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Abstract: Millimeter-wave interferometric synthetic aperture radiometer (InSAR) can provide
high-resolution observations for many applications by using small antennas to achieve very large
synthetic aperture. However, reconstruction of a millimeter-wave InSAR image has been proven
to be an ill-posed inverse problem that degrades the performance of InSAR imaging. In this paper,
a novel millimeter-wave InSAR image reconstruction approach, referred to as InSAR-TVMC, by total
variation (TV) regularized matrix completion (MC) in two-dimensional data space, is proposed.
Based on the a priori knowledge that natural millimeter-wave images statistically hold the low-rank
property, the proposed approach represents the object images as low-rank matrices and formulates the
data acquisition of InSAR in two-dimensional data space directly to undersample visibility function
samples. Subsequently, using the undersampled visibility function samples, the optimal solution of
the InSAR image reconstruction problem is obtained by simultaneously adopting MC techniques and
TV regularization. Experimental results on simulated and real millimeter-wave InSAR image data
demonstrate the effectiveness and the significant improvement of the reconstruction performance of
the proposed InSAR-TVMC approach over conventional and one-dimensional sparse InSAR image
reconstruction approaches.

Keywords: millimeter-wave; interferometric synthetic aperture radiometer; image reconstruction;
total variation; matrix completion; undersampling

1. Introduction

Millimeter-wave interferometric synthetic aperture radiometer (InSAR) is a powerful observation
system with high-resolution for many applications across the geographical and life sciences, including
remote sensing, atmosphere monitoring, weather and climate forecast, anti-terrorist and security
check [1–4]. It outperforms millimeter-wave real aperture radiometry mainly due to the advantages of
high-resolution without very large and massive real aperture antennas and a large field of view without
mechanical scanning. Sparsely arranging small antennas, millimeter-wave InSAR synthesizes a larger
antenna aperture to achieve spatial high-resolution by acquiring cross-correlation value samples,
namely the visibility function [5], between the signals received from pairs of these small antennas.

The imaging principle of millimeter-wave InSAR is based on the Fourier transform between
the acquired visibility function and modified millimeter-wave brightness temperature distribution
of the imaged scene; thus, FFT method is the basic approach to solve the millimeter-wave InSAR
image reconstruction problem [1]. However, this reconstruction has been proven to be an ill-posed
inverse problem, for which it is hard to obtain a unique and stable solution and which suffers from
system noise and error interference. Furthermore, the high-resolution requirement of millimeter-wave
InSAR greatly increases system and calibration complexity, data acquisition time, data processing and
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calculation amount. These difficulties in InSAR image reconstruction degrade performance and limit
the application of InSAR in some scenarios.

Over the past few decades, iterative reconstruction methods have emerged as highly effective
approaches to solve ill-posed inverse problems in imaging including denoising, deconvolution
and interpolation [6–8]. These methods produce successful outcomes in millimeter-wave InSAR
image reconstruction [9–11], but iterative reconstruction methods are still challenging to deploy in
practice due to the high computational cost and time-consumption. These methods are limited by
the Nyquist sampling theorem and have no ability to reduce data acquisition amount. In recent
years, based on the a priori knowledge that millimeter-wave images are one-dimensional sparse after
being formulated as vectors, compressive sensing (CS) techniques [12–14] have been successfully
applied to InSAR image reconstruction, which significantly reduces the required data measurements
and systematic complexity and maintains the advantages of high-resolution in the meantime [15–18].
Millimeter-wave InSAR reconstruction using CS techniques formulates the imaged scene as sparse
vectors and uses sparse signal recovery methods to reconstruct the millimeter-wave brightness
temperature distribution in a one-dimensional data space. However, the original data space of
the InSAR imaged scene and final brightness temperature distribution output of InSAR are both
two-dimensional. The performance of CS methods degrades while using one-dimensional signal
recovery methods in a large-scale two-dimensional data space, ignoring the high-dimensional a priori
knowledge and signal characteristics of millimeter-wave images.

More recently, matrix completion (MC) theory [19–21] has attracted much attention along with
the rapid development of high-dimensional sparse representation. MC theory is of interest in cases
for how to recover an unknown matrix when only a subset of entries of the unknown matrix is
observed, and even these observed entries are corrupted by noise. Just as the l0 norm is the definition
of a vector’s sparsity in one-dimensional sparse representation, the rank norm has been proven to be
the sparsity of the matrix in two-dimensional sparse representation. Then, for the above problem, if the
unknown matrix holds the low-rank property and the observation satisfies some certain conditions,
the MC problem can be solved exactly by solving a rank norm optimization problem based on the
subset consisting of observed entries or corrupted entries. Owing to the advantages of MC theory, it has
been adopted in many radar scenarios, like multiple-input and multiple-output (MIMO) radar [22] and
synthetic aperture radar (SAR) [23]. In those radar scenarios, the low-rank condition is guaranteed by
applying matched filter methods or transform domain methods on the receiving echo signal, which is
certain and coherent along a large transmission distance.

Due to the important a priori knowledge that the natural millimeter-wave images statistically hold
the low-rank property and the interferometric correlation operation of InSAR is a linear transformation
operation, millimeter-wave InSAR images could be reconstructed based on a part of the visibility
function samples via MC techniques. In this paper, a novel lower complexity millimeter-wave
InSAR image reconstruction approach by total variation (TV) regularized matrix completion in
two-dimensional data space is proposed, referred to as InSAR-TVMC. TV regularization is adopted
here as it is a very powerful method in image processing to preserve edge information, explore the
spatial piecewise smooth structure and further enhance the suppression ability of noise and error
interference [24–27]. InSAR-TVMC solves the InSAR image reconstruction problem by simultaneously
using MC techniques and TV regularization, based only on undersampled visibility function samples.
Importantly, InSAR-TVMC achieves the advantages of InSAR using CS techniques directly in the
matrix space by further using two-dimensional signal characteristics and a priori knowledge of
millimeter-wave InSAR images. Experimental results show significant improvements of reconstruction
performance over conventional and CS-based InSAR image reconstruction methods.

The rest of this paper is structured as follows. Section 2 describes the basic millimeter-wave InSAR
imaging principle. The proposed InSAR-TVMC imaging approach is given in Section 3. Experimental
results are presented in Section 4, and conclusions are given in Section 5.
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2. Millimeter-Wave InSAR Imaging Principle

The millimeter-wave InSAR imaging system could obtain the complex cross-correlation value,
namely visibility function samples, between small antennas receiving radiation from the imaged scene.
The visibility function could be expressed as:

V(u, v) =
∫∫

ξ2+η2≤1

T(ξ, η)e−j2π(uξ+vη)dξdη (1)

where (ξ, η) are the direction cosine coordinates, (u, v) are spatial frequency coordinates (baselines)
and TM(ξ, η) is the modified brightness temperature defined as:

TM(ξ, η) =

√
DcDl Fc(ξ, η)F∗l (ξ, η)

4π
√

1− ξ2 − η2
r
(
−uξ + vη

f0

)
TB(ξ, η) (2)

where TB(ξ, η) is the brightness temperature; Dc and Dl are the maximum antenna directivities
associated with the target; Fc(ξ, η) and Fl(ξ, η) are the normalized antenna voltage patterns of the
elements in the array, which should be identical for all the elements in the ideal case; rc,l(·) is the fringe
washing function accounting for the spatial decorrelation effects of the receiver’s frequency responses,
which is nearly equal to one for narrow bandwidth receivers; f0 is the center frequency.

In the ideal case, the visibility function is the Fourier transform of the modified brightness
temperature image. Therefore, based on the antenna array, such as “T” shaped, “Y” shaped, circle
shaped or just changing the baseline (relative position between two antennas), the InSAR imaging
system could obtain V(u, v) and then reconstruct high-resolution target brightness temperature images
TM(ξ, η) via algorithms like the fast Fourier transformation (FFT) approach or the G matrix inversion
approach [28].

Considering errors in correlation observations and the receiving noise of InSAR, according to
Equation (1), the basic signal model of InSAR could be expressed as:

V(u, v) = F [TM(ξ, η)] + e (3)

where e represents the multiplicative errors and the receiving noise. The imaging method that directly
takes the inverse Fourier transform on V(u, v) always needs extra strict calibration, or its performance
degrades with the existence of e. To minimize the interference of error and noise in InSAR imaging,
an alternative method replaces the Fourier transform relationship in Equation (3) by the G matrix
model. However, the visibility function and InSAR images have to be formulated as vectors in the G
matrix model. Based on the G matrix model, Equation (3) could be rewritten in matrix form:

VM×1 = GM×NTN×1 + EM×1 (4)

where GM×N is the generalized impact function operator. Based on Equation (4), to obtain TN×1 in
the non-aliasing field of view, the lowest sampling frequency is required according to the Nyquist
sampling theorem, which means N > 2M. Therefore, the matrix Equation (4) is an underdetermined
equation. Traditionally, an effective method is using the regularization method to reconstruct TN×1

by using all the data of VM×1, considering the interference of error and noise. In this case, the raw
two-dimensional InSAR data are formulated as a vector; consequently, the final brightness temperature
distribution output is forced to be represented in the one-dimensional data space based on the G matrix
model. This limits the use of some two-dimensional constraint conditions of the regularization method,
which are suitable for two-dimensional images and could significantly improve image quality.

CS techniques utilize the one-dimensional sparsity of millimeter-wave InSAR images and consider
the vector TN×1 to be the l0 norm sparse or sparse in a basis domain. Using the sparse representation
and recovery methods, InSAR using CS techniques could maintain the advantages of high-resolution
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and meanwhile reduce the data measurements by only using part of the visibility function samples.
A typical signal model of CS-based InSAR could be expressed as:

min
∥∥T′
∥∥

1 s.t.
∧
V=

∧
Φ GΨT′ (5)

where
∧
V is the part data of VM×1 and T′ is the sparse vector of TN×1 in the sparse basis matrix Ψ.

However, CS-based InSAR is still limited by the one-dimensional imaging model. It formulates the
two-dimensional InSAR images as vectors and completes the reconstruction in one-dimensional data
space. The output of InSAR is resized to the image in the last step, which means CS-based InSAR
could not use high-dimensional signal characteristics and a priori knowledge.

3. InSAR-TVMC Imaging Approach

This section provides a general overview of the MC theory and presents the signal model of the
proposed InSAR-TVMC, then the specific recovery method is given.

3.1. Principles of MC

Consider the problem of recovering a low-rank matrix M ∈ Cm×n based on partial entries
observed, if the unknown matrix M holds the low-rank property and the observation is sufficiently
random; M could be recovered by solving a rank norm optimization:

min rank(X) s.t. PΩ(M) = PΩ(X) (6)

where PΩ(·) is observation projection operator, Ω is the corresponding subset of the entries and X is
the unknown variable. However, the observed results are always corrupted by noise in practice; in this
case, the recovery of M is completed by solving the following optimization problem:

min rank(X) s.t. ‖PΩ(M)− PΩ(X)‖2
F < ε (7)

where ε is a parameter related to the observation noise variance σ2.
As the rank norm of a matrix is non-convex and discontinuous, the low-rank recoveries of

Equations (6) and (7) are NP-hard problems, which are hard to solve.
In order to overcome this difficulty, a common method is to use the approximate convex relaxation.

For example, in CS theory (one-dimensional vector sparse representation), the l0 norm is convex and
discontinuous, which is approximately relaxed to its most close convex functional l1 norm to solve
the optimization problem. In the two-dimensional matrix sparse representation theory, the nuclear
norm (sum of all the singular values) is the nearest convex relaxation of the rank norm [29]. Therefore,
the above low-rank recovery of the Equation (7) could be relaxed to the following nuclear norm
optimization based on reasonable convex relaxation approximation:

min ‖X‖∗ s.t. ‖PΩ(M)− PΩ(X)‖2
F < ε (8)

where ‖·‖∗ denotes the nuclear norm. It has been proven that if the MC problem meets the
condition of incoherence and the number of observed entries satisfies the probabilistic bound,
the original low-rank recovery problem could be solved by nuclear norm relaxation with a high
probability. Since the observation projection operator PΩ(·) could be simply treated as a linear
mapping operator, Equation (8) could be rewritten as a nuclear norm optimization problem of the
mapping matrix:

min ‖X‖∗ s.t. ‖A(X)− b‖2
F < ε (9)

where X ∈ Cm×n is the decision variable, b ∈ Cp×q is the mapping result and A(·) : Cm×n → Cp×q

denotes the linear mapping operator.
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3.2. Signal Model of InSAR-TVMC

The millimeter-wave brightness temperature image is a kind of natural image that has the
low-rank property as a priori knowledge, and the data acquisition process of InSAR imaging is the
mapping process from millimeter-wave brightness temperature image T ∈ Cm×n to visibility function
V ∈ Cp×q based on the Fourier transform operator F (·); therefore, according to Equations (3) and (9),
the signal model of millimeter-wave InSAR using MC techniques is proposed:

min ‖T‖∗ s.t. ‖F (T)−V‖2
F < ε (10)

where millimeter-wave bright temperature image T ∈ Cm×n is the decision variable, visibility function
V ∈ Cp×q is the mapping result and ε denotes the parameter related to the level of the observation
error and the receiving noise of InSAR.

Using completely random selection of visibility function samples to realize random
undersampling and based on the undersampled visibility function data, Equation (10) could be
rewritten as:

min ‖T‖∗ s.t.
∥∥∥∥F (T)− ∧V∥∥∥∥2

F
< ε (11)

where
∧
V is the undersampled visibility function data used in the recovery.

As the Fourier transform operator F (·) is linear,
∧
V and T are both two-dimensional data,

Equation (11) covers convex formulations and the decision variable T is a matrix rather than a vector,
InSAR imaging will be completed in the two-dimensional data space, which demands much lower
computational and memory cost.

Similar to the traditional one-dimensional InSAR imaging method, the solution of Equation (11)
could be obtained by regularization methods. The signal characteristics and a priori knowledge about
the real solutions are always used as constraint conditions in regularization methods. Therefore,
considering the nuclear norm as a kind of constraint condition, the regularization solution model of
Equation (11) can be expressed as:

min
T

L(T) =
∥∥∥∥F (T)− ∧V∥∥∥∥2

F
+ λ‖T‖∗ (12)

where the nuclear norm item ‖T‖∗ is the constraint condition and λ is the regularization parameter.
In this two-dimensional regularization imaging model, we can also employ another kind of

two-dimensional regularization constraint condition. In image processing, total variation (TV) norm
minimization of the image is subjected to a constraint on image fidelity to observed data, which could
help to preserve edge information, explore the spatial piecewise smooth structure and further enhance
the suppression ability of error and noise interference. Here, we use the anisotropic TV norm [24] as
an additional constraint to the nuclear norm, which is defined as:

TV(T) =
m−1
∑

i=1

n−1
∑

j=1

{
|Ti,j − Ti+1,j|+ |Ti,j − Ti,j+1|

}
+

m−1
∑

i=1
|Ti,n − Ti+1,n|+

n−1
∑

j=1
|Tm,j − Tm,j+1|

(13)

Therefore, the TV norm-based InSAR regularization imaging model is expressed as:

min
T

L(T) =
∥∥∥∥F (T)− ∧V∥∥∥∥2

F
+ λ‖T‖TV (14)
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In this paper, we simultaneously use nuclear norm and TV norm regularization to establish a new
functional constraint condition; the proposed InSAR-TVMC regularization model is defined as follows:

min
T

J(T) =
1
2

∥∥∥∥F (T)− ∧V∥∥∥∥2

F
+ λ1‖T‖∗ + λ2‖T‖TV (15)

The nuclear norm regularization considers the global information of the matrix sequence, while
TV norm regularization encourages each matrix to be locally consistent. The proposed InSAR-TVMC
regularization model (15) combines both types of a priori knowledge by exploiting two-dimensional
sparsity and local signal characteristics to achieve more robust performance.

3.3. Recovery Method of InSAR-TVMC

In the traditional way, all the data of InSAR are processed in a one-dimensional vector data space
based on the G matrix model. To solve the proposed InSAR-TVMC regularization problem directly
in the two-dimensional matrix data space, a new two-dimensional imaging model of InSAR [30] is
adopted in this paper.

Inspired by the generalized impact function operator used in the G matrix model, we use
generalized impact function matrices D1 and D2 in a rectangular field of view formed by a rectangular
antenna array configuration, such as “T” shaped, “U” shaped and “L” shaped. The pixel rules of the
millimeter-wave bright image TN×N are distributed in the standard two-dimensional rectangular grid,
which can be rewritten as the following two-dimensional matrix form:

VC×L = D1C×NTN×ND2N×L (16)

where the visibility function VC×L is also distributed in the two-dimensional rectangular grid to
form the matrix directly, its element Vc×l is the visibility function sample value between the antennas
(antenna#c and antenna#l) in different locations. It should be noted that for visibility function V
distributed in hexagon and circular grids formed by “Y” shaped and circular shaped antenna array
configurations, the new two-dimensional imaging model cannot be used for them directly.

The new two-dimensional imaging model (16) represents the Fourier transform operator F (·)
as a two-dimensional linear transformation directly in matrix form; therefore, Equation (15) could be
rewritten as:

min
T

J(T) =
1
2

∥∥∥∥D1 · T ·D2−
∧
V
∥∥∥∥2

F
+ λ1‖T‖∗ + λ2‖T‖TV (17)

Even though TV and nuclear norm minimization are both convex functions, the joint TV and
nuclear norm minimization (17) is still very hard to solve as TV and the nuclear norm are non-separated
and non-smooth. Inspired by the method [31] of solving TV regularization via its dual form, we solve
a primal-dual form of the InSAR-TVMC regularization problem (17) instead of directly solving the
original problem. Using the primal-dual form of the total variation norm by the Legendre–Fenchel
transformation, the original problem (17) could be converted as:

min
T

max
Y

1
2

∥∥∥∥D1 · T ·D2−
∧
V
∥∥∥∥2

F
+ λ1‖T‖∗ + λ2<(< ∇T, Y >)− IB∞(Y) (18)

where Y is the dual variable and <(·) is the real part operator, while IB∞(Y) is the indicator function
of the l∞ unit norm ball defined as:

IB∞(Y) =

{
0 ‖Y‖ ≤ 1

+∞ otherwise
(19)
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Then, the min-max problem (18) can be solved by a splitting scheme as:

Tn+1 = arg min 1
2 ‖T− Tn‖2

F +
t1
2

∥∥∥∥D1 · T ·D2−
∧
V
∥∥∥∥2

F
+t1λ1‖T‖∗ + t1λ2<(< ∇T, Yn >)

(20)

Yn+1 = arg min
1
2
‖Y− Yn‖2

F − t2λ2<(< ∇(2Tn+1 − Tn), Y >) + IB∞(Y) (21)

where Tn and Yn are the primal and dual variables in the n-th iteration, respectively; t1 and t2 denote
the corresponding iteration step sizes. To simplify Equation (20), a convex optimization using the
gradient iterative solver is adopted by the InSAR-TVMC approach to approximate the least squares
term [32]. Here, an auxiliary function f (T) is defined as:

f (T) =
1
2

∥∥∥∥D1 · T ·D2−
∧
V
∥∥∥∥2

F
(22)

Obviously, f (T) is convex and continuously differentiable with a smooth Lipschitz gradient, then
we have:

∇ f (T) = D1T(D1 · T ·D2−
∧
V)D2T (23)

Based on Equation (23), the Lipschitz constant is given by L = λmax(D1T · D1 · D2 · D2T).
By extending this gradient updating mechanism to Equation (20), we obtain:

Tn+1 = arg min 1
2 ‖T− Tn‖2

F + t1λ1‖T‖∗ + t1λ2<(< ∇T, Yn >)
t1
2∇ f (Tn) + t1L

2 ‖T− Tn‖2
F + t1<(< ∇ f (Tn), T− Tn >)

(24)

By neglecting constant terms, Equation (24) can be written as:

Tn+1 = arg min 1
2

∥∥∥T− (Tn − t1
1+t1L∇ f (Tn)

∥∥∥2

F
+ t1λ2

1+t1L<(< ∇T, Yn >)

+ t1λ1
1+t1L‖T‖∗

(25)

With the existence of ∇T, the closed-form solution of Equation (25) is still unclear. To continue
simplifying the problem to get a simple nuclear norm regularization form, an adjoint operator of the
difference operator is introduced here. To describe the processing, we need to define the following items:

Define linear operator LT that maps matrix pairs (p, q) to an m-by-n matrix as:

(LT(p, q))i,j = pi,j − pi−1,j + qi,j − qi,j−1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n (26)

where p ∈ Cm−1×n, q ∈ Cm×n−1 and p0,j = pm,j = qi,0 = qi,n.
The adjoint of the operator LT , denoted by L, is a linear map from an m-by-n matrix T to a matrix

pair (p, q) and is defined by:
L(T) = (p, q) (27)

where: {
pi,j = Ti,j − Ti+1,j for 1 ≤ i ≤ m− 1, 1 ≤ j ≤ n
qi,j = Ti,j − Ti,j+1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n− 1

(28)

Based on the definition of the adjoint of operator L and the difference operator, the linear operator
LT satisfies:

< ∇T, Y > = < T,LT(Y) > (29)
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Therefore, the dual variable Y is constructed by the matrix pair (p, q), where:

(LT(Y))i,j = (LT(p, q))i,j = pi,j − pi−1,j + qi,j − qi,j−1 (30)

Based on Equations (29) and (30), we could simplify Equation (25) to the nuclear norm
minimization problem:

Tn+1 = arg min
1
2
‖T− Tn

c ‖
2
F +

t1λ1

1 + t1L
‖T‖∗ (31)

where:

Tn
c = Tn − t1

1 + t1L
∇ f (Tn)− t1

1 + t1L
LT(Yn) (32)

As the nuclear norm minimization is a convex optimization problem and has the closed-form
solution, we could solve it by using the singular value thresholding (SVT) algorithm [33], which is
simply expressed as:

Sτ(M) = arg min
X
{1

2
‖X−M‖2

F + τ‖X‖∗} (33)

where Sτ(·) = diag(max (σi − τ, 0)1≤i≤r) is the singular value thresholding operator. The SVT
algorithm is a simple first-order iteration method, and the computational cost is low. Furthermore,
all the data processing of the SVT algorithm is completed in matrix form, and the required storage
space is minimal during every iteration. The specific SVT iteration algorithm is expressed as follows:
for fixed parameter τ = t1λ1

1+t1L ≥ 0, we have:

Tn+1 = Sτ(Tn
c ) (34)

Then, we consider the Y subproblem in Equation (21):

Yn+1 = arg min
1
2
‖Y− Yn‖2

F − t2λ2<(< ∇(2Tn+1 − Tn), Y >) + IB∞(Y) (35)

After simplification, it becomes:

Yn+1 = arg min
1
2
‖Y− Yn

c ‖
2
F + IB∞(Y) (36)

where:
Yn

c = Yn + t2λ2∇(2Tn+1 − Tn) (37)

The solution of Equation (36) can be obtained by the Euclidean projection of Yn
c onto a l∞ unit

norm ball, which can be evaluated by:

Yn+1 = sgn(Yn
c ) ·min(Yn

c , 1) (38)

where sgn(·) is the sign operator.
Now, the T and Y subproblems have been solved. The proposed InSAR-TVMC approach is

summarized in Table 1.
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Table 1. InSAR-total variation regularized matrix completion (TVMC) imaging approach.

Input: D1, D2, V, λ1, λ2, N

Output: brightness temperature T

Algorithm:

Step 1: initialize Y0, T0, and undersample V to obtain
∧
V;

Step 2: update Tn by using Equations (31) and (34);
Step 3: update Yn by using Equations (37) and (38);
Step 4: n + 1, if n < N, repeat from Step 2; otherwise, go to Step 5;
Step 5: output TN

4. Experiments and Results

In this section, numerical simulation experiments are carried out on simulated and real
millimeter-wave InSAR brightness temperature images to demonstrate the effectiveness and
performance of the proposed InSAR-TVMC imaging approach, compared to the conventional FFT
approach and CS approach. The InSAR imaging system uses a “T”-shaped antenna configuration
with 127 antenna elements to form a rectangular visibility function distribution, shown in Figure 1.
The specific InSAR system parameters are listed in Table 2. The fringe washing function in Equation (1)
is set to one because the InSAR imaging system satisfies the narrow bandwidth system condition.
The millimeter-wave InSAR brightness temperature images are simulated for each baseline of InSAR
according to Equation (1) to form the measured visibility function samples, which are used to
reconstruct InSAR images via the FFT approach, the CS approach (the regularization parameter
λ = 0.085) and the InSAR-TVMC approach (the regularization parameters λ1 = 0.9 and λ2 = 0.01).

(a) (b)

Figure 1. “T”-shaped antenna array and rectangular visibility function distribution.

Table 2. Simulation InSAR system parameters.

Simulation Parameters Value

center frequency 50.3 GHz
bandwidth 200 MHz
image pixel size 128 × 128
image gray (0, 255)
brightness temperature 2.73∼350 K
antenna array (“T” shaped) 64 + 63
visibility function samples size 128 × 128
G matrix size 16,384 × 1
D matrix size 128 × 128

In the first experiments, the performances of all approaches are evaluated using a simulated
millimeter-wave brightness temperature image of the Earth viewed from geostationary orbit, shown in
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Figure 2a, the brightness temperature of which is 250∼350 K and the cold sky brightness temperature of
which is 2.73 K. In the ideal case where the aforementioned systematic receiving noise and radiometric
error are ignored, reconstructed images of Figure 2a by the three approaches are shown in Figure 2b–d,
respectively. It should be pointed out that in this experiment, the FFT approach uses the entire visibility
function samples to complete the reconstruction, while the CS approach and InSAR-TVMC approach
only use 70% of the visibility function samples to realize undersampling based on one-dimensional and
two-dimensional sparsity, respectively.
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Figure 2. Result of the reconstruction without noise interference. (a) Original simulated millimeter-wave
InSAR image. (b) Reconstructed by FFT. (c) Reconstructed by compressive sensing (CS). (d) Reconstructed
by InSAR-TVMC.

Comparing the reconstruction result in Figure 2, the FFT approach, the CS approach and the
InSAR-TVMC approach all could obtain InSAR reconstruction results well ignoring system receiving
noise and interferometric measurement error. However, InSAR-TVMC approach produces smoother
results and weaker oscillation rings on the edge of the Earth and sky, showing the better suppression
ability of the Gibbs effect.

In real interferometric measurements of the InSAR imaging system, the system receiving noise
and interferometric measurement error are inevitably caused by hardware and position uncertainty.
To test the sensitivity of the InSAR-TVMC approach and the compared approaches, the visibility
function samples are corrupted by adding a white Gaussian noise with zero mean and variance σ2

representing all the noise and error in real interferometric measurements. Using a corrupted visibility
function samples with two different levels of noise intensity (σ2 = 0.05 and σ2 = 0.1), reconstructed
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images of Figure 2a via FFT using entire samples, CS and InSAR-TVMC using 70% samples are shown
in Figure 3.
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Figure 3. Result of the reconstruction. (a) Reconstructed by FFT, σ2 = 0.05. (b) Reconstructed by FFT,
σ2 = 0.1. (c) Reconstructed by CS, σ2 = 0.05. (d) Reconstructed by CS, σ2 = 0.1. (e) Reconstructed by
InSAR-TVMC, σ2 = 0.05. (f) Reconstructed by InSAR-TVMC, σ2 = 0.1.

It is clear that the reconstructed image in Figure 3a,b via FFT was seriously destroyed by noise,
and it is almost impossible to distinguish any detailed information of the Earth. Even on the edge of the
Earth and sky, oscillation rings are expanded. That is because FFT itself does not contain any denoising
processing and suppression ability on the Gibbs effect. The quality of the reconstructed image in
Figure 3c via CS is much better than FFT under a low level of noise intensity (σ2 = 0.05), but CS
also suffers from the noise and error interference, so the performance of the reconstructed images
in Figure 3d degrades. Compared to the reconstructed images via FFT and CS, InSAR-TVMC still
produces visually better results, which retain much more detailed information of the Earth and exhibit
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better suppression of oscillation rings caused by the Gibbs effect, demonstrating the effectiveness of
the TV norm and nuclear norm constraints.

To quantitatively analyze the sensitivity of the above three methods, the peak signal to noise ratio
(PSNR) performance with different noise levels is shown in Figure 4.
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Figure 4. PSNR performance with different noise levels of FFT, CS and InSAR-TVMC.

Figure 4 exhibits the robustness of InSAR-TVMC to noise and error interference compared to FFT
and CS objectively, demonstrating that InSAR-TVMC could better improve the accuracy of InSAR
image reconstruction.

To further analyze the robustness of InSAR-TVMC to the undersampling ratio (usage rate of
visibility function samples), comparison experiments of CS and InSAR-TVMC were carried out with
different usage rates of visibility function samples corrupted by white Gaussian noise with variance
σ2 = 0.05. Recovery results of a 40%, 50% and 60% undersampling ratio of CS and InSAR-TVMC are
shown in Figure 5.

Figure 5a shows that much detailed information is missing, and the outline information of the
Earth is distorted in the reconstructed image by CS using 40% of samples, demonstrating that the
reconstructed images via CS is seriously distorted with a low undersampling ratio. From Figure 5d–f,
we can find that InSAR-TVMC produces a much more robust result with different undersampling
ratios.

Moreover, quantitative evaluation of the robustness to different undersampling ratios using
the root-mean square error (RMSE) performance of InSAR-TVMC and CS is presented in Figure 6.
From Figure 6, we can see that InSAR-TVMC has a lower RMSE at any undersampling ratio, especially
having significant advantages over CS at low undersampling rates, demonstrating the robustness of
InSAR-TVMC objectively.

After the comparison experiments on simulated millimeter-wave brightness temperature data
of the Earth, we explored the InSAR-MC approach on real millimeter-wave InSAR data, which were
acquired by a Geostationary Interferometric Microwave Sounder (GIMS) demonstrator in the near
field by the National Space Science Center of China [34]. The test radiometric image data are the
50.3-GHz brightness temperature data shown in Figure 7a, and the light image data are in Figure 7b.
Reconstructed images via CS and InSAR-TVMC with 70% of visibility function samples corrupted by
white Gaussian noise (σ2 = 0.05) are presented in Figure 7c,d, respectively.
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Figure 5. Result of the reconstruction at different undersampling ratios. (a) Reconstructed by CS
at a 40% ratio. (b) Reconstructed by CS at a 50% ratio. (c) Reconstructed by CS at a 60% ratio.
(d) Reconstructed by InSAR-TVMC at a 40% ratio. (e) Reconstructed by InSAR-TVMC at a 50% ratio.
(f) Reconstructed by InSAR-TVMC at a 60% ratio.
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Figure 6. RMSE performance with different undersampling ratios of CS and InSAR-TVMC.

Figure 7 shows that InSAR-TVMC produces a much better reconstructed result containing clear
details, while the result of CS lost much detailed information compared to the original radiometric
image data, demonstrating the effectiveness of the InSAR-TVMC approach.

What is more, as the InSAR-TVMC approach completes the reconstruction in the two-dimensional
data space, so it demands much lower computational and memory cost, while the dimensionality of
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the vector converted from the matrix data by the CS approach could be quite large; especially, the scale
of the original matrix data themselves is very large, as well. Table 3 reports the MATLAB runtime
(MATLAB2016a with a 3.2-GHz Intel i7-8700 processor, 32 GB of memory) of the InSAR-TVMC and
CS approach with different undersampling ratios. The result demonstrates that the two-dimensional
sparse imaging approach, InSAR-TVMC, is more suitable for InSAR image reconstruction compared
to one-dimensional sparse imaging approaches.
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Figure 7. Result of the reconstruction. (a) Original real millimeter-wave InSAR image. (b) Optical
image. (c) Reconstructed by CS. (d) Reconstructed by InSAR-TVMC.

Table 3. Computation time comparison of CS and InSAR-TVMC.

Undersampling Rate 40% 50% 60% 70% 80% 90%

tCS(s) 65.87 81.86 119.34 141.58 166.53 180.45
tTVMC(s) 33.91 46.76 65.31 80.33 94.22 103.74

5. Conclusions

In this paper, we proposed a novel millimeter-wave InSAR image reconstruction approach by total
variation regularized matrix completion for high-resolution imaging with undersampled data. Based on
the a priori knowledge that millimeter-wave InSAR images hold the low-rank property, the proposed
InSAR-TVMC approach represented the object images as low-rank matrices and formulated the data
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acquisition of InSAR in the two-dimensional data space directly to undersample visibility function
samples. Then, the optimal solution of the InSAR image reconstruction problem was obtained using
the undersampled visibility samples by simultaneously solving total variation and nuclear norm
regularization via convex optimization. Using corrupted visibility function samples with high levels of
noise intensity (σ2 = 0.1), the PSNR of the InSAR-TVMC reconstructed result using 70% of samples is
25.8 dB compared to 22.3 dB for the CS result using 70% of samples and 17.1 dB for the FFT result using
all of the samples. The reconstruction time of InSAR-TVMC could be shortened to 80.33 s compared to
141.58 s for CS, both with a 70% undersampling ratio. Experimental results demonstrate the effectiveness
and the significant improvement of the reconstruction performance of the proposed InSAR-TVMC
approach over conventional and one-dimensional sparse InSAR image reconstruction approaches.
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