities, the middle and southern parts of Yan’an city, the northern and central parts of Weinan
city, both sides of the boundary between Hanzhong and Baoji cities, the southeast of Shangluo city.
The drought in these areas changes significantly. Figure 6 also indicates that the moderately changed
area surrounds the mutated area and the drought status changes moderately. However, the slightly
changed area surrounds the moderately changed area and the drought status is almost unchanged.Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 22 
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Taking GSSIM between 2008 and 2015 as an example, samples of mutation A, B, C, and D and
samples of moderate change E, F, and G were selected to analyze the variation of drought, respectively
(Figure 7). High-resolution images obtained from Google Earth™ in 2008 and 2015 combined with the
difference in the TVDI image between 2008 and 2015 were used to verify drought changes. Figure 8
demonstrates that the river changes into a barren area in mutated sample A and vegetation covered
sample B becomes the rural area. Figure 8 shows that farmland in the mutated sample C moves into
ditches and the vegetation coverage obviously increases in the mutated sample D. Combined with the
differences in the TVDI image between 2008 and 2015, the drought conditions in mutated samples
A and B were aggravated while it was significantly relieved in mutated samples C and D. Figure 8
shows that the coal yard enlarges from 2008 to 2015 in moderate change sample E and some vegetation
cover parts in moderate change sample F become the open coal mining area. A region of the open
coal mining area is covered with vegetation in the moderate change sample G (Figure 8). It indicated
that the underlies were moderately changed and the drought status was moderately aggravated in
moderate change samples E and F while it was moderately eased in moderate change sample G.
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To analyze the changes of GSSIM in different periods quantitatively, we obtained the area and
proportion of drought variation. Table 2 describes that the area of drought eased in the mutated area
and moderate change areas increased from 3.20%, 25.58% during 2000–2005 to 5.11%, 27.00% during
2005–2011 and then decreases to 2.68% and 15.77% during 2011–2016, respectively. We can see that the
area of drought aggravated in the moderate change region slightly decreases from 14.27% between
2000 to 2005 to 13.27% between 2005 to 2011 and increases to 24.15% between 2011 to 2016. Table 2
indicates that the area of drought aggravated in the mutated region slightly increases in these three
phases and more than half of Shaanxi province’s drought conditions has no obvious change in five
phases. Table 2 also shows that the area of drought relived is larger than that of aggravated between
2000–2005, 2005–2011, and 2000–2016 and the drought are relieved while the area of drought affected
is enlarged between 2008–2015 and 2011–2016, which coincide with the change of the mean value of
TVDI in these years (Table 3).

Table 2. The proportion of GSSIM in the Shaanxi province between 2000–2016 (%).

GSSIM
Times Drought Status 2000–2005 2005–2011 2011–2016 2008–2015 2000–2016

GSSIM ≤ 0.25
(mutation)

eased 3.20 5.11 2.68 1.34 3.53
aggravated 2.22 2.87 3.04 3.44 1.81

0.25~0.65
(moderate change)

eased 25.58 27.00 15.77 7.86 28.45
aggravated 14.27 13.29

GSSIM > 0.65
(low change) changed a little 54.73 51.73 54.37 54.69 54.44

Table 3. The mean value of TVDI in the Shaanxi province.

2000 2005 2008 2011 2015 2016

0.5708 0.5372 0.4793 0.4910 0.5577 0.5117

4.3. Relations between Filed Measured Soil Moisture, TVDI, and TVX

Soil moisture (SM) can be used as a direct indicator for the drought status. We applied filed
measured soil moisture to validate the performance of TVDIc compared with TVX and TVDIt.
Soil moisture at 10 cm depth was available from 26 agricultural meteorology-observing stations
across the whole region for the 8, 18, and 28 days of each month. However, it is often difficult to
get cloud-free images on these days and the vegetation over semi-arid regions, which needs roughly
5 days to respond to a soil moisture change [47]. The reflectance of red and NIR band in 8-day gridded
level from MOD09Q1 and Ts from MOD11A2 in April 2013 were applied to acquire TVDIc, TVDIt,
and TVX, respectively. Figure 9 indicates that there are significant negative correlations (reliable at
1% significance level) between TVDIc, TVDIt, and 10-cm-depth soil moisture during three periods
in April 2013, respectively. The coefficient of determination R2 = 0.37~0.43 between TVDIc and
10-cm-depth soil moisture is obviously higher than TVDIt. In contrast, the TVX is also negatively
related to soil moisture with R2 = 0.005~0.0625, which is obviously lower than TVDIc and TVDIt

(Figure 9c,f,i). Although TVX is very simple and integrates both the reflective and thermal information
of remote sensing data, it is easily influenced by the variation of land cover [48], atmospheric impacts,
cloud and sensor drift, etc. [49].
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Figure 9. Comparison of TVDIc, TVDIt, and TVX with 10 cm soil moisture. (a) TVDIc against
10 cm soil moisture during 7 April 2013–14 April 2013, (b) TVDIt against 10 cm soil moisture
during 7 April 2013–14 April 2013, (c) TVX against 10 cm soil moisture during 7 April 2013–14 April
2013, (d) TVDIc against 10 cm soil moisture during 15 April 2013–22 April 2013, (e) TVDIt against
10 cm soil moisture during 15 April 2013–22 April 2013, (f) TVX against 10 cm soil moisture during
15 April 2013–22 April 2013, (g) TVDIc against 10 cm soil moisture during 23 April 2013–30 April 2013,
(h) TVDIt against 10 cm soil moisture during 23 April 2013–30 April 2013, (i) TVX against 10 cm soil
moisture during 23 April 2013–30 April 2013.

5. Discussion

5.1. Comparison between the TVDIc, TVDIt and TVX

5.1.1. Scatter Plots of Bi-Parabolic and Triangular NDVI-Ts Space

It shows that the NDVI-Ts space is bi-parabolic during three periods in April 2013 (Figure 10a,c,e),
the coefficient of determination R2 > 0.80 in the dry edge, and R2 > 0.38 in the wet edge. In contrast,
NDVI-Ts space becomes triangular during three periods in April 2013 when parts of NDVI < 0.15
are omitted from the bi-parabolic NDVI-Ts space (Figure 10b,d,f), with R2 > 0.85 in the dry edge and
R2 > 0.21 in the wet edge. Although R2 in the dry edge in triangular NDVI-Ts space is higher than that
of bi-parabolic NDVI-Ts space, R2 between TVDIc and 10 cm soil moisture during these three periods
is obviously higher than that of TVDIt and TVX (Figure 9). The results show that the bi-parabolic
NDVI-Ts space is better than the triangular NDVI-Ts space for monitoring drought conditions and
TVDIc is better than TVDIt and TVX for assessing 10-cm-depth soil moisture. The NDVI-Ts space
should include the area with NDVI < 0.15, which should not be omitted [32]. Figure 3 shows that
the ability of evaporation is strengthened from water to the bare surface and the partial vegetation
area. Therefore, there is a positive linear relationship between NDVI and Ts when NDVI < 0.15 and a
negative linear relationship between NDVI and Ts when NDVI > 0.15 [32].
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Figure 10. Comparison of scatter plots of bi-parabolic and triangular NDVI-Ts space. (a) Scatter
plots of bi-parabolic NDVI-Ts space during 7 April 2013–14 April 2013, (b) scatter plots of triangular
NDVI-Ts space during 7 April 2013–14 April 2013, (c) scatter plots of bi-parabolic NDVI-Ts space
during 15 April 2013–22 April 2013, (d) acatter plots of triangular NDVI-Ts space during 15 April
2013–22 April 2013, (e) scatter plots of bi-parabolic NDVI-Ts space during 23 April 2013–30 April 2013,
and (f) scatter plots of triangular NDVI-Ts space during 23 April 2013–30 April 2013.

The main hypothesis of Ts/NDVI approaches is that atmospheric conditions (including elevation
effects) are relatively constant or uniform over the whole image [50,51]. In the triangular NDVI-Ts space,
the dry and wet edges are derived from scatter plots of NDVI and Ts images in the same time collected
in a given spatial domain [51]. TVDIc is based on a pixel by pixel bi-parabolic NDVI-Ts space, which is
obtained by 8-day (yearly) composite NDVI and Ts images. The proposed bi-parabolic NDVI-Ts space
mixes time points together from periods with potentially different atmospheric conditions. In this
space, the “time” is the data domain and a single pixel is the spatial domain.

As previously discussed, we can see that combining data from different time periods together with
potentially different atmospheric conditions goes against the theoretical basis of the Ts/NDVI approach,
but that doing so appears to be empirically valid based on the results in Figure 10. The potential reasons
may be that the air temperature was relatively constant in theses 8-day periods when atmospheric
conditions are likely to be relatively stable. We used MVC to composite 46 scenes 8-day Ts images into
one image in a year. The value of every pixel in yearly composite NDVI and Ts images is the maximum
value of these 12 scenes monthly NDVI and 46 scenes 8-day Ts images, respectively, and the maximum
NDVI and air temperature in the Shaanxi province often occurs in July/August in a particular year.
In this case, the atmospheric conditions are likely to be also relatively stable. In the research of
Liu et al. (2017), Cao et al. (2017), and Khan et al. (2018), they also used MVC to composite 8-day Ts

and 16-day NDVI images into monthly or yearly images and it obtained dry and wet edges from time
series MDOIS data [2,52,53].
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5.1.2. Dryness Map of TVDIc, TVDIt, and TVX

Figure 11 shows drought conditions during three periods in April 2013 from TVDIc, TVDIt,
and TVX, respectively. Drought status assessed by TVDIc was very similar to that of TVDIt. However,
there were some differences in the Shaanbei area where drought conditions were more severe by TVDIc

than TVDIt. Drought conditions monitored by TVX were very different from TVDIc and TVDIt, which
was more severe in the Shaanbei area and the soil water content was higher in the Shaannan area.
As discussed above, TVX is often influenced by other factors, which may cause more disturbances to
the relationship between the soil water condition and TVX. Figure 11 also indicates that the drought
was aggravated in the Yulin city and most areas of Shaannan from 7 April, 2013 to 14 April, 2013 to
15 April, 2013 to 22 April, 2013, which was eased in most areas of Shaannan between 23 April, 2013 to
30 April, 2013.
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Figure 11. Comparison of drought conditions from TVDIc, TVDIt, and TVX, respectively. (a) Drought
conditions from TVDIc between 7 April 2013–14 April 2013. (b) Drought conditions from TVDIt

between 7 April 2013–14 April 2013. (c) Drought conditions from TVX between 7 April 2013–14 April
2013. (d) Drought conditions from TVDIc between 15 April 2013–22 April 2013. (e) Drought conditions
from TVDIt between 15 April 2013–22 April 2013. (f) Drought conditions from TVX between 15 April
2013–22 April 2013. (g) TVDIc between 23 April, 2013–30 April 2013. (h) Drought conditions from
TVDIt between 23 April 2013–30 April 2013. (i) Drought conditions from TVX between 23 April
2013–30 April 2013.
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5.2. Comparison between the GSSIM and Linear Regression Analysis

The regression slopes of all pixel locations for TVDI changes trends during 2000–2016 (reliable
at 5% significance level), which were derived from Equation (8) and, therefore, categorized into
“drought eased not significantly,” “drought eased significantly,” “drought aggravated significantly,”
and “drought aggravated not significantly” and then mapped accordingly. Figure 12b demonstrates
that drought conditions accounting for 69.31% are not significantly alleviated, which is mainly
distributed in most areas of Shaannan, southern and northern parts of Guanzhong plain, northern and
southern area of Yulin city, and southern, northern, and central parts of Yan’an city. In other words,
the drought conditions in these areas have not changed much more between 2000 to 2016. At the same
time, drought conditions have been significantly alleviated, which accounted for 14.45% and were
mainly located in northern parts of Yulin city, central parts of Yan’an city, central area of Guanzhong
plain, and some parts in Shaannan. Figure 12a and Table 2 show that the area of drought eased in
the mutation area accounts for 3.53%, which is lower than that of linear regression slope and the
distribution is similar to the regression slope. The drought is not significantly aggravated in southern
and northwestern parts of the Yulin city, the northern and southern part of the Guanzhong plain,
and the southern parts of Shannan, which accounts for 15.35%. The drought, significantly aggravated
in theses area, only accounts for 0.88% while the drought conditions aggravated area accounts for
1.81% by GSSIM. There are some apparent differences between GSSIM and the linear regression slope
in northern regions of Shaanbei area and some parts of Shaannan area. It should be noted that only
two TVDI images were used to obtain GSSIM while 17 scenes of TVDI were used to acquire the linear
regression slope. This may lead to some uncertainties in the results.
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5.3. The Reasons for Drought Status Variations

The Pearson correlation coefficients of all pixel locations for assessing the relationship between
TVDI and meteorological factors from 2000 to 2013 (reliable at 10% significance level) were derived from
Equation (9) and, therefore, categorized into “negative significant,” “negative not significant,” “positive
significant,” and “positive not significant” and then mapping accordingly (Figure 13). Figure 13a
shows that there is a significant negative correlation between TVDI and annual average precipitation
in most parts of Yulin city, central parts of Yan’an city, north of Ankang and Weinan cities, eastern
area of Shangluo city, western and northern parts of Baoji area, which accounted for 23.74%. It is
indicated that the drought in these areas is mainly affected by annual rainfall. When the rainfall
increases, TVDI decreases and the drought can be relieved. The correlation between TVDI and annual
average precipitation in the rest area of the Shaanxi province has not passed the significance test, which
indicates that annual precipitation is not a dominant factor for drought variations in these regions.

It describes in Figure 13b that a significant positive relationship exists between the annual average
temperature and TVDI in central and southern parts of Baoji city and west and northwest areas of
Hanzhong city, which accounts for 8.21%. It is expressed that drought conditions in these areas are
mainly influenced by the annual average temperature. As the temperature increases, TVDI increases
and the drought is aggravated. There is a significant negative relationship between the annual
average temperature and TVDI in central and southern parts of Yan’an city, north of Weinan city, most
area of Shangluo city and east of Xi’an city, which accounts for 14.11%. It illustrates that drought
in these regions is mainly influenced by the annual average temperature. When the temperature
increases, TVDI decreases and the drought eases. Figure 13c demonstrates that there is a positive
correlation between TVDI and temperature anomaly, which accounts for 58.70% while 35.62% of the
whole province are negatively related with a temperature anomaly. However, the Person correlation
coefficient is not reliable at a 10% significance level and indicates that the temperature is not the main
factor for the change of drought status in the Shaanxi province.

As discussed in Section 4.2, the changes of drought were not only influenced by precipitation and
temperature, but the change of underlies, the vegetation improvement, and the enlargement of open
mining and buildings and irrigation.
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6. Conclusions

MODIS NDVI and Ts time series data were used to reexamine the time-domain bi-parabolic
NDVI-Ts space when the area was vegetated from low biomass to high biomass and compared with
the triangular NDVI-Ts space and TVX. Then the GSSIM was used to quantitatively evaluate the
variation of drought in two periods. Dry and wet edges in this research exhibited a parabolic shape
again in a scatter plot of Ts and NDVI, which was linear in the triangular NDVI-Ts space. TVDIc,
TVDIt, and TVX were compared with 10-cm depth relative soil moisture. It was shown that TVDIc was
better than TVDIt, which were all apparently better than TVX in revealing 10-cm depth soil moisture.
The bi-parabolic NDVI-Ts space is the complement and enlargement of the triangular NDVI-Ts space.
In the past 17 years, there was a slightly fluctuating trend of the drought status and the results of
GSSIM indicated that the drought in more than half of the Shaanxi province changed a little and
was relatively stable. The change of meteorological factors and underlies are the reasons for drought
variations. We will do more work to examine whether the NDVI-Ts space with “time” and a single
pixel spatial domain is bi-parabolic with other study areas and verify if the atmospheric conditions
remain constant with yearly composite NDVI-Ts space in the future.
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