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Abstract: Airborne LiDAR (Light Detection And Ranging) remote sensing for individual tree-level
forest inventory necessitates proper extraction of individual trees and accurate measurement of tree
structural parameters. Due to the inadequate tree finding capability offered by LiDAR technology and
the complex patterns of forest canopies, significant omission and commission errors occur frequently
in the segmentation results. Aimed at error reduction and accuracy refinement, this paper presents
a novel adaptive mean shift-based clustering scheme aided by a tree trunk detection technique to
segment individual trees and estimate tree structural parameters based solely on the airborne LiDAR
data. Tree trunks are detected by analyzing points’ vertical histogram to detach all potential crown
points and then clustering the separated trunk points according to their horizontal mutual distances.
The detected trunk information is used to adaptively calibrate the kernel bandwidth of the mean shift
procedure in the fine segmentation stage by applying an original 2D (two-dimensional) estimation
of individual crown diameters. Trunk detection results and LiDAR point clusters generated by the
adaptive mean shift procedures serve as mutual references for final detection of individual trees.
Experimental results show that a combination of adaptive mean shift clustering and detected tree
trunk can provide a significant performance improvement in individual tree-level forest measurement.
Compared with conventional clustering techniques, the trunk detection-aided mean shift clustering
approach can detect 91.1% of the trees (“recall”) with a higher tree positioning accuracy (the mean
positioning error is reduced by 33%) in a multi-layered coniferous and broad-leaved mixed forest in
South China, and 93.5% of the identified trees are correct (“precision”). The tree detection brings the
estimation of structural parameters for individual trees up to an accuracy level: −2.2% mean relative
error and 5.8% relative RMSE (Root Mean Square Error) for tree height and 0.6% mean relative error
and 21.9% relative RMSE for crown diameter, respectively.

Keywords: tree trunk detection; mean shift; airborne LiDAR; 3D tree segmentation; tree structural
parameter estimation; remote sensing; forest inventory

1. Introduction

As one of the main terrestrial ecosystems, forests play a vital role in the conservation of biological
diversity and suppression of climate change. Forest inventory is the systematic collection of data and
forest information needed for assessment or analysis for the sake of forest management and ecosystem
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sustaining. The comprehensive information about the state and dynamics of forests, such as tree
species and their distribution, number of trees per acre, basal area, timber volume, increment of timber
volume and mean tree height, can be acquired through the statistical forest inventory [1]. Traditionally,
forest inventory is labor-intensive, time-consuming and restricted by spatial accessibility because
most of the forest attributes and variables are estimated by measuring sample plots manually in field
surveys [2].

In recent years, many efforts have been made to decrease the costs by developing inventory
systems that are based on remote sensing technologies. Intensive studies have been focused
on optical aerial photography interpretation. However, large-scale aerial photos or high-spatial
resolution remotely-sensed imagery do not directly provide three-dimensional (3D) forest structural
information [3]. This limitation can be overcome by a technology called airborne LiDAR (Light
Detection And Ranging) [4]. Airborne LiDAR employs state of the art laser technology coupled with
high-end GPS (Global Positioning System) and IMU (Inertial Measurement Unit) systems as a means of
geo-referencing to produce accurate and detailed scan data from an airborne platform [5]. Compared
with passive imaging, LiDAR has the advantage of directly measuring the 3D coordinates of forest
canopies [3]. Furthermore, considering that the laser beam emitted from the airborne LiDAR is able to
penetrate beneath forest canopies down to the ground, the LiDAR can provide an unstructured 3D
point cloud that is a discrete model of the forest [6]. Due to its ability to generate 3D data with high
spatial resolution and accuracy, the airborne LiDAR technology is being increasingly used in remote
sensing-based forest resource monitoring [4].

Airborne LiDAR-based remote sensing for forest inventory applications necessitates proper
extraction of individual trees and accurate delineation of their canopy structure. Once a single tree
has been detected from the remotely-sensed data (namely the point cloud generated by the LiDAR),
structural attributes such as tree height, crown diameter, canopy-based height, basal area, Diameter at
Breast Height (DBH), wood volume, biomass and species type can be derived [4]. A variety of methods
has been proposed to identify individual trees or tree crowns using airborne LiDAR data, which fall
into one of the two categories: raster-based approaches or point-based approaches. Raster-based
delineation utilizes the Canopy Height Model (CHM) derived from the raw LiDAR data, which is
the difference between the canopy surface height and a Digital Elevation Model (DEM) of the Earth’s
surface [3]. In a typical scenario that adopts a CHM-based method, a local maximum filter is used to
detect treetops, and then, the individual tree crowns are delineated with a marker-controlled watershed
segmentation scheme, a region growing algorithm or a pouring algorithm [3,7–11]. The spatial 2D
wavelet analysis is also applied to automatically determine the location, height and crown diameter of
individual trees from the CHM in some raster-based scenarios [12]. As the CHM is essentially a raster
image interpolated from spatially-discrete points depicting the vegetation canopy top, there can be
inherent errors and uncertainties in it [4]. The spatial errors introduced in the interpolation process
could decrease the accuracy of tree segmentations and relevant measurements [13]. The process of
producing a CHM, preserving just return data from the surface, could also lead to loss of information
from different levels in the canopy, and thus, a further reduction in the data available for individual
tree delineation [14]. Generally, CHM-based methods tend to merge crowns in dense stands of
deciduous trees [10] or fail to detect understory trees in a multi-layered forest [15]. Instead, point-based
approaches work directly on the original point cloud data rather than rasterized images. Since direct
processing on the LiDAR’s raw data can avoid errors introduced by interpolation, it is generally
acknowledged that the point-based methods outperform CHM-based methods [14].

Region growing, as a category of well-known image segmentation methods [16], has been
frequently used to delineate individual trees based on the original LiDAR point data [2,4,17]. In general,
region growing-based methods are easily implemented, but they are not particularly robust as
the segmentation quality strongly depends on both multiple criteria and the selection of seed
points/regions, where no universally-valid criterion exists [18]. Segmenting individual trees directly
from the original LiDAR data can also resort to clustering-based approaches. One of the most popular
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clustering methods is the k-means algorithm. The basic k-means clustering scheme or more complicated
mechanisms based on a certain modified k-means algorithm were employed to extract individual trees
from the point clouds with seed points extracted from a rasterized Digital Surface Model (DSM) by a
local maximum filter [19,20]. The k-means clustering is so simple as to be easy to implement and apply,
even on large datasets; however, one of its biggest drawbacks is that k, the number of clusters, is a
predefined parameter, and an inappropriate choice of k may yield poor clustering results [21]. Besides,
the performance of the k-means clustering is heavily dependent on the locations of starting locations
or seed points, which are most often randomly chosen from the entire dataset and used as the initial
centroids [22]. A crucial issue in applying the above-mentioned region growing or k-means clustering
approaches is how to determine the seed points, whose numbers and locations will strongly influence
subsequent processing steps. In the scenario of isolating and delineating individual trees, the seed
points are usually considered to be the estimated treetops, and the region growing algorithms utilize
these seed points to grow regions or tree crowns around them until some stop criteria are satisfied,
while the k-means clustering starts an iterative procedure with the seed points as initial means of all
points [17]. However, it is not a trivial problem to detect treetops for canopies accurately. The common
method to identify treetops is to extract local maxima using local maximum filtering with variable
window sizes in a rasterized digital model such as CHM or the Canopy Maxima Model (CMM), or to
find the highest point for a particular tree crown in the point dataset with an adaptive search radius
when raw LiDAR data are used [3,9]. Yet, it is very difficult to determine an appropriate size for the
moving window or search radius to detect the treetops because different sizes should be applied to
different regions for optimal detection accuracy [2].

As a powerful and versatile feature-space analysis technique, mean shift has found much interest
in clustering of LiDAR data for forest inventory applications. Mean shift-based schemes for clustering
data points with similar vegetation modes together, which directly work on the 3D point cloud acquired
with a small-footprint LiDAR, were reported in [6,23]. Ferraz et al. proposed a multi-scale mean
shift technique where modes were computed with a vegetation stratum-dependent kernel bandwidth
to simultaneously segment vertical and horizontal structures of forest canopies and decompose the
entire point cloud into 3D clusters that correspond to individual tree crowns [15,24]. Compared with
other kinds of clustering approaches (e.g., region growing or k-means clustering), the mean shift
is robust to initializations and can handle arbitrarily-shaped clusters, as it does not depend on any
geometric model assumptions. More importantly, the mean shift-based approaches outperform other
kinds of methods in detecting small or suppressed trees in the understory [24]. However, because it is
sensitive to the selection of kernel bandwidth, the mean shift requires the bandwidth parameter to be
tuned reasonably well for performance optimization, and thus, the bandwidth calibration is actually
a major challenge for the mean shift-based schemes. A self-adaptive method calibrating the kernel
bandwidth as a function of a local tree allometric model that can adapt to the local forest structure
was developed by Ferraz et al. in [25]. Our previous study proposed an adaptive mean shift-based
clustering approach to segment the 3D forest point clouds and identify individual tree crowns, where
much effort was put into the adaptive bandwidth settings: the kernel sizes are automatically changed
according to the estimated crown diameters of distinct trees [26]. This approach has been tested over
a multi-layered coniferous and broad-leaved mixed forest located in South China: the overall tree
detection rate reaches 86% (92% of the detected trees are correct), and a specific detection rate of 48%
was observed for the suppressed trees (the “precision” is 67%) [26]. It should be emphasized that
nearly 30% more suppressed trees can be identified by this adaptive approach than the one using a
fixed kernel bandwidth [26].

Although the adaptive mean shift clustering can produce relatively high segmentation accuracies
when compared with a fixed bandwidth one, there are still obvious omission and commission errors
(or under- and over-segmentations) in the ultimate detection results. This is especially the case for a
structurally complex forest, which often has a multi-layered structure and consists of trees occluding
each other. Due to overlapping point cloud patches caused by complex terrain, closed forest canopies
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or other reasons, groups of trees standing very close to each other, identified as several single trees in
the field inventory, might be treated as one cluster composed of all of these trees while performing
the mean shift segmentation over the LiDAR point cloud. Besides, in a forest with multiple canopy
layers, many trees have complex crown structures, the tree crowns have a great range of sizes and
their branches interlace with each other or extend out so that they look like trees. This will cause false
detection and split a large tree into several small trees, which leads to omission and commission errors
of tree identification. The errors are mainly caused by the top-down segmentation scheme in which
individual tree segmentation mostly relies on accurate characterization of tree crowns; however, in fact,
the tree crowns are difficult to identify and delineate from the forest canopy with a complex structure.
Higher accuracies of tree detections could be achieved by adopting a bottom-up segmentation strategy.
Reitberger et al. used Random Sample Consensus (RANSAC)-based 3D line adjustment to detect
tree trunks (or stems) and a normalized cut method to isolate trees [11]. A bottom-up method was
proposed in [27] to extract and segment tree trunks based on the intensity and topological relationships
of the points and then allocate other points to exact tree trunks according to 2D and 3D distances.
Shendryk et al. developed a two-step, bottom-up methodology for individual tree delineation: firstly,
identify individual tree trunks based on conditional Euclidean distance clustering, and then, delineate
tree crowns using an algorithm based on random walks in the graph paradigm [28]. Essentially, the
key idea of a bottom-up strategy is to identify the trunk points of individual trees and use the thus
detected trunks as seeds for further crown delineation.

This study aims to solve the challenges of the mean shift-based tree segmentation in structurally
complex forests by combining conventional clustering with a bottom-up strategy. We focus on
developing an improved technological scheme using a trunk detection-aided adaptive mean shift
algorithm for accuracy refinement to segment individual trees and estimate tree structural parameters
based solely on the airborne LiDAR data. The main difference between this paper and our previous
study, or the major contribution of this study, is the introduction of the tree trunk detection technique
into the adaptive mean shift-based clustering scheme. The detected trunk information can not only be
utilized to adaptively calibrate the kernel bandwidth of the mean shift procedure, but also be combined
with mean shift clustering results to perform final detection of individual trees. The objectives of
this study are (i) to highlight a new adaptive mean shift-based clustering approach aided by tree
trunk detection using airborne LiDAR data for individual tree detection and tree-based parameter
estimation, (ii) to present the results of the proposed approach when applied to small-footprint LiDAR
data acquired in a field survey performed in a multi-layered evergreen mixed forest located in South
China and (iii) to evaluate the new approach with respect to the tree detection rates and parameter
estimation accuracy.

2. Materials

2.1. Study Area and Inventory Data

The study was conducted in a 120-ha research forest ranging in height from approximately
150–800 m above sea level, situated in Dinghushan National Nature Reserve (23◦10′ N, 112◦32′ E) in
Guangdong Province of southern China. The study area has a subtropical monsoon climate with a
mean annual temperature of 20.9 ◦C, a mean relative humidity of 85% and a mean annual precipitation
of 1927 mm, most of which occurs between April and September. The forest soil is lateritic red earth
with pH values of 4.5–5.0, and the humus is rather rich. Beneath the forest soil are the sand stone or the
shale rocks of the Devonian period [29]. This area is mainly covered by a low subtropical evergreen
broad-leaved forest and also includes a portion of a mixed forest that is characterized by coniferous
and broadleaf stands of varying age classes. Pinus massoniana dominates the coniferous tree species,
and the primary broadleaf tree species are Schima superba, Castanopsis chinensis, Gironniera subaequalis,
Eucalyptus robusta, etc.
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A field survey can be performed on predefined forest plots to acquire the ground truth data
(consisting of sample data and validation data), which might be used in retrieval of the aboveground
biomass and research on biodiversity for the forest under investigation. In this study, we use the
2012 forest inventory data containing species information and locational and structural measurements
about all trees of 2 m or taller. When taking this inventory, the following were important things to
measure and note: individual tree location, tree height, height under branch, DBH, crown breadth, age,
species, canopy density and Leaf Area Index (LAI). In the study, we selected 10 square plots of side
length 100 m, which contains two identical subplots with the same size of 30 m × 30 m, to examine
and assess our methodology. All of the studied plots are covered by single or multi-species-dominated
subtropical evergreen trees. Figure 1 shows the study area and several representative testing plots of
the forest under investigation. The total number of reference trees in 10 sample plots was 1779, with an
average of 178, and varied from 57–264 trees per subplot. In order to acquire accurate locations of all
reference trees for the aim of matching the ground truth data with the LiDAR point cloud, we used a
South S86 RTK (Real-Time Kinematic) system to measure the geographic coordinates of individual
tree’s trunk positions. Because it is difficult to obtain the ideal GNSS (Global Navigation Satellite
System) signal in dense forests, the South NTS-355R total station equipment was utilized to record the
coordinate data for trees in 4 of the 10 sample plots, which are denser than the other 6 plots. For more
details about the collection of tree geographic data, please refer to [26].

Figure 1. Study site and sample forest plots in Dinghushan National Nature Reserve located in the
south of China.

2.2. Airborne LiDAR Data

We conducted a flight experiment on the Dinghushan study site in November 2012 to acquire the
LiDAR data, as well as the image data using an airborne small-footprint LiDAR system that integrates
a high-resolution CCD (Charge-Coupled Device) camera and a RIEGL LMS-Q560 laser scanner (RIEGL:
Horn, Austria). During the flight, the average height was about 1150 m and the average speed was
66.7 m/s. The laser scanner was operated in a full-waveform mode with a wavelength of 1550 nm, a
pulse repetition of 150 kHz, a pulse width of 3.5 ns and a beam divergence of no more than 0.5 mrad.
The effective scan frequency, scan angle, swath width and swath overlap were 52 Hz, 32◦, 278.6 m
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and 44.9%, respectively. The point density of the collected data was 15.3 pt/m2. The LiDAR system
can generate high-density data in both forms of digitally-sampled full waveforms and discrete point
clouds. The original point cloud data directly generated by the system rather than the full waveform
data are used in this study. They are delivered in the LiDAR standard file exchange format, Log ASCII
Standard (LAS), which can record 3D coordinates, intensity values and the pulse return numbers for
all discrete target points.

Figure 2a shows the normalized LiDAR point clouds for a typical sample subplot (DHS0101).
As transmitted laser beams might hit leaves, branches and trunks of trees or other objects in their
travel path, the collected discrete points would form a scattered or unstructured, sparse and noisy data
“cloud” with arbitrary shapes [30]. The device used in this experiment is a multi-echo or multiple pulse
laser scanning system and can record at least 3 returns from a single pulse, which provide the basis to
discriminate these scattered point data. The return signal gives a record of the vertical distribution of
the intercepted surface within a vegetated area: the first and last echoes arise when the laser beam hits
the canopy top and the ground surface, respectively, so the data contained in the first pulse are mainly
the vegetation surface information, and the last pulse data contain more information on the terrain;
when the laser beam attempts to penetrate the vegetation, it will get reflected by a tall tree’s branches
and leaves or low bushes, so the intermediate pulses can reflect the internal spatial structures of tree
crowns or undersized vegetation [31]. A conceptual sketch of a woodland’s vertical structure with
multiple pulse points is given in Figure 2b.

(a) (b)

Figure 2. Scattered LiDAR point clouds for a typical subplot (DHS0101). (a) After normalization.
(b) Extracted first, last and intermediate pulse data rendered in different colors.

3. Method

3.1. Adaptive Mean Shift-Based Clustering

In forestry applications, a LiDAR point cloud can be treated as an empirical multimodal
distribution where each mode, defined as a local maximum both in height and density, corresponds to
a tree top, and then, each point in the 3D dataset can be considered as sampled from the underlying
probability density function. Feature vectors extracted from the original point cloud data constitute
a huge feature space, on which the mean shift-based clustering analysis is performed. Mean shift
is a powerful non-parametric feature-space analysis technique that can be used for many purposes
like mode finding, pattern recognition, tracking, filtering, clustering, etc. Its original idea was firstly
introduced by Fukunaga and Hostetler [32] and has been extended to be applicable in fields like image
and video processing, computer vision and machine learning [33,34]. Mean shift’s uses in LiDAR data
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processing were firstly explored by Melzer in [35] and have gradually become an effective tool for
filtering, classification and segmentation of unstructured point clouds.

Mean shift is an iterative algorithm using a non-parametric probability density estimator based
on the Parzen window kernel function [34]. When used for clustering of unstructured data, the mean
shift algorithm aims to move each data point to the densest area in its vicinity until convergence to the
local maxima by iteratively performing the shift operation based on kernel density estimation. Figure 3
shows the density estimation procedure with the mean shift vector, which is the difference between
the weighted mean and the center of a kernel window (i.e., the region of interest). Given n data points
xj(j = 1, . . . , n) in the d-dimensional space Rd, the mean shift vector at point x is defined as:

mh,G(x) =

n
∑

j=1
xjg(

∥∥∥ x − xj
h

∥∥∥2
)

n
∑

j=1
g(
∥∥∥ x − xj

h

∥∥∥2
)
− x, (1)

where h is the bandwidth parameter and g(·) is called the profile of the kernel G(x). By setting:

x(t + 1)← x(t) + mh,G[x(t)], (2)

where t denotes the iteration number, the iterative process converge towards the local maxima.
Obviously, a mean shift vector always points toward the direction of the maximum increase in density,
and successive vectors can define a path leading to a mode of the estimated density. All data points
that have converged to the same mode are grouped together as a cluster. In mean shift theory, a cluster
is defined as an area of higher density than the remainder of the dataset, and a dense region in feature
space corresponds to a mode (or a local maximum) of the probability density distribution. The ultimate
result of the mean shift procedure will associate each point in 3D space with a particular cluster.

Figure 3. Intuitive description of the mean shift procedure: find the densest regions in the distribution
of identical billiard balls.
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For the mean shift algorithm, determination of the kernel bandwidth, the only parameter that
needs to be specified, is very critical. It is justified that an adaptive mean shift algorithm automatically
calibrating the kernel bandwidth according to local structure information outperforms that using a
single bandwidth for the whole feature space. The adaptive mean shift-based clustering scheme
presented in our previous study aims to decompose the 3D forest point clouds into segments
corresponding to individual tree crowns [26]. It is a two-stage sequential segmentation procedure
chain: coarse segmentation (single-scale mean shift-based area partitioning) and fine segmentation
(adaptive mean shift-based clustering). The highlight of the adaptive mean shift-based approach is
a computationally-efficient method to dynamically calibrate the kernel bandwidth, which is not set
to a fixed value or determined as a multi-scale function, but can be varied in a manner that reflects
the quantitative information about the local canopy structure. Please refer to [26] for more detailed
information about this approach.

The major problem encountered when using mean shift clustering techniques to detect trees
is omission and commission errors. The omission errors result from under-segmentation, which
implies assigning a LiDAR point cluster to several actual trees, whereas over-segmentation (a single
tree segmented into more than one LiDAR clusters) of tree crowns will lead to commission errors.
Under-segmentations are more prone to happen than over-segmentations since the tree crown
delineation methods based on clustering techniques have the potential of missing field-measured trees:
smaller trees are the intermediate and lower height level are unable to be recognized or groups of trees
with crowns overlapping each other due to short mutual distances might be treated as one LiDAR
segment, in which it is difficult to distinguish and separate individual trees by a clustering-based
segmentation technique.

3.2. Concept and Workflow

The adaptive mean shift-based clustering technique essentially segments the forest point clouds
and delineates individual tree crowns according to the LiDAR point density distribution in 3D space
due to the fact that the density of received laser pulses is high at the center of a tree crown and decreases
towards the edge of the crown. It performs well in forests or forest layers with regular forms, but its
detection accuracy degrades seriously when dealing with forest environments with complex patterns.
The main cause is the inadequate tree finding capability inherent in the mean shift-based technique.
As a top-down segmentation scheme, it works over the point cloud derived from the laser pulses,
mainly sampling the forest canopy structure, but rarely takes into account the LiDAR points under
individual tree canopies, which contain structural information reflecting the spatial characteristics of
tree trunks. It is advantageous to add a bottom-up strategy into the methodology: the trunk-related
information should be utilized to aid in segmentation and delineation of individual trees to improve
overall performance.

Taking into account all necessary mathematical processing used in this study, we present a
flowchart of methods used in this study, as illustrated in Figure 4, where the ellipses represent data
or parameters and the rectangles represent processes or calculations. Each processing step will be
described in detail in the following part of this section.
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Figure 4. Methodology workflow of this study.

3.3. Data Preprocessing

To focus on individual tree’s delineation and measurement, we need to delete the LiDAR points
belonging to the ground surface and the undersized vegetation. Considering that the ground surface
is not flat and our proposed approach is based on the relative spacing of each point, we also need
to remove the slope effect. First, the raw LiDAR point data were classified into ground points and
above-ground points using TerraScan [36]. The aboveground or vegetation points were used in this
study. A Digital Terrain Model (DTM) was generated by interpolating the ground points using ordinary
kriging, and the vegetation point cloud was normalized by subtracting the DTM height from the raw
LiDAR point cloud. After the normalization process, the elevation value (namely the coordinate in the
z-dimension) of a point indicates the vertical distance from the ground to the point. Next, data points
belonging to non-canopy features in the undersized vegetation strata were cleared. Points whose
heights fall in a predefined range RSV = [0, HSV ] (HSV is a preset threshold height) were recognized
and then removed from the vegetation point cloud. In this study, we deleted all points belonging to
the undersized vegetation up to a height value of 1 m from the ground level.

3.4. Coarse Segmentation

The coarse segmentation aims to partition the 3D space over each forest plot into many
small irregular spatial regions, called “partitions” here, each of which contains 3D spatial features
representing a single tree or a group of several actual trees. As the sizes of these segments are much
smaller compared to that of the original test plot, the subsets of data points in the segments are much



Remote Sens. 2018, 10, 1078 10 of 25

easier to handle than the whole dataset contained in a point cloud. For example, when much more
complicated analyses and calculations are performed on these segments, which implies more complex
mathematics, the total computational load could be reduced to an affordable range. We adopt the
single-scale mean shift-based algorithm described in [26] to accomplish coarse segmentation of the
LiDAR point cloud. Firstly, a fast mean shift procedure using the simplest kernel function, the uniform
kernel, is performed on a part of the dataset (namely the intermediate pulse data) to yield a number of
point clusters, each of which reflects the spatial structure of one or more trees. Next, the first pulse
data depicting the canopy surfaces are added to expand these clusters to the whole dataset by means
of a so-called small square grouping technique. An example of the coarse segmentation results for a
small area (10 m × 10 m) selected from a representative subplot is given in Figure 5. For a detailed
description of this processing stage, please refer to [26].

(a) (b)

Figure 5. Partitions resulting from coarse segmentation for the point cloud in a portion of a typical
subplot (DHS0201). (a) An orthophoto with partitions (cyan polygons) and reference trees (red crosses).
(b) Point clusters rendered in different colors represent different partitions.

3.5. Tree Trunk Detection

The irregular segmented region (a partition of the 3D point cloud data in a forest area of interest)
resulting from the coarse segmentation process mentioned above, where obvious under-segmentations
occur, usually contains several actual trees. Thus, each individual tree should be further extracted from
the partition in the subsequent processing stage. However, only using a crown-based tree delineation
method (e.g., the CHM-based watershed segmentation or the mean shift clustering) would result in
omission errors (under-detection of trees), or commission errors (over-detection of trees), or both,
for the reason that a crown segmentation mostly relies on a detection of tree tops based on local
maxima or high densities, but not on a tree trunk detection. A group of trees with LiDAR point
patches overlapped cannot be clearly separated by the crown-based segmentation method, whereas
their trunks might be isolated from each other using points lying below tree crowns. Apparently, the
introduction of the tree trunk detection would help to improve the overall tree detection rate.

The tree trunk detection adopted in this study works in a two-step algorithm. The first step aims
to detach all potential crown points within a specific partition and separate out the trunk section.
This goal is achieved by analyzing a vertical histogram of the points within a partition, whose idea is
similar to the method presented in [11,37], but easier to implement (Figure 6). Firstly, divide LiDAR
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points between Zmin and Zmax (Zmin and Zmax denote the minimum and maximum elevation values
for all points in a partition, respectively) into Nlay horizontal layers. Next, generate the histogram of
the point distribution along the vertical direction by calculating the number of points per layer and
normalizing the results by dividing each of them by the total number of points in the partition. Finally,
locate the separating plane that detaches all potential crown points from the trunk section by searching
the lowest horizontal layer where the point density exceeds a predefined threshold value: thDPL.

(a) (b)

Figure 6. Separation of potential trunk points from crown points within a partition. (a) Tree height
layers. (b) Determination of the separating plane (Nlay = 12 horizontal layers and thDPL = 3% were
used in this example).

In the second step, the separated trunk points are clustered according to their spatial neighborhood
relationships to get an estimation of the number and positions of tree trunks within a specific partition
and assign point groups to the estimated trunks. It is assumed that several points that are spatially
close together will form a trunk. Isolated points with no or just a few neighbors are assumed to be
noise or sparse scrubby vegetation. Due to not knowing the number of trunks a priori, the mean shift
algorithm (a non-parametric clustering technique) is also adopted in this step. Prior to cluster analysis,
the trunk points are all projected onto a horizontal plane, and a simple mean shift clustering procedure
is then performed in the 2D space constituted by these projected points using a flat kernel function:

gu(

∥∥∥∥∥xb

hb

∥∥∥∥∥
2

) =

{
1

∥∥∥xb
∥∥∥ ≤ hb

0 else,
(3)

where xb denotes the data point in the 2D Euclidean space and hb is the kernel bandwidth or search
window size. Considering that the DBH of the trees in the study area rarely exceeds 0.5 m, we assign
a fixed value of 0.75 m (1.5 × 0.5 m) to the bandwidth hb. Any cluster with more than 5 data points
is deemed to be a tree trunk; otherwise, it should be treated as noisy data or a segment of lower
shrubs or weeds and would be deleted from the trunk points. The approximate trunk position is
estimated by finding a cluster’s stationary point. Figure 7 shows the results of tree trunk detection
using the above-described mean shift clustering for a typical partition. As can be seen from this
example, an obvious commission error, appearing as a falsely-detected trunk, resulted from this tree
trunk detection technique.
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(a) (b)

Figure 7. An example of trunk detection based on a simple 2D (two-dimensional) mean shift clustering
procedure for a partition in a test subplot (DHS0201). Spatially-adjacent clusters are rendered in
different colors. A red solid cross or line denotes an actual tree trunk. The red dashed cross or line
represents a fictitious trunk. (a) Top view overlaid onto a DOM (Digital Orthophoto Map). (b) Side view.

3.6. Trunk-Aided Mean Shift Clustering for Segmentation of Individual Trees

The aim of this stage is to segment each individual tree from the LiDAR point cloud for a
particular forest partition by performing an adaptive mean shift-based clustering analysis with the
aid of tree trunk detection results. Although the results contain some errors, they would indicate
the general horizontal distribution of trees in a partition, reflecting the basic horizontal structure in
a forest area of interest. From this useful information about the local vegetation structure, we can
get an estimate of the individual tree crown size, which in turn can be utilized to calibrate the kernel
bandwidth of the mean shift procedure adaptively. More importantly, the trunk detection results can
provide supplementary information with which the point clusters generated by the adaptive mean
shift algorithm are combined to perform the final detection of individual trees. The combinational
use of mean shift clustering results and detected tree trunk information in this stage would serve as
references against each other to reduce over- and under-segmentations and thus help to improve the
overall tree detection accuracy.

The adaptive mean shift procedure requires the kernel bandwidth to be automatically calibrated
according to specific tree crown sizes. However, acquisition of the structural data reflecting the local
forest canopy relies on the accurate extraction of individual trees from the LiDAR point clouds.
Therefore, this is a chicken and egg debate, and it is very difficult to obtain exact quantitative
information about the local spatial structures of the forest canopy prior to complete clustering
of individual trees. Yet, it is possible to get rough information about the sizes of individual tree
crowns ahead of a tree delineation process, which provides a basis for adaptive determination of
the kernel bandwidth. In this study, the data of tree crown widths are roughly estimated based on
tree trunk detection results. The estimation algorithm models the individual tree crown as a sphere
or a hemisphere, which appears in a 2D circular form when projected onto a horizontal plane, and
thus, the estimation problem is reduced to an issue of determining the diameter or radius of these
projected circles. The following scheme is applied to achieve the goal of rough estimation of tree crown
diameters (Figure 8):

1. Perform Delaunay triangulation of the 2D point set formed by NT estimated trunk positions
within a partition and calculate each triangle’s center.

2. Choose the tree trunk with the most LiDAR data points (indicating the highest degree of trueness)
as the primary tree (#0 in Figure 8a). Measure the distances from this tree location to centers of all
triangles to which it belongs, and take the average of these distances as the radius or half of the
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diameter of the circle representing the tree’s crown region. In Figure 8a, De(0) is the estimate of
the crown diameter for Tree #0.

3. Use the primary tree as the root to generate a directed acyclic graph (DAG), as illustrated in
Figure 8b. Each vertex is assigned a specific rank, the value of which indicates its “distance” to
the root. The symbol di,j appearing beside a directed edge connecting two vertices represents the
mutual distance between two neighboring trees with indices of i and j.

4. For the vertices with the rank value of 1, the crown diameters of their corresponding trees can be
roughly determined as follows:

De(k) = 2d0,k − De(0), k = 1, . . . , K1, (4)

where K1 is the number of all vertices with a rank of 1.
5. For other vertices, the rank values of which exceed 1, use the following formula to estimate their

crown diameters:

De(k) =
1

Nk

Nk

∑
i=1

2dki ,k − De(ki), k = K1 + 1, . . . , NT − 1, (5)

where Nk is the total number of directed edges ending at Vertex #k and ki is the index of each
directed edge’s starting vertex.

(a) (b)

Figure 8. An example of the rough estimation of tree crown diameters based on trunk detection results.
(a) Tree crown’s two-dimensional circular models overlaid onto a DOM (Digital Orthophoto Map).
(b) A generated DAG (Directed Acyclic Graph) to determine computation order.

Next, an adaptive mean shift-based clustering analysis is performed on the dataset constituted
by all separated tree crown points within a partition. A truncated, multivariate Gaussian function is
adopted as the kernel or window in this stage. Each data point in the feature space will be associated
with a specific kernel function, which is characterized by the adaptable kernel bandwidth (or window
size), which can be varied according to the estimated tree crown diameter. Map the point onto the
horizontal plane in Figure 8a to see in which projected circular region it falls. If this point is not in any
circle or belongs to two or more circles at the same time, assign the nearest circle to it. Assume the
corresponding tree circle has the index number of k, and then, determine the variable kernel bandwidth
as follows:

hvar = De(k), (6)



Remote Sens. 2018, 10, 1078 14 of 25

where hvar is the variable kernel bandwidth. Please refer to [26] for more detailed information about
this adaptive mean shift algorithm.

An example of clustering results of the above-described adaptive mean shift algorithm is shown
in Figure 9. The major weakness of this clustering algorithm is that it tends to merge nearby trees or
smaller trees into one single tree. Owing to the inability to detect suppressed trees or the difficulty
in discriminating two overlapping tree crowns or oversized kernel bandwidths, omission errors
(or under-segmentations) are very likely to happen in the clustering results (Figure 10a,b). Besides,
commission errors can also occur in the segmentation results of the adaptive mean shift-based
clustering due to a loose canopy structure or because the derived kernel bandwidth somewhere
is too small relative to its local canopy structure (Figure 10c).

(a) (b)

Figure 9. The adaptive mean shift-based clustering results for the point clouds of four consecutive
partitions in a typical subplot (DHS0201). Spatially adjacent clusters are rendered in different colors.
(a) Top view. (b) Side view.

(a) (b) (c)

Figure 10. Examples of omission and commission errors in the segmentation results of the adaptive
mean shift-based clustering approach. Different LiDAR point clusters are rendered in different colors.
Red lines represent the actual tree trunks. (a) The omission error resulting from an under-segmentation
due to unrecognizable suppressed trees. (b) The omission error resulting from an under-segmentation
due to undistinguishable tree crowns overlapping each other. (c) The commission error resulting from
an over-segmentation.



Remote Sens. 2018, 10, 1078 15 of 25

These problems originate from the spatial information contained in the dataset used by the
algorithm, which mainly reflects the forest canopy’s structural characteristics. In order to tackle
the weaknesses of the adaptive mean shift-based segmentation, additional information should be
introduced to perform further analysis of LiDAR segments in the crown section. In this study, we utilize
the tree trunk information to aid in the ultimate object-oriented processing, where the combinational
use of trunk detection results and clustering results of crown points implies mutual reference based on
which final decisions could be made to identify and delineate individual trees. Such a process aims to
improve the overall detection accuracy, especially for structurally complex forests where most of the
trees overlap. A detailed description of this technique is given in the following:

1. Check the tree trunk detection results with respect to crown point segments. As the trunk area
might not be reliably separated from the crown points and thus there could be errors in trunk
detection, it makes sense to use the crown point cloud as a reference to verify the results of
tree trunk detection. If there is no crown segment in the region right over an estimated tree
trunk, which is defined as a circle with a radius of 0.5 m centered on the trunk’s approximate
position, the trunk is considered as a dead tree or a low-growing plant and would be deleted
from the trunk section. Any trunk cluster whose lowest point has an elevation value of more than
(Zsp + Zmin)/2 would be deemed to be a segment from the canopy and should be ignored. If a
point cluster in the trunk section is composed of disjointed segments whose maximum elevation
difference exceeds (Zsp − Zmin)/2 (as depicted by the dashed line in Figure 7b), we would regard
it as a fictitious tree trunk.

2. Link the point clusters in the crown section to the validated stem points in the trunk section.
Firstly, determine the axis-aligned bounding box for each crown segment. Then, check to see
if there are detected tree trunks in these bounding boxes. In case there is only one trunk in a
bounding box, associate the trunk points with the crown points contained in the box and combine
them to delineate the whole structure for an individual tree (Figure 11a).

3. If a segment in the crown section is not linked to any trunk points, it would be treated as a part of
a tree crown. Merge this segment into the adjacent tree nearest to it. An example of point cloud
merging is illustrated in Figure 11b. According to this rule, the right segment rendered in green
color, with no trunk under it, would be incorporated into a larger segment on the left.

4. If there is more than one trunk contained in a bounding box, the point cloud in this box should
be split into several parts, the exact number of which depends on the number of identified tree
trunks. To achieve this goal, crown points are classified sequentially from bottom to top and will
be allocated to the corresponding tree trunks. Each tree crown is built up concurrently beginning
from its seed point, which is defined by the highest point of each identified trunk, by including
nearby points and excluding points of other crowns based on their relative spacing. In the crown
growing process, the spatial distances between the unclassified points and the semi-grown crown
points are calculated. A point will be allocated to a target tree crown if the spatial distance to
one of the points from that crown is the shortest. This minimum spacing rule-based tree crown
growing process is illustrated in Figure 11c.
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(a)

(b) (c)

Figure 11. Examples of the object-oriented processing where combinational use of both results of trunk
detection and mean shift clustering serves as a mutual reference. (a) Individual tree crowns are linked
to corresponding trunks. (b) Point cloud merging: incorporate the crown segment without any trunk
linkage into the nearest tree from it to reduce over-segmentations. (c) Point cloud splitting: a bottom-up
tree crown growing process based on a minimum spacing rule. Point A and B are both seed points.

3.7. Tree-Based Parameter Estimation

Once individual trees are accurately identified, tree structural attributes such as tree height, crown
width and height and the number density of trees can be directly derived from the segmented points.
From these parameters, other forest parameters, such as DBH, Crown Base Height (CBH), basal area,
LAI, wood volume, biomass and species type, could be estimated from allometric equations. As our
main objective was to develop a methodology to accurately segment individual trees from LiDAR
data, we focus on two parameters for which we had in situ measured values from a ground survey,
namely tree height and crown diameter.

The highest point among the segmented points for each tree is considered as the tree top, and
the distance to the tree top from the ground is regarded as the height of that tree. Tree heights are
commonly underestimated in LiDAR studies because the transmitted laser pulses may miss the actual
tree top [38]. Increasing the spatial density of LiDAR points provides a better chance of hitting the tree
top, resulting in higher accuracy. The crown diameter is defined as the average of two values of crown
widths measured along two perpendicular directions from the location of the tree trunk. The method
to estimate individual tree crown diameter presented in [7] is adopted in this study. Firstly, project the
points from the topmost crown into the x-y plane, and extract perpendicular profiles of them centered
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on the tree trunk. Then, fit a fourth-degree polynomial on each profile, and find critical points of the
fitted function around the center (namely the trunk position). Next, calculate crown width on each
profile as the distance between critical points on each side of the center. Finally, the value for a crown
diameter is computed as the average of the crown widths along the two directions or profile.

3.8. Implementation

A prototype system for 3D forest point cloud data processing was developed using the C/C++
programming language based on the Point Cloud Library (PCL) (Open Perception: Menlo Park,
CA, USA), an open-source library of algorithms for point cloud processing tasks and 3D geometry
processing, to verify our proposed approach, while the calibration and validation of the approach was
performed in MATLAB (The MathWorks: Natick, MA, USA). Generic techniques for classification,
filtering, segmentation, modeling and visualization of 3D point clouds were implemented with the
methods and classes contained in PCL’s modules. The iterative computing procedures for the mean
shift-based clustering were accomplished by calling a C++ wrapper that implements a standard mean
shift algorithm. In particular, the approach-specific algorithms, such as tree trunk detection, kernel
calibration and object-oriented post-processing, were implemented from scratch.

4. Results

4.1. Individual Tree Detection

The 3D segmentation of individual trees was validated by comparing field measurements with
LiDAR segments. A LiDAR data segment was linked with a reference tree provided that: (i) the
distance to the reference tree was smaller than 60% of the mean tree distance within the subplot; and
(ii) the difference between the derived tree height and the height of the reference tree was smaller
than 15% of the top height of the subplot. The results of tree detection for more than 1700 trees in 10
sample plots (i.e., 20 test subplots) are presented in Table 1. To evaluate the accuracy of the detection
results quantitatively, two indices (“recall” and “precision”, indicating the tree detection rate and the
correctness of detected trees, respectively) based on three types of segmentation results were adopted
in this study. The “recall” (r) and “precision” (p) are defined as follows [39]:

r =
TP

TP + FN
, (7)

p =
TP

TP + FP
, (8)

where TP (True Positive) is the number of individual trees that were segmented correctly, FN (False
Negative) represents the number of under-segmentations where a tree was not detected and assigned
to a nearby tree and FP (False Positive) indicates the number of over-segmentations where a point
cluster was segmented as a tree that did not actually exist. It is worth noting that the “recall” is
inversely related to omission error, and the “precision” is inversely related to commission error.
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Table 1. Results of individual tree detection for all trees in 20 test subplots.

Subplot ID Reference Trees Detected Trees TP 1 FP 1 FN 1 Recall (r) Precision (p)

DHS0101 96 93 88 5 8 0.917 0.946
DHS0102 101 96 91 6 11 0.900 0.948
DHS0201 111 106 98 9 13 0.883 0.924
DHS0202 153 145 133 13 21 0.869 0.917
DHS0301 128 122 112 11 16 0.875 0.918
DHS0302 98 96 91 6 8 0.928 0.948
DHS0401 87 85 80 5 7 0.920 0.941
DHS0402 71 71 68 3 3 0.958 0.958
DHS0501 68 68 65 3 3 0.956 0.956
DHS0502 74 73 69 4 5 0.935 0.932
DHS0601 116 113 103 10 13 0.888 0.916
DHS0602 105 104 96 8 9 0.914 0.923
DHS0701 71 70 67 3 4 0.944 0.957
DHS0702 67 68 64 4 3 0.955 0.941
DHS0801 112 108 98 10 14 0.875 0.907
DHS0802 75 76 71 5 4 0.947 0.934
DHS0901 78 76 73 3 5 0.936 0.960
DHS0902 111 106 97 9 14 0.874 0.915
DHS1001 28 28 28 0 0 1.000 1.000
DHS1002 29 29 29 0 0 1.000 1.000
Overall 1779 1733 1621 117 161 0.911 0.935

1 TP, True Positive; FP, False Positive; FN, false negative.

4.2. Tree-Based Parameters

Having matched the segmented LiDAR data with the field survey data, we could carry out a
performance evaluation of the tree-based parameter estimation. Two tree structural parameters (tree
heights and crown diameters) derived from the LiDAR data were validated with field-measured
tree heights and crown diameters. Only correctly-detected trees were used; that is, falsely-detected
trees and missed trees were not counted. We used all correctly-detected trees (nearly 900 trees) in 10
test subplots with the IDs DHS0101, DHS0102, DHS0201, DHS0202, DHS0301, DHS0302, DHS0401,
DHS0402, DHS0501 and DHS0502 in this experiment. The statistics for the two LiDAR estimated
parameters are summarized in the following: the mean relative errors between estimates and ground
truth values for tree height and crown diameter were−2.21% and 0.65%, respectively, and the standard
deviations or the relative RMS (Root Mean Square) errors in the estimates were 5.85% and 21.92%,
respectively. A negative value of the mean error means an underestimation, while a positive value
implies an overestimation. Figure 12 correlates the LiDAR-derived and field-measured tree heights and
crown widths for the correctly-detected trees. The scatterplots of LiDAR-estimated vs. field-measured
tree heights and crown diameters for all correctly-detected trees contained in 10 subplots are shown
in Figure 12a,b, respectively. A simple linear regression was used to fit the lines (marked in red) to
each dataset. For tree height estimation, the slope of the linear regressions almost equaled one, and the
value of R2 was 0.9863. Yet, for the estimates of crown diameter, the correlation result was relatively
weak with R2 = 0.8584.
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(a) (b)

Figure 12. Field measures vs. LiDAR estimates for correctly-detected trees within 10 test subplots.
(a) Tree heights. (b) Crown diameters. The dashed line represents a hypothetical 1:1 ratio between
measured and estimated.

4.3. Tree Position Differences

In this study, the stationary point of a cluster formed by horizontally-projected LiDAR points
in the trunk section (or the cluster’s center of gravity) was determined as the approximate position
of the tree corresponding to this cluster. This processing was essentially to find the intersections of
the detected tree trunks with the ground. Figure 13a shows the histogram of tree positioning errors
(namely, the distances between the estimates and the field-measured values of the correctly-detected
trees’ horizontal coordinates) using our proposed trunk-aided mean shift approach. As a contrast,
the histogram generated by the adaptive mean shift approach presented in [26] is given in Figure 13b.
Table 2 lists the statistics of tree positioning errors for the two approaches mentioned above.

(a) (b)

Figure 13. Distribution of distances between the estimated tree positions and the field-measured tree
positions for 895 correctly-detected trees within 10 test subplots. (a) Our proposed trunk-aided mean
shift approach. (b) Adaptive mean shift approach presented in [26].
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Table 2. Positioning accuracy comparison for 895 correctly-detected trees.

Method Mean Difference (m) Standard Deviation (m)

Proposed trunk-aided mean shift clustering 0.562 0.424
Adaptive mean shift clustering in [26] 0.851 0.653

5. Discussion

This paper addresses the methods of airborne LiDAR-based remote sensing for individual
tree-level forest inventory in which the detection of individual trees is one of the key issues. The mean
shift-based clustering technique needs no seed points for initialization and works fully in three
dimensions, and so, it is becoming a promising technique of producing relatively high accuracy by
detecting more small trees in the lower and intermediate forest layer than other methods. Mean shift’s
applications in individual tree detection using LiDAR data were explored in [15,24,25]. In our previous
work, we developed an adaptive mean shift-based clustering scheme, which automatically calibrated
the kernel bandwidth to the local spatial structure of the forest canopy [26]. The approach of tree
trunk detection-aided mean shift clustering presented in this paper goes one step further than existing
schemes by utilizing additional information below the tree crowns. To assess the overall performance
of our proposed trunk-aided mean shift clustering approach, we compare the detection results of this
approach with those obtained by several different existing approaches.

Firstly, the overall tree detection rates for trees located in different forest stories within six test
subplots with IDs of DHS0101, DHS0102, DHS0201, DHS0202, DHS0301 and DHS0302 were compared
between two mean shift-based clustering schemes (the proposed trunk-aided method in this study
vs. the adaptive method presented in our previous study [26]) to verify whether the trunk detection
process works. As illustrated in Table 3, although the detection rates of both methods decrease with
dominance position, the trunk-aided method shows clearly higher accuracies than the other one for
each forest story, especially for suppressed trees in the understory: nearly 13% more suppressed
trees can be detected. This performance improvement is achieved by significantly reducing both the
omission error (indicated by the FN count, reduced from 48 to 33) and commission errors (indicated
by the FP count, reduced from 22 to 18). Furthermore, our proposed approach is compared to some
representative approaches in terms of the accuracies of individual tree detection, as shown in Table 4.
In addition to the indicators of “recall” (r) and “precision” (p), the “F-score” (F = 2× (r× p)/(r + p))
is used in the comparison to evaluate the overall detection accuracy. Except the adaptive mean
shift-based clustering algorithm presented in [26], the approaches chosen for this accuracy comparison
include: a region growing approach presented in [2], a k-means clustering approach presented in [19],
a mean shift-based approach described in [15] and a CHM-based approach adopted in [40]. For more
detailed descriptions about these individual tree detection approaches, please refer to [26]. From the
data listed in Table 4, the proposed trunk-aided mean shift approach has the highest tree detection
rates among all approaches used in this comparative experiment, and the accuracy improvement of
our previous work (the adaptive mean shift-based clustering algorithm presented in [26]) by applying
the tree trunk detection strategy is noticeable: the overall detection accuracy in terms of “recall” is
increased by 5%.

Table 3. Accuracy assessment for different tree classes in six subplots: the proposed trunk-aided mean
shift method in this study vs. the adaptive mean shift method presented in our previous study.

Class of Trees Reference Trees
Proposed Trunk-Aided Method Adaptive Method Presented in [26]

Detected Trees TP Recall Precision Detected Trees TP Recall Precision

Dominant trees 234 232 230 0.983 0.991 232 230 0.983 0.991
Codominant trees 209 207 203 0.976 0.981 205 201 0.962 0.980
Intermediate trees 151 141 120 0.795 0.851 138 117 0.775 0.848
Suppressed trees 93 78 60 0.618 0.769 67 45 0.484 0.672
Total 687 658 613 0.892 0.932 642 593 0.863 0.924
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Table 4. Comparison of overall detection accuracy among different approaches. CHM, Canopy
Height Model.

Method Detected Trees TP Count Recall Precision F-Score

Proposed trunk-aided mean shift algorithm 1733 1621 0.911 0.935 0.923
Adaptive mean shift algorithm in [26] 1674 1532 0.861 0.915 0.887
Mean shift algorithm in [15] 1589 1425 0.801 0.897 0.846
Region growing in [2] 1531 1343 0.755 0.877 0.811
k-means clustering in [19] 1548 1367 0.768 0.883 0.821
CHM-based method in [40] 1408 1191 0.669 0.846 0.747

In order to compare the overall tree detection performance among different approaches in a
statistically-rigorous fashion, the statistical significance of differences in detection accuracy was
evaluated in terms of the overall accuracy metric: the “F-score”. As there is no parametric test
suitable for this task, a Monte Carlo permutation test presented by [41] was adopted here to determine
the statistical significance of the difference between two F-scores. In this test, 999 permutations
were generated, and for each permutation, the pairings of the actual trees with the predicted trees
defined by two detection approaches were randomly shuffled; the F-scores were recomputed; and the
difference between the two derived F-scores was estimated. Assuming the common situation in which
a two-sided test (the null hypothesis that there is no significant difference between the two F-scores) at
the five percent level of significance is undertaken, the difference between two F-scores derived with
the same datasets would be regarded as being statistically significant if the computed proportion was
less than 0.05. The results of a selection of pairwise comparisons are summarized in Table 5.

Table 5. Pairwise comparisons of the accuracy statements based on the F-scores derived for different
tree detections. All tests shown were two-sided and the 5% level of significance selected.

Detection 1 Detection 2 F1 F2 F1 − F2 Significant?

Trunk-aided mean shift Adaptive mean shift 0.923 0.887 0.036 Yes, 2%
Trunk-aided mean shift Fixed-bandwidth mean shift 0.923 0.846 0.077 Yes, 1%
Trunk-aided mean shift Region growing 0.923 0.811 0.112 Yes, 0.5%
Trunk-aided mean shift k-means clustering 0.923 0.821 0.102 Yes, 0.5%
Trunk-aided mean shift CHM-based method 0.923 0.747 0.176 Yes, 0.3%
Adaptive mean shift Fixed-bandwidth mean shift 0.887 0.846 0.041 Yes, 2%
Fixed-bandwidth mean shift Region growing 0.846 0.811 0.035 Yes, 2%

Obviously, the proposed trunk-aided mean shift approach accounts for an accuracy improvement
of the overall tree detection rate (see Tables 4 and 5). Such an improvement of the tree detection
performance could be expected since in many forest stands, neighboring trees with crowns overlapping
each other do not appear as two distinct clusters in the point clouds, but their trunks can be clearly
separated for the simple reason that the point structure of trunks is less ambiguous compared with
crown shapes that are partially merged. The refinement of the detection rate is especially apparent
for the intermediate and suppressed trees, as shown in Table 3. Another strength of the proposed
techniques is that the accuracy in tree positioning is significantly improved (see Table 2). This is mainly
due to the fact that the intersection of the detected tree trunk with the ground must be more precise
than the approximate tree position derived from the stationary point of a data cluster.

The major limitation or the biggest uncertainty of the proposed approach is that not all tree trunks
can be correctly detected. The performance of trunk extraction depends on the LiDAR point density
and the forest type [11,28]. The trunk detection works successfully, if there are enough laser hits at
the trunk and if the trunk area can be reliably separated from the crown points. Otherwise, when
reflections of the laser beam in the trunk area are rare and trunk points cannot be clearly clustered, or
when many suppressed or small trees are located below the taller trees, trunk detection would fail,
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and thus, the achieved improvement of the overall tree detection would be low. The second limitation,
not just for this approach, but a common problem for individual tree-level forest inventory systems
using aerial remote sensing technologies, is the under-segmentation issue [27]: still, 8.9% of trees
cannot be detected correctly in the studied forest plots using our approach. The reason is that laser
beams are less likely to penetrate the forest canopy and hit suppressed trees, and this will disable
the algorithms to extract the tree crowns or trunks in the segmentation stage. Other drawbacks of
the approach are caused by the simplified removal of ground-covering vegetation, the simplified
technique of determining the separating plane between the trunk and crown areas and insufficient
rules to decide if a point group represents a trunk. Due to these drawbacks, a detected tree trunk
may be fictitious, or the crown points belonging to a partition cannot be separated with respect to the
detected trunks.

Performance evaluation of the tree-based structural parameter estimation can be conducted by
statistics calculation and regression analysis. The linear fit for the tree height’s scatterplots reveals a
slope nearly equal to one (1.0079) and an offset of 0.1379; this manifests a systematic underestimation
of tree heights by the LiDAR data, which is consistent with other similar studies [2,15,19,40], as shown
in Table 6. The underestimates were due to the lower probability that an emitted laser pulse will strike
the top of a tree rather than elsewhere on the tree crown. Additionally, each laser beam will penetrate
tree foliage to some degree before being reflected back to the sensor. The regression analysis results
also indicate that the average crown width is less accurately estimated, with a relative RMS error of
21.92%, than the tree height. Most of the variance associated with crown diameter can be attributed to
the difference between overlapping and non-overlapping crown widths since LiDAR can only measure
non-overlapping tree crowns (the algorithm for crown diameter estimation on the segmented LiDAR
points aims at measuring the non-overlapping crowns), while the field measurements consider tree
crowns to their full extent and therefore measured overlapping crown widths. Another portion of the
variance for crown diameter can also be attributed to uncertainties in the ground surveys themselves
because of random measurement errors induced by terrain conditions, measuring apparatus or field
personnel. Compared with other approaches presented in the above-mentioned literature, the proposed
trunk-aided mean shift approach could achieve higher accuracy in estimation of tree heights and
crown diameters for individual trees (see Table 6). This is mainly due to the more precise crown
characterization ability offered by the proposed approach than other ones.

Table 6. Accuracy comparisons of tree height and crown diameter estimation among different methods.

Method Tree Height Crown Diameter

Mean Relative Error Relative RMS Error Mean Relative Error Relative RMS Error

Proposed trunk-aided mean shift −2.21% 5.85% 0.65% 21.92%
Adaptive mean shift in [26] −2.45% 7.17% 0.93% 33.59%
Mean shift in [15] −2.84% 8.52% 0.92% 39.47%
Region growing in [2] −2.92% 8.16% 1.37% 42.75%
k-means clustering in [19] −2.68% 7.83% 0.96% 36.98%
CHM-based method in [40] −3.17% 9.76% 1.84% 50.72%

Further accuracy refinements for individual tree detection and tree parameter estimation could be
achieved by increasing the average LiDAR point density, which refers to the nominal value influenced
by the laser pulse repetition frequency, flight pattern, flying height, flying speed and strip overlap [2,11].
The common means to increase the LiDAR point density include reducing the flying speed, increasing
the overlapping of laser strips, accelerating the emission of laser pulses, etc. Alternately, the overall
point density could be increased by optimizing the flight pattern; for instance, flight lines can be
surveyed twice or even more [28]. Apparently, a laser scanner with a higher point density could
provide sufficient data points reflected from the tree trunk and thereby optimize the trunk detection
accuracy. Furthermore, a higher LiDAR point density increases the chance of a laser pulse return from
the highest point in each tree canopy, thus reducing underestimation of tree heights. Moreover, further
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improvements of individual segmentation processes are possible by more sophisticated post-processing
of the clustering results based on shape-related rules or using a priori knowledge about the forest.
For instance, LiDAR clusters could be tested with respect to closeness. Furthermore, a cluster could
not be accepted if its size exceeds tolerances about the tree shape. These issues will be addressed in our
future research. Considering there are some limitations for tree segmentation based solely on LiDAR
measurements, we also plan to use the proposed techniques in conjunction with aerial imagery, which
provides better planform geometry and color (spectral) information, to further improve individual
tree segmentation.

6. Conclusions

In this study, we developed an adaptive mean shift-based approach aided by the tree trunk
detection technique to segment individual trees and estimate tree structural parameters from 3D
point clouds. It is an improved clustering scheme incorporating a bottom-up segmentation strategy,
which has the potential to be successfully applied to structurally complex forests. By applying the
proposed approach to LiDAR data acquired in a multi-layered evergreen mixed forest located in
South China and comparing it with existing point-based approaches in terms of tree detection rates
and biophysical parameter estimation accuracies, we have shown that the combination of adaptive
mean shift clustering and detected tree trunk information can lead to a significant performance
improvement in individual tree-level forest measurement. This is mainly due to the more precise
tree characterization ability inherent in the proposed approach by detecting more vegetation features
in the mode space that are hard to discriminate by conventional clustering techniques. This study
demonstrates the ability of our proposed approach to offer full 3D forest structure characterization
in both vertical and horizontal dimensions, which creates a platform to develop new LiDAR remote
sensing techniques at the individual tree level to quantify the wood volume, biomass and even
biological diversity of forests. By including high-resolution imagery along with the LiDAR point-cloud
data, the object-oriented segmentation at the species level allows for a complete characterization of
forests from remote sensing platforms.
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