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Abstract: Land cover classification plays a pivotal role in Earth resource management. In the
past, synthetic aperture radar (SAR) had been extensively studied for classification. However,
limited work has been done on multi-temporal datasets owing to the lack of data availability and
computational power. As Earth observation (EO) becomes more and more imperative, it becomes
essential to exploit the information embedded in multi-temporal datasets. In this paper, we present
a framework for SAR pixel labeling. Specifically, we exploit spatio-temporal information for pixel
labeling. The proposed scheme includes four steps: (1) extraction of spatio-temporal observations;
(2) feature computation; (3) feature reduction and (4) pixel labeling. First, an adaptive approach is
applied to the data cube to extract spatio-temporal observations in both coherent and incoherent
domains. Second, features in distinct domains are designed and computed to boost information
content embedded in the multi-temporal datasets. Third, sequential feature selection is utilized for
selecting the most discriminative features among the entire feature space. Last, the discriminative
classifier is used to label the class of each pixel. By integrating pixel-/object-based processing
techniques, spatial/temporal observations and coherent/incoherent data attributes, the proposed
method explores diverse observations to solve complex labeling problems. In the experiments,
we apply the proposed method on 64 TanDEM-X images and 70 COSMO-SkyMed high-resolution
images, respectively. Both experiments reveal high accuracies for multi-class labeling. The proposed
technique, therefore, provides a new solution for classifying multi-temporal single-polarized datasets.

Keywords: synthetic aperture radar (SAR); spatio-temporal statistics; multi-temporal analysis;
single-polarized images; supervised classification

1. Introduction

Classifying land cover type has become more and more pivotal as remote sensing technology
advances. Among the existing techniques, optical images are one of the most commonly applied data
for the classification purposes [1]. The high spatial and spectral resolution drastically helps verify
land cover of the Earth’s surface. However, optical images are seriously restricted by atmospheric and
radiometric conditions, which hamper the data availability for classification purposes. In contrast,
synthetic aperture radar (SAR) systems sense the Earth’s surface through the active microwave. It is,
therefore, less restrained by the atmospheric and radiometric effects, making it possible to have a solid
temporal resolution that meets the demand of continuous observation. For these reasons, SAR sensors
are able to play a major role in several application domains dealing with the production of land cover
maps, especially in cases in which optical sensing fails due to the unavailability of cloud-free data [2].

However, the coherent nature of radar signals can cause the effect of speckle [3] and lead to
low signal-to-noise ratios in the acquired images. The backscattering energy collected by the SAR
systems may also fluctuate due to different reasons, such as differences in moisture content, alterations
in incident angles and interventions of human activities. More importantly, the lack of spectral
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characteristics impedes the capability of discerning different ground features from SAR data. Thus, it is
hard to obtain high classification accuracies if only one single-polarization SAR image is considered [2].
To efficiently mitigate these effects, one will have to explore the possibilities in two aspects: (1) utilizing
more complex datasets or (2) increasing the information content of processing units.

The first aspect can be characterized into three types: (1) polarimetric datasets; (2) integrated
datasets and (3) multi-temporal datasets. The first category, polarimetric datasets (i.e., PolSAR),
has not only the advantages of conventional SAR systems, but also the capabilities of capturing
more information about the backscattering characteristics. Therefore, it has been extensively
investigated in past studies [4,5]. The second category focuses on the integrated datasets among
multi-sensor/frequency/polarization data. In [6], SAR images were fused with multi-spectral images
to acquire accurate land cover maps. However, multi-spectral images are often not available in
operational applications [2]. In [7], multi-polarization images were used for land cover mapping.
In [8–10], multi-frequency multi-polarization SAR images were applied. Despite favorable classification
performances of these datasets, they are limited to airborne SAR systems so far. The last category,
as presented in this study, focuses on the temporal signature of a single-polarized data stack. In [11,12],
the temporal variability of the backscatter coefficient was utilized. The work in [11] conducted
crop classification based on an interactive human/computer procedure. The most distinct image
features were classified by photo-interpretation first. Then, image analysis was carried out on the less
interpretable image features. The work in [12] addressed a two-class problem (forest/non-forest)
based on a rule-based procedure. Areas with low temporal variability were considered as the
non-forest regions. The work in [2] addressed the four-class (urban/field/forest/water) and two-class
(forest/non-forest) problems using both coherent and incoherent data. It first qualitatively selected
a few estimators as features specifically for the class in question and then considered the features
as inputs of the RBF (radial basis functions) neural network classifier. The work in [13] utilized the
time series of backscatter coefficients for crop classification. Although the past studies in this category
revealed the potential of SAR classification, solutions for higher automation and the multi-class
problem are still in the development stage.

The second aspect, which focuses on the information content of processing units, also plays a
key role in the classification performance. Processing units are related to the basic size on which the
image operation performs. They can be divided into three groups: (1) single pixels; (2) clustered pixels
and (3) combinations of pixels, clusters and other information. The first type is referred to as the
pixel-based image analysis (PBIA). It has been extensively applied to SAR data because of its simplicity
and efficiency [4,5]. As PBIA takes single pixels as basic units without considering the correlation of
nearby pixels, it usually requires spatial filtering to reduce the speckle effect. In this sense, the full
resolution is not available in most cases. The second type is referred to as the object-based image
analysis (OBIA). Different from PBIA, OBIA extracts image objects based on an image segmentation
process and then performs the image analysis on the objects. Since the objects represent groups of pixels
that share similar characteristics, OBIA can improve the information content of the processing units
and provide improvements over PBIA. However, OBIA commonly requires a systematic trial/error
approach with visual inspection of the image objects for the set up of suitable segmentation [14].
Over-/under-segmentation problems may take place for complex scenes that contain different land
cover classes. An error amplification phenomenon can thus occur [14]. The last type, as proposed in
this study, is hybrid image analysis. Hybrid image analysis refers to the use of multiple processing
units within the analysis framework. The work in [15] performed maximum likelihood classification
at the pixel level followed by the nearest-neighbor classification at the object level. The integrated
method outperformed the results that utilized PBIA/OBIA alone. Overall, limited studies have been
carried out on hybrid image analysis for SAR classification.

Pixel labeling for SAR images has been studied in various ways. Nevertheless, limited
studies have been done on multi-temporal datasets. As the need for continuous observation arises
drastically, multi-temporal datasets become much more available than before and thus build up
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new routes for image analysis. In this paper, we present a framework built upon a high-level of
utilization of multi-temporal datasets for classifying single-polarized images. Our method integrates
spatial/temporal and coherent/incoherent observations with pixel-based/object-based analysis to
improve the classification accuracy. In the following, we focus on same-sensor same-incidence
SAR datasets and consider land cover mapping as our primary goal. The proposed framework
is shown in Figure 1. The framework shows the procedures of the proposed method, including (1) the
multi-temporal data stack; (2) adaptive extraction of spatio-temporal observations and (3) algorithms
that consider spatio-temporal observations conjointly for certain applications.

Figure 1. The proposed framework of this study. N and M indicate the available number of maps for
the amplitude and coherence image, respectively.

The main novelties of the proposed method consist of the following: first, spatio-temporal
observations are extracted and utilized based on local homogeneity. The pixel-based information is
used for isolated targets, and the object-based information is used for homogeneous targets. Second,
innovative features in spatial/temporal and coherent/incoherent domains are designed to enrich
the information content limited to single-temporal single-polarized datasets. Lastly, a favorable
generalization can be achieved. Different methods and applications can be incorporated into the
proposed framework.

This paper is organized into four sections. Section 2 details the methodology, including the
extraction of spatio-temporal observations, feature computation, feature selection and pixel labeling.
Section 3 describes study areas and datasets. Our experiments use TanDEM-X and COSMO-SkyMed
datasets to validate the proposed approach. Section 4 presents the experimental results and discussions.
Section 5 draws the conclusions.

2. Methodology

2.1. Adaptive Extraction of Spatio-Temporal Observations

Multi-temporal datasets contain long series of observations of the same imaged regions. Since their
amplitude time series can provide useful information of the characteristics of the imaged areas,
many studies utilized these time series to find homogeneous regions for adaptive image processing
(e.g., spatial filtering [16,17] and complex coherence estimation [18]). The members of the homogeneous
region with respect to a pixel-of-interest are commonly referred to as statistically-homogeneous pixels
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(SHP) [16]. As SHP share similar backscattering properties in the time domain, processing images
based on SHP reduces the impact of irrelevant information. To improve the information content of the
processing units, we develop a strategy to extract spatio-temporal observations that are adaptive to the
local homogeneity. As illustrated in Figure 2, the procedures include two steps: (1) SHP identification
and (2) temporal sampling.

Figure 2. Extraction of spatio-temporal observations. i represents a generic pixel in space. j and k
are the neighborhood of i. We extract the spatio-temporal observations by temporally sampling the
statistically-homogeneous pixel (SHP) family of i (i.e., Ω(Pi).

A common approach for SHP identification is through hypothesis testing. To allow a
self-contained reading of this study, we briefly describe the required steps of SHP identification.
A detailed description can be found in [16]. Assume N SAR images were acquired in the same
geometry, having been well coregistered and geometrically corrected. One can acquire an amplitude
time series by temporally sampling a generic pixel P:

I(P) = [I1(P), I2(P), ..., IN(P)]T (1)

where I(P) represents the amplitude time series from the first to the N-th images and T is the
transposition.

We then perform the hypothesis tests on I(P) and I(Pkn) by defining a K-neighborhood estimation
window centering on P: {

H0 : SI(P) = SI(Pkn)

H1 : SI(P) 6= SI(Pkn)

(2)

where kn ∈ [1, K] and S indicates a similarity measure.
Various similarity measures (e.g., Kolmogorov–Smirnov and Anderson–Darling tests) have been

applied for SHP identification. However, these tests cannot handle possible temporal variability.
To reduce the impact of temporal variability during the SHP identification process, we apply the robust
t-test (TR) developed in our recent studies (see [19] for details) to improve the effectiveness of the test
operation. The application of the TR test helps to identify the SHP with assurances of similar temporal
behaviors.

If the null hypothesis (i.e., H0) is not rejected at a given significance level, P and Pkn will be
considered statistically homogeneous. Pkn will be incorporated into the SHP family Ω(P). Once Ω(P)
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is identified, we can acquire the spatio-temporal observations for either incoherent (the incoherent data
stack represents the amplitude maps, which are related to the backscatter coefficients) or coherent (the
coherent data stack indicates the coherence maps, which are related to the interferometric observations)
data stacks. One can acquire the incoherent spatio-temporal observations by temporally sampling the
amplitude data stack:

I(Ω(P)) = [I(P1), I(P2), ..., I(Pq)] (3)

or acquire the coherent spatio-temporal observations by temporally sampling the coherence data stack:

C(Ω(P)) = [C(P1), C(P2), ..., C(Pq)] (4)

where q indicates the size of Ω(P). C(P) represents a column vector of coherence values.
Applying the extracting operation to each pixel, we obtain a spatio-temporal cube that

contains a group of observations sharing similar statistical characteristics in both incoherent and
coherent domains.

2.2. Feature Computation for Information Extraction

To differentiate distinct land cover types, we need certain indexes to depict the information
embedded in images. These indexes are usually referred to as “features”. As I(Ω(P)) and C(Ω(P))
provide abundant information in both time and space, various features can be developed. In this study,
we design four categories of features. A total of 52 features has been developed. To focus on the scope
of this study, we qualitatively describe these entities as follows:

1. Time series features: These features are related to the group statistics of I(Ω(P)) and C(Ω(P)).
We design these features by adjusting the processing order of logarithm (log), mean, standard
deviation (std), saturation, etc. With different combinations, various statistics can be calculated.
For example, one can first compute the spatial average of I(Ω(P)) to obtain a time series vector
and then calculate the standard deviation of this vector, and vice versa. One can also compute a
single mean or a single std of I(Ω(P)) or C(Ω(P)).

2. SHP features: These features represent the statistics specifically regarding the SHP. For example,
one can first compute the SHP size at each pixel (i.e., area of Ω(P)), obtaining an SHP size map.
Then, the mean or std of Ω(P) can be calculated based on the SHP size map to acquire different
SHP features.

3. Textural features: These features analyze the statistics of spatial relations among neighboring
pixels (e.g., smoothness, roughness, periodicity). Different types of textural features have been
developed (see [20]). As we have obtained the spatial contents through Ω(P), we can compute
each of these features accordingly. We implement several textural features (e.g., energy and
entropy) based on the gray level co-occurrence matrix (GLCM) (GLCM utilizes the second-order
statistics of the grayscale image histograms to calculate the textures) [21]. We acquire these
features using the reflectivity map (temporal average of the incoherent data stack) and the
long-term coherence map (temporal average of the coherent data stack).

4. Geometric features: These features measure the geometric characteristics of Ω(P). Many intuitive
features can be computed, such as the border length, shape index, compactness, asymmetry, etc.
These features have been extensively used in OBIA as they provide spatial information that is not
well depicted in PBIA.

Assume M features have been computed (M = 52 in this study). In this sense, we transform
the single-polarized data stack into an M-layer feature stack. The computed features for P can be
represented as:

f (P) = [ f1(P), f2(P), ..., fM(P)]T (5)

where f (P) represents an M-element feature vector.
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2.3. Feature Selection for Dimensionality Reduction

The feature computation step provides an adequate number of feature responses at each pixel.
In such a case, it is impractical to manually manage these features for classification. Supervised
classification is also confronted with challenges related to the unbalance between limited training sets
and high-dimensional feature responses. This effect results in unreliable estimation of statistical
class parameters [22]. As a consequence, the classification accuracy tends to decrease as the
number of features increases [23] (known as the Hughes effect [24]). Data mining or machine
learning techniques thus become pivotal in terms of information extraction as they can discover
representative/discriminative features from the obtained feature stack.

Dimensionality reduction is a useful approach for this scope. It can be categorized into two types:
(1) feature selection and (2) feature extraction [25]. The former aims at selecting a subset of features
that minimizes redundancy and maximizes relevance to the class labels, whereas the latter transforms
the original features into a new feature space using combinations of the original ones. Feature selection
chooses representative features from the original feature space without transformation. It, therefore,
preserves the physical meanings of the selected features. In this sense, feature selection is superior in
terms of better readability and interpretability [26].

To improve the accuracy of classification and boost the performance on a high-dimensional feature
stack, we apply one of the best known feature selection approaches, sequential forward selection
(SFS) [27], for dimensionality reduction. The SFS is based on a local search for solutions defined
by the current solution state. Compared with other types of searching strategies (e.g., exponential
searching), SFS has a considerably low computational cost. The implementation of SFS is simple in
concept. First, the algorithm starts with an empty feature set. Then, it iteratively brings in a feature fi
(where i ∈ [1, M]) by evaluating Equation (6) until the inclusion of fi no longer improves a predefined
criterion function G.

f s
m = f s

m−1 ∪ arg max
fi

{
G( f s

m−1 ∪ fi, T, R)
}

(6)

where f s, T and R represent the selected feature set, training set, as well as classification
model/parameters, respectively. m denotes the size of the up-to-date selected feature set.

The SFS is generally used as wrapper feature selection algorithms such that the criterion function
G is assessed through a classifier R trained and evaluated on different parts of the training set T [28].
Different criterion functions and classifiers can be applied. We select the classification accuracy
and discriminant analysis (DA) [29] (see Section 2.4) as the criterion function and the classifier.
Because SFS applies the greedy search algorithm based on a hill-climbing scheme for optimizing
the criterion function G, it is susceptible to the local extremum with respect to the feature set S.
We thus incorporate the leave-one-out cross-validation (LOO-XV) [30] with the SFS to avoid local
optimal solutions. By applying these procedures, we reduce the feature size from M to m, where m is
considerably less than M. The selected feature set becomes:

f s(P) = [ f s
1(P), f s

2(P), ..., f s
m(P)]T (7)

The selected feature set f s represents the most discriminative features among the original features f .
Therefore, we take f s as the input of pixel labeling.

2.4. Pixel Labeling

Various classifiers can be used for pixel labeling. They can be categorized into parametric and
nonparametric ones depending on the probability density estimation approach. Parametric classifiers
assume the form of density functions for each class and estimate the corresponding parameters
through training sets. Nonparametric classifiers compute the local densities through training sets
without specifying the form of density function. However, parametric methods usually require less
computation and storage than the nonparametric ones. They also perform fairly well for practical
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problems. In this sense, we select a benchmark classifier (DA) to validate the effectiveness of the
proposed framework. Depending on how the covariance matrices are assumed, DA can have different
forms, such as LDA (LDA assumes that the Gaussians for each class share the same covariance
matrix) (linear decision surface) and QDA (QDA has no assumptions on the covariance matrices of
the Gaussians) (quadratic decision surface). The DA classifier has several advantages. Its solution
is in closed form, which can be efficiently computed. Furthermore, it is inherent in multi-class
problems. Moreover, it does not require tuning the hyperparameters. In this study, we employ the
QDA classifier for both feature selection and classification to show the potential of the proposed
framework. Compared with LDA, QDA is able to learn quadratic boundaries between different classes
and is thus more flexible.

3. Study Areas and Data Description

To evaluate the effectiveness of the proposed framework, we carry out two experiments using
high resolution datasets. These experiments aim at solving the multi-class problem using the
single-polarized data stack.

3.1. TanDEM-X Data Stack in Los Angeles

The study area of this dataset is located in Los Angeles, California, the United States. As shown
in Figure 3, this area contains various ground features, including roads, water, bare soils, grasses,
trees and urban areas. This dataset consists of 64 images collected between October 2010 and January
2014. The images were acquired in ascending orbit with HH (horizontal-transmit-horizontal-receive)
polarization. The incidence angle was 41.02◦, and the spatial resolution in range and azimuth was
2.08 m and 1.89 m, respectively. The dimensions of these images are 5000 × 5000 pixels. To assess the
classification performance, we manually select training and testing sets based on visual interpretations
of optical imagery (the optical image was taken from Landsat on 11 August 2013) from Google
Earth [31]. The selections and the corresponding sizes are shown in Table 1 and Figure 4, respectively.

(a) (b)

Figure 3. The area of interest for TanDEM-X dataset: (a) optical image (World Imagery: Esri, Redlands,
CA, USA); (b) reflectivity map.
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(a) (b)

Figure 4. Training and testing sets of TanDEM-X dataset: (a) training set; (b) testing set (blue: road;
cyan: water; green: bare soil; yellow: grass; orange: tree; red: urban).

Table 1. Number of training and testing pixels for the TanDEM-X dataset.

Class Training Set Testing Set

Road 3959 215,243
Water 13,580 336,003

Bare Soil 8177 327,836
Grass 1654 18,650
Tree 2130 24,761

Urban 9821 171,658

Total 39,321 1,094,151

3.2. COSMO-SkyMed Data Stack in Chicago

The study area of this dataset is located in Chicago, Illinois, the United States. As shown in
Figure 5, this area contains several land cover types, including water, urban areas, grasses, trees,
railroads and roads. This dataset consists of 70 images collected between January 2013 and December
2014. The images were acquired in ascending orbit with HH polarization. The incidence angle
was 23.93◦, and the spatial resolution in range and azimuth was 2.40 m and 1.80 m, respectively.
The dimensions of these images are 2500 × 2500 pixels. To assess the classification performance,
we manually select training and testing sets based on visual interpretations of optical imagery (the
optical image was taken from Landsat on 2 April 2013) from Google Earth [32]. The selections and
corresponding sizes of training and testing sets are shown in Table 2 and Figure 6, respectively.

Table 2. Number of training and testing pixels for the COSMO-SkyMed dataset.

Class Training Set Testing Set

Water 5168 189,506
Urban 9970 163,348
Grass 3009 39,018
Tree 619 11,270

Railroad 4228 19,788
Road 2029 55,139

Total 25,023 478,069
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(a)
(b)

Figure 5. The area of interest for the COSMO-SkyMed dataset: (a) optical image (World Imagery: Esri,
Redlands, CA, USA); (b) reflectivity map.

(a) (b)

Figure 6. Training and testing sets of COSMO-SkyMed dataset: (a) training set; (b) testing set. (blue:
water; cyan: urban; green: grass; yellow: tree; orange: railroad; red: road).

4. Experiments and Discussions

Using the proposed approach, the proposed system first acquires a full feature vector f for each
pixel (the length of f is 52 in this study). Then, our system employs the SFS to find f s, which represents
the most discriminative features among all the computed features. Last, it applies the QDA classifier
to f s to label the class of each pixel.

In both experiments, we compare the results with Skriver’s approach [13], which utilizes the
time series of backscatter coefficients to classify the single-polarized dataset. We also use the feature
set suggested in [2] to see the impact of a different feature choice. Furthermore, we employ random
picks of training and testing pixels to understand the stability of the selected feature sets. We combine
the training and testing sets into a single set and then perform repeatedly the classification using
random picks of 10% of the pixels in this set as training data (leaving the remaining 90% for validation).
By repeatedly performing this procedure 100 times, we compute the average and standard deviation
of the classification performances. Other commonly-used classifiers (e.g., LDA, decision tree, naive
Bayes) are compared, as well, to verify the generalization of the proposed framework.

In all comparisons, we evaluate the classification performance based on the confusion matrix
and its derivatives, such as the overall accuracy, producer’s accuracy, user’s accuracy and Cohen’s
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Kappa coefficient. The producer’s and user’s accuracies are related to omission and commission errors,
respectively. The overall accuracy represents the correct rate of the overall classification. The Kappa
coefficient indicates the global accuracy. The Kappa coefficient can assess the classification performance
with favorable objectivity as it takes into account the possibility of the correctness occurring by chance.

4.1. Results for the TanDEM-X Data Stack

The selected features for the TanDEM-X data stack are shown in Figure 7. Figure 7a–d corresponds
to the first to the fourth features selected by the SFS. This feature set leads to the highest classification
accuracy during the SFS process. One can observe distinct responses of different land cover classes
among these features. The first feature represents the log mean of C(Ω(P)). It shows the capability
to distinguish between water, roads, bare soils and urban areas. The second feature is the GLCM
(energy) of I(Ω(P)). This feature reveals the capability to differentiate between grasses and trees. It
also shows the potential of separating roads from urban areas. The third feature is the GLCM (entropy)
of C(Ω(P)). It can be used to separate vegetation from urban areas. The fourth feature is the log mean
of Ω(P). This feature is useful for distinguishing between homogeneous (e.g., roads, water and bare
soils) and isolated targets (e.g., urban areas).

For the sake of simplicity, we illustrate the class maps of the proposed and Skriver methods in
Figure 8. The confusion matrices for these two approaches are described in Tables 3 and 4, respectively.
The results show that the proposed approach outperforms Skriver’s approach. The proposed method
reaches 84.30% overall accuracy and a 79.32% Kappa coefficient, indicating a favorable classification
result. Compared with Skriver’s approach, the proposed method has a significant improvement in
both overall accuracy (22% higher) and the Kappa coefficient (28% higher). As the coherent data
provide useful information for further characterizing the land cover types, the lower classification
accuracies in Skriver’s approach may be due to the fact that no coherent information is considered in
their approach.

By looking into the confusion matrices, one can observe that the proposed method has high
potential to classify various land cover types. The classification accuracies for roads, water, bare soils
and urban areas are high in terms of user’s and producer’s accuracies. These results signify that the
selected feature set provides good separations for the considered land cover types. The user’s and
producer’s accuracies for grasses and trees are slightly lower than other land cover types as these two
classes share similar statistics (medium coherence, fluctuated backscatter coefficient and similar SHP
size) that can be easily confused with other ground features.

Apart from Skriver’s approach, it is interesting to compare the results using different features,
classifiers and training/testing sets. Table 5 lists the comparison of classification performances. One can
observe that the random picks of training and testing pixels (i.e, QDAr) can offer low variations and
high averages on their classification performance, showing good stability of the proposed approach.
Results not shown here also signify that the selected features are stable. At this site, only 11 features
(out of 52) have ever been selected among the 100 trials, and four of them (corresponding to Figure 7)
have been selected more than 95 times.

The proposed method (i.e, QDAm) provides the highest classification performance among all the
comparisons. The feature set selected by the SFS performs better than the one used in [2], as well.
It also works well on different classifiers since the overall accuracies and Kappa coefficients remain
high. These results reveal the favorable generalization of the proposed framework.
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(a) (b)

(c) (d)

Figure 7. The selected features for the TanDEM-X dataset: (a) log mean of coherence data (time series
feature); (b) GLCM (energy) of incoherent data (textural feature); (c) GLCM (entropy) of coherent data
(textural feature); (d) log mean of SHP (statistically-homogeneous pixels) size (SHP feature).

(a) (b)

Figure 8. Classification results for the TanDEM-X dataset: (a) proposed approach; (b) Skriver’s
approach (blue: road; cyan: water; green: bare soil; yellow: grass; orange: tree; red: urban).
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Table 3. Confusion matrix for the TanDEM-X dataset based on the proposed approach.

Classified
Producer’s Accuracy

Road Water Bare Soil Grass Tree Urban

Reference

Road 155,157 45 5086 1353 8572 45,030 72.08%
Water 27,584 306,994 117 489 187 632 91.37%

Bare Soil 16,126 0 287,988 6237 4998 12,487 87.85%
Grass 7307 27 1368 6405 2885 658 34.34%
Tree 644 0 563 0 12,241 11,313 49.44%

Urban 6638 1 9311 373 1757 153,578 89.47%

User’s accuracy 72.69% 99.98% 94.60% 43.11% 39.95% 68.65%
Overall accuracy: 84.30%
Kappa coefficient: 79.32%

Table 4. Confusion matrix for the TanDEM-X dataset based on Skriver’s approach.

Classified
Producer’s Accuracy

Road Water Bare Soil Grass Tree Urban

Reference

Road 139,688 23,325 13,571 7376 21,561 9722 64.90%
Water 132,640 198,371 107 60 878 3947 59.04%

Bare Soil 16,843 17 271,925 6243 31,775 1033 82.95%
Grass 7019 147 2217 8408 810 49 45.08%
Tree 780 30 5857 969 14,884 2244 60.11%

Urban 20,939 512 32,095 10,266 61,536 46,310 35.85%

User’s accuracy 43.94% 89.19% 83.47% 25.23% 11.32% 73.15%
Overall accuracy: 62.11%
Kappa coefficient: 51.36%

Table 5. Comparison of classification performances for the TanDEM-X dataset. The subscript r relates to
the random picks from 100 trials. The subscripts m and 2 indicate the feature sets selected by sequential
forward selection (SFS) and [2], respectively.

Overall Accuracy (%) Kappa (%)

QDAr 89.25 ± 0.15 85.82 ± 0.20
QDAm 84.30 79.32
QDA2 77.14 70.02

Skriver’s Approach 62.11 51.36
LDAm 82.70 77.17

Naive QDAm 84.02 78.94
Naive LDAm 82.65 76.93

Decision Treem 82.31 76.98

4.2. Results for the COSMO-SkyMed Data Stack

The selected features of the COSMO-SkyMed data stack are shown in Figure 9. Figure 9a–d
corresponds to the first to the fourth features selected by the SFS. The first feature represents the log
mean of I(Ω(P)). It has the capability to distinguish between urban areas and other types of land cover.
The second feature is a statistic generated by taking the average in the spatial domain for I(Ω(P)),
followed by computing the std in the temporal domain. This feature has the potential to separate
between roads, railroads and urban areas. The third feature is the log mean of C(Ω(P)). It presents a
favorable separation between roads and railroads. It can also be used to distinguish between water
and urban areas. The fourth feature is the mean of Ω(P). It is useful for differentiating between trees
and grasses. Water and urban areas are well separated by this feature, as well.

Similarly, we compare the results with Skriver’s approach, as shown in Figure 10. The corresponding
confusion matrices are tabulated in Tables 6 and 7, respectively. These results show that the proposed
approach performs slightly better than the previous dataset. It achieves 86.29% overall accuracy
and an 80.57% Kappa coefficient, which are considerably good as far as the multi-class problem is
concerned. Skriver’s approach at this test site is less effective than the previous dataset. Its overall
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accuracy decreases from 62.11 to 31.82%, and its Kappa coefficient drops from 51.36 to 21.90%. One
can observe remarkable increases in classification accuracies (overall accuracy is 54% higher and the
Kappa coefficient is 59% higher) for the proposed method, signifying that our method is comparatively
more stable than Skriver’s approach. Based on the confusion matrices, one can observe that different
ground features are well classified under the proposed framework.

Specifically, when Skriver’s method and the proposed approach are compared, one can observe
the remarkable differences in terms of the producer’s accuracy. The selected features capture the low
reflectivity, low coherence and high homogeneity of the water areas, whereas Skriver’s method only
considers the distribution of reflectivity. The limited information in Skriver’s approach can easily lead
to the ambiguity between road and water, as they are both lowly reflected. A similar situation happens
to urban areas, as well. The selected features signify the medium reflectivity, high coherence and low
homogeneity of the urban areas, whereas Skriver’s method only utilizes the information of reflectivity,
causing the ambiguity between man-made and vegetated areas, as well as the low accuracy of the
classification.

Moreover, from the comparisons of different methods described in Table 8, we can also confirm
that the proposed approach yields favorable performance and fairly appreciative generalization.
Last but not least, the random picks of training and testing pixels can still provide low variations and
high averages on their classification performance. These results reveal good stability of the proposed
approach. Results that are not shown here also indicate that features are stably selected. Only eight
features have ever been selected among all the trials, and four of them (corresponding to Figure 9)
have been selected every time.

Table 6. Confusion matrix for COSMO-SkyMed dataset based on the proposed approach.

Classified
Producer’s Accuracy

Water Urban Grass Tree Railroad Road

Reference

Water 176,643 1312 600 812 853 9286 93.21%
Urban 1628 145,611 0 396 5461 10,252 89.14%
Grass 304 4469 28,522 1661 389 3673 73.10%
Tree 0 4610 0 5871 90 699 52.09%

Railroad 0 5291 0 70 14,390 37 72.72%
Road 1617 9530 0 110 2374 41,508 75.28%

User’s Accuracy 98.03% 85.24% 97.94% 65.82% 61.09% 63.41%
Overall Accuracy: 86.29%
Kappa Coefficient: 80.57%

Table 7. Confusion matrix for the COSMO-SkyMed dataset based on Skriver’s approach.

Classified
Producer’s Accuracy

Water Urban Grass Tree Railroad Road

Reference

Water 35,336 709 226 813 79,473 72949 18.65%
Urban 2882 41,610 3580 24,959 73,276 17,041 25.47%
Grass 2 87 22,542 10,032 1323 5032 57.77%
Tree 0 378 373 6781 3122 616 60.17%

Railroad 0 6498 10 1590 11,625 65 58.75%
Road 4914 3109 820 2787 9280 34,229 62.08%

User’s Accuracy 81.92% 79.42% 81.82% 14.44% 6.53% 26.34%
Overall Accuracy: 31.82%
Kappa Coefficient: 21.90%
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(a) (b)

(c) (d)

Figure 9. The selected features for the COSMO-SkyMed dataset: (a) log mean of incoherent data (time
series feature); (b) log std (standard deviation) of incoherent data (time series feature); (c) log mean of
coherent data (time series feature); (d) mean of SHP size (SHP feature).

(a) (b)

Figure 10. Classification results for the COSMO-SkyMed dataset: (a) proposed approach; (b) Skriver’s
approach (blue: water; cyan: urban; green: grass; yellow: tree; orange: railroad; red: road).
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Table 8. Comparison of classification performances for the COSMO-SkyMed dataset. The subscript r
relates to the random picks from 100 trials. The subscripts m and 2 indicate the feature sets selected by
SFS and [2], respectively.

Overall Accuracy (%) Kappa (%)

QDAr 89.64 ± 0.05 85.35 ± 0.07
QDAm 86.29 80.57
QDA2 77.41 67.11

Skriver’s Approach 31.82 21.90
LDAm 85.76 80.12

Naive QDAm 84.96 78.80
Naive LDAm 84.59 78.18

Decision Treem 79.19 71.10

5. Conclusions

This study presents a framework for classifying a single-polarized data stack. The proposed
framework utilizes observations in time and space conjointly without applying any filtering. It thus
preserves the original resolution while moderating the speckle effect. Our experiments show that the
proposed method can solve multi-class problems through the single-polarized data stack, which
is intrinsically different from the conventional SAR classification that relies on the polarimetric
information. Given an abundant number of images (64 for TanDem-X and 70 for COSMO-SkyMed
datasets, respectively), spatio-temporal statistics can be utilized to saturate the classification accuracy.
A similar classification score can be expected for the data stack with an equivalent (or slightly lower)
number of images. According to the experimental results, we draw the following conclusions:

• Considering spatial/temporal and coherent/incoherent observations significantly increases
the information content of single-polarized datasets. On the one hand, the spatial/temporal
observations help reduce the speckle effect and improve the local statistics. On the other hand,
the coherent/incoherent observations provide different information aspects to the observed
regions. As these observations are complementary with each other, the concurrent utilization of
this information significantly augments the potential of classifying single-polarized datasets.

• A highly automatic classification scheme is attained. With a sufficient number of images,
the proposed approach can address the multi-class problem with only a few user-defined
parameters (e.g., window size for SHP identification). No prior knowledge of the characteristics
of the land cover is required either. The entire classification scheme can be carried out once the
training set is created.

• Full resolution can be used under the proposed framework. No filtering procedures are required
during the analysis. This effect results in the preservation of details while enriching the
information content for each pixel.

• The proposed system is equipped with favorable generalization. Once SAR data stacks are
provided, various analyses can be conducted. Furthermore, different processing techniques (e.g.,
feature selection methods or classifiers) can be incorporated into the same framework. This
generalization supplies a large amount of potential for SAR applications.

For future works, the proposed framework can be further developed for different applications
(e.g., change detection and unsupervised classification). With respect to the supervised classification,
more advanced classifiers, such as machine learning, can be applied to improve the classification
performance. The number of images, the type of ground features and the spatial/temporal resolution
of the data stack can also be studied to make continuous EO pragmatically more achievable.
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