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Abstract: Matching multi-sensor remote sensing images is still a challenging task due to textural
changes and non-linear intensity differences. In this paper, a novel matching method is proposed
for multi-sensor remote sensing images. To establish feature correspondences, an affinity tensor is
used to integrate geometric and radiometric information. The matching process consists of three
steps. First, features from an accelerated segment test are extracted from both source and target
images, and two complete graphs are constructed with their nodes representing these features. Then,
the geometric and radiometric similarities of the feature points are represented by the three-order
affinity tensor, and the initial feature correspondences are established by tensor power iteration.
Finally, a tensor-based mismatch detection process is conducted to purify the initial matched points.
The robustness and capability of the proposed method are tested with a variety of remote sensing
images such as Ziyuan-3 backward, Ziyuan-3 nadir, Gaofen-1, Gaofen-2, unmanned aerial vehicle
platform, and Jilin-1. The experiments show that the average matching recall is greater than 0.5,
which outperforms state-of-the-art multi-sensor image-matching algorithms such as SIFT, SURF,
NG-SIFT, OR-SIFT and GOM-SIFT.

Keywords: image matching; multi-sensor remote sensing image; graph theory; affinity tensor;
matching blunder detection

1. Introduction

Image matching aims to find feature correspondences among two or more images, and it is a
crucial step in many remote sensing applications such as image registration, change detection, 3D scene
reconstruction, and aerial triangulation. Among all the matching methods, feature-based matching
methods receive the most attention. These methods can be summarized in three steps: (1) feature
detection; (2) feature description; and (3) descriptor matching.

In feature detection, salient features such as corners, blobs, lines, and regions are extracted from
images. The commonly used feature detection methods are Harris corner detector [1], features from
accelerated segment test (FAST) [2], differences of Gaussian (DoG) features [3], binary robust invariant
scalable (BRISK) features [4], oriented FAST and rotation BRIEF (ORB) [5], Canny [6], and maximally
stable external regions (MSER) [7]. Among these image features, Harris, FAST, and DoG are point
features which are invariant to image rotation. In particular, DoG is invariant to scale and linear
illumination changes. Canny and MSER are line and region feature, respectively.
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In the feature description, every image feature is assigned to a unique signature to distinguish
itself from others so that the similar features will have close descriptors, while different features
will characterize far different descriptors. State-of-the-art feature descriptors include scale-invariant
feature transform (SIFT) [3], speeded-up robust features (SURF) [8], principle component analysis
SIFT (PCA-SIFT) [9], gradient location and orientation histogram (GLOH) [10], local self-similarity
(LSS) [11], distinctive order-based self-similarity (DOBSS) [12], local intensity order pattern (LIOP) [13],
and a multi-support region order-based gradient histogram (MROGH) [14]. For line features,
the mean-standard deviation line descriptor (MSLD) [15] and line intersection context feature
(LICF) [16] have good performances. For region features, Forssén and Lowe [17] gave their solution
based on SIFT descriptor.

In the descriptor matching, the similarities between one feature and its candidates are evaluated by
the distances of description vectors. The commonly used distance metrics for descriptor matching are
Euclidean distance, Hamming distance, Mahalanobis distance, and a normalized correlation coefficient.
To determine the final correspondences, sometimes a threshold, such as the nearest neighbor distance
ratio (NNDR) [3], is applied in descriptor matching.

Though many researchers have made massive improvements in the aforementioned matching
steps in trying to obtain stable and practical matching results, matching multi-sensor remote sensing
images is still a challenging task. The matching difficulties are the results of two issues. First, images of
the same scene from different sensors often present different radiometric characteristics which are
known as non-linear intensity differences [12,18]. These intensity differences can be exampled by
Figure 1a, showing a pair of images acquired by Ziyuan-3 (ZY-3) and Gaofen-1 (GF-1) sensors. Due to
non-linear intensity differences caused by different sensors and illumination, the distance between
local descriptors of two conjugated feature points are not close enough, and thus lead to false
matches. Second, images from different sensors are often shot at different moments which gives
rise to considerable textural changes. As shown in Figure 1b, this image pair was captured by ZY-3
and Gaofen-2 (GF-2) sensors. The shot time spans over three years, and the rapid changes of the
modern city resulted in abundant textural changes among images. Textural changes will bring down
the repetitive rate of image features and lead to fewer correct matches. Both of these aspects reduce
the matching recall [10] and thus lead to unsatisfying matching results.
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sensing images. Yi et al. [19] proposed gradient orientation modification SIFT (GOM-SIFT) which 
modified the gradient orientation of SIFT and gave restrictions on scale changes to improve the 
matching precision. The simple strategy was also used by Mehmet et al. [20]; they proposed an 
orientation-restricted SIFT (OR-SIFT) descriptor which only had half the length of GOM-SIFT. When 
non-linear intensity differences and considerable textural changes are present between images, 
simply reversing the gradient orientation of image features cannot increase the number of correct 
matches. Hasan et al. [21] took advantage of neighborhood information from SIFT’s key points. The 
experimental results showed that this method could generate more correct matches because the 
geometric structures between images were relatively static. Saleem and Sablatnig [22] used 

Figure 1. Non-linear intensity differences and textural changes between image pairs: (a) The image
pair consists of GF-1 and ZY-3 sensor images and (b) GF-2 and ZY-3 sensor images.

As the most representative method of feature-based matching, SIFT-based methods have been
studied extensively. Its upgraded versions are successfully applied in matching multi-sensor remote
sensing images. Yi et al. [19] proposed gradient orientation modification SIFT (GOM-SIFT) which
modified the gradient orientation of SIFT and gave restrictions on scale changes to improve the
matching precision. The simple strategy was also used by Mehmet et al. [20]; they proposed
an orientation-restricted SIFT (OR-SIFT) descriptor which only had half the length of GOM-SIFT.
When non-linear intensity differences and considerable textural changes are present between images,
simply reversing the gradient orientation of image features cannot increase the number of correct
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matches. Hasan et al. [21] took advantage of neighborhood information from SIFT’s key points.
The experimental results showed that this method could generate more correct matches because
the geometric structures between images were relatively static. Saleem and Sablatnig [22] used
normalized gradients SIFT (NG-SIFT) for matching multispectral images; their results showed that
the proposed method achieved a better matching performance against non-linear intensity changes
between multispectral images.

Considering the self-similarity of an image patch, local self-similarity (LSS) captures the
internal geometric layouts of feature points. LSS is another theory which has been successfully
applied for the registration of thermal and visible videos, and it has handled complex intensity
variations. Shechtman [11] first proposed the LSS descriptor and used it as an image-based and
video-based similarity measure. Kim et al. [23] improved LSS based on the observation that a
self-similarity existing within images was less sensitive to modality variations. They proposed a
dense adaptive self-correlation (DASC) descriptor for multi-modal and multi-spectral correspondences.
In an earlier study, Kim et al. [24] extended the standard LSS descriptor into the frequency domain and
proposed the LSS frequency (LSSF) descriptor in matching multispectral and RGB-NIR image pairs.
Their experimental results showed LSSF was invariant to image rotation, and it outperformed other
state-of-the-art descriptors.

Despite the attractive illumination-invariance property, both standard LSS and extended LSS have
drawbacks in remote sensing image matching because of their relatively low descriptor discriminability.
To conquer this shortcoming, Ye and San [18] used GOM-SIFT in the coarse registration process,
and then utilized LSS descriptor for finding feature correspondences in the fine registration process.
Their proposed method alleviated the low distinctiveness effect of LSS descriptors and achieved
satisfied matching results in multispectral remote sensing image pairs. Sedaghat and Ebadi [12]
combined the merits of LSS and the intensity order pooling scheme, and proposed DOBSS for
matching multi-senor remote sensing images. Similar to Ye and San’s matching strategy [18],
Liu et al. [25] proposed a multi-stage matching approach for multi-source optical satellite imagery
matching. They firstly estimated homographic transformation between source and target image by
initial matching, and then used probability relaxation to expand matching. Though the matching
scheme presented in [25] obtained satisfied matching results in satellite images, it has the same defect
as in [18] that if the initial matching fails, the whole matching process will end up with a failure.

Most feature-based matching methods boil down to finding the closest descriptor in distance
while seldom considering the topological structures between image features. In multi-sensor image
pairs, non-linear intensity differences lead to dissimilarities of conjugate features in radiometry,
and changed textures caused by different shooting moments have no feature correspondences in
essence. Descriptor-based matching recall, which is a very crucial factor for a robust matching method,
only depends on the radiometric similarity of feature pairs. On the contrary, although captured
by different sensors or shot in different moments, the structures among images remain relatively
static [22], and they are invariant to intensity changes. Therefore, structural information can be utilized
to obtain robust and reliable matching results. Based on this fact, many researchers cast the feature
correspondence problem as the graph matching problem (e.g., [26–29]). The affinity tensor between
graphs, as the core of graph matching [26], paves the way for multi-sensor remote sensing image
matching, since radiometric and geometric information of image features can be easily encoded in
a tensor. Duchenne et al. [28] used geometric constraints in feature matching and gained favorable
matching results. Wang et al. [30] proposed a new matching method based on a multi-tensor which
merged multi-granularity geometric affinities. The experimental results showed that their method was
more robust than the method proposed in [28]. Chen et al. [31] observed that outliers were inevitable
in matching, so they proposed a weighted affinity tensor for poor textural image matching and gained
better experimental results compared to feature-based matching algorithms.

To address the multi-sensor image matching problem, an affinity tensor-based matching (ATBM)
method is proposed, in which the radiometric information between feature pairs and structural
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information between feature tuples are both utilized. Compared to the traditional descriptor-based
matching methods, the main differences are in four folds. First, image features are not isolated in
matching; instead, they are ordered triplets to compute the affinity tensor elements (Section 2.1).
Second, topological structures between image features are not abandoned; instead, they are treated
as geometric similarities in the matching process. Geometric similarities and radiometric similarities
play the same role in matching by vector normalization and balancing (Sections 2.2 and 2.2). Third,
the affinity tensor-based matching method inherently has the ability to detect matching blunders
(Section 2.4). At last, the tenor-based model is a generalized matching model in which geometric and
radiometric information can be easily integrated.

2. Methodology

Given a source and target images acquired from different sensors, image matching aims to find
point correspondences between the two images. The proposed method for matching involves a
four-step process, namely complete graph building [32], affinity tensor construction, tensor power
iteration and matching gross error detection. In the first stage, an upgraded FAST detector (named
uniform robust FAST, abbreviated as UR-FAST, which will be detailed in Section 2.2) was used to
extract image features, and two complete graphs in both source and target images are built with
their nodes representing FAST features. Then, the affinity tensor between the graphs is built with
its elements expressing the node similarities. Next, the tensor power iteration is applied to obtain
the leading vector which contains coarse matching results. Finally, a gross error detection method is
followed for purifying the matching results. Figure 2 shows the main process of the proposed method.
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2.1. Definition of the Affinity Tensor

Given a source and a target image, FS and FT are the two image feature point sets extracted from
the source and target image, respectively; the numbers of features in FS and FT are m and n; i (i ≤ m)
and i

′
(i
′ ≤ n) are feature indices of FS and FT ; GS and GT are the two complete graphs built by FS

and FT (as illustrated in Figure 2). In the mathematical field of graph theory, a complete graph is a
simple undirected graph in which every pair of distinct nodes is connected by a unique edge. As we
can see from Figure 2, there are ten and eight features in the source and target image, respectively.
According to the complete graph theory, there are C2

10 = 45 unique edges that connect node pairs in
GS, and C2

8 = 28 unique edges that connect node pairs in GT .
The affinity tensor A is built on the two complete graphs (GS and GT) which describes the

similarity of the two graphs. In this paper, tensor A can be considered as a three-way array with a size
of mn×mn×mn, i.e., A ∈ Rmn×mn×mn and aI;J;K is a tensor element located in column I, row J and
tube K in the tensor cube (as shown in Figure 2). To explicitly express how the tensor elements are
constructed, we use (i,i′), (j,j′) and (k,k′) to replace I, J, and K. The indices i, j, and k are feature indices
in the source image ranging from 0 to m − 1; i′, j′ and k′ are feature indices in the target image ranging
from 0 to n − 1. In this way, the tensor element aI;J;K is rewritten as ai,i′ ;j,j′ ;k,k′ located at (i × n + i′)
column, (j × n + j′) row, and (k × n + k′) tube, and it expresses the similarity of triangles TS

i,j,k and

TT
i′ ,j′ ,k′ which are the two triangles in graph GS and GT , respectively.

The tensor element ai,i′ ;j,j′ ;k,k′ can be computed by Equation (1):

ai,i′ ;j,j′ ;k,k′ =


e−

(wb∗‖ fi,j,k− fi′ ,j′ ,k′ ‖2
)2

ε2 , i f i = j = k and i′ = j′ = k′

e−
(‖ fi,j,k− fi′ ,j′ ,k′ ‖2

)2

ε2 , i f i 6= j 6= k and i′ 6= j′ 6= k′

0, others

(1)

where fi,j,k and fi′ ,j′ ,k′ are the geometric descriptors of TS
i,j,k and TT

i′ ,j′ ,k′ . As shown in Figure 3,
the geometric descriptors are usually expressed as the cosines of the three vertical angles in a triangle
(i.e., fi,j,k = (cos θi, cos θj, cos θk)). The variable ε represented the Gaussian kernel band width; ‖.‖ is
the length of a vector; and wb is a balanced factor which will be detailed below.
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As shown in Equation (1), triangle TS
i,j,k and TT

i′ ,j′ ,k′ will degenerate to a pair of points when
i = j = k and i′ = j′ = k′; thus, fi,j,k and fi′ ,j′ ,k′ will be radiometric descriptors (e.g., 128 dimensional
SIFT descriptor or 64 dimensional SURF descriptor) of image feature i and i′. However, the geometric
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descriptors are related to cosines of angles, and the radiometric descriptors are related to intensity
of image pixels; the two kinds of descriptors have different physical dimensions. In addition,
the radiometric descriptors are more distinctive than geometric descriptors because the radiometric
descriptors have higher dimensions than those of the geometric descriptors. To balance the differences
of physical dimensions and descriptor distinctiveness, Wang et al. [30] suggested normalizing all the
descriptors to a unit norm.

However, a simple normalization can only alleviate the physical dimensional differences. Thus,
a constant factor wb is used to balance the differences of descriptor distinctiveness. In this way,
the geometric and radiometric information are equally important when encoded in the affinity tensor.
The constant factor wb can be estimated by the correct matches of image pairs in prior:

wb =
fr

fg
(2)

where fr and fg are the average distances of normalized radiometric and geometric
descriptors, respectively.

Though the balanced factor wb differs in different image pairs, they have the same order of
magnitude. The order of magnitude of wb can be estimated as follows:

(1) Select an image pair from the images to be matched, extract a number of tie points manually or
automatically (the automatic matching method could be SIFT, SURF, and so on);

(2) Remove the erroneous tie points by manual check or gross error detection algorithm such as
Random sample consensus (RANSAC) [33];

(3) Estimate the average feature descriptor distance of the matched features, named fr;
(4) Construct triangulated irregular network (TIN) by the matched points, and compute the average

triangle descriptor distance of the matched triangles, named fg;
(5) Compute the balanced factor wb with Equation (2).

In practical matching tasks, calculating wb for every image pair is very time consuming and
unnecessary, and only the order of magnitude of wb is significant. Thus, we sample a pair of images
from the image set to be matched, estimate the order of magnitude of wb, and apply this factor for
the rest of image pairs. The configuration of wb also has some principles in tensor matching: if both
geometric and radiometric distortions are small, then wb can be an arbitrary positive real number
because either geometric or radiometric information is sufficient for matching; if geometric distortions
are small, then it is preferable a greater wb because radiometric information should be suppressed
in matching; if radiometric distortions are small, then a smaller wb would be better because large
geometric distortions will contaminate the affinity tensor if not depressed.

2.2. Construction of the Affinity Tensor

The affinity tensor of two complete graphs can be constructed by Equation (1). Whereas a pair of
images may consist of thousands of image features, and using all the features to construct a complete
tensor is very memory and time consuming, sometimes a partial tensor is sufficient for matching.
Besides, the feature repeatability is relatively low in multi-sensor remote sensing images, thus leading
to small overlaps between feature sets. In addition, the outliers of image features mix with inliers and
introduce unrelated information in the tensor which leads to a local minimum in power iteration [34].
Moreover, to speed up tensor power iteration, the affinity tensor should maintain a certain sparseness.
Based on the above requirements, the following four strategies are proposed to construct a small,
relatively pure and sparse tensor.

(1) Extracting high repetitive and evenly distributed features. Repetitiveness of features is a
critical factor for a successful matching [2]. We evaluated common used image features such as SIFT,
SURF, and so on, and found that FAST feature had the highest feature repetitiveness. As mentioned
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in Section 2.1, the measure of structural similarities of the graph nodes are three inner angles of the
triangles. However, if any two vertices in a triangle has a small distance, then a small shift of a
vertex may lead to tremendous differences of the inner angles. Consequently, noises are introduced
in computing tensor elements. Inspired by UR-SIFT (uniform robust SIFT [35]), we design a new
version of FAST named UR-FAST to extract evenly distributed image features. As shown in Figure 4,
the standard FAST features are clustered in violently changed textures, while the modified FAST
features have a better distribution. It should be noted that UR-FAST detector is only applied in the
source image, and the features in the target image are acquired by standard FAST and approximate
nearest neighbors (ANN) [36], which will be detailed in strategy (2).
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Figure 4. Comparison of standard FAST and UR-FAST. (a) Standard FAST and (b) UR-FAST.

(2) Reducing the number of image features. The detected features are filtered by ANN [36]
searching algorithm for constructing two feature sets FS and FT . As illustrated in Figure 5a, there are
3 UR-FAST features and 13 FAST features in the source and target images, respectively. As shown
in Figure 5b, to guarantee feature repetitiveness, for every feature element in FS, ANN searching
algorithm is used to search its 4 most probable matches among the 13 features in the target image.
All the candidate matches of feature elements in FS constitute FT (as shown in Figure 5b, the original
feature number in target image is 13, while the feature number decreases to 9 after filtering). In this
way, the tensor size decreases to (3 × 9)3 from the original size of (3 × 13)3, which sharply decreases
the memory consumption.
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Figure 5. An illustration of outlier filtering, the pink dots are outliers: (a) original detected feature
points are shown in (a); while filtered feature sets are shown in (b).
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(3) Computing a partial tensor. When using the definition of an affinity tensor in Equation (1),
the tensor element ai,i′ ;j,j′ ;k,k′ means the geometric similarity of TS

i,j,k and TT
i′ ,j′ ,k′ . As described in strategy

(2), (3 × 9)3 elements should be computed for the complete tensor. Actually, completely computing the
tensor will be redundant and make the tensor less sparse. Therefore, in this algorithm, only a small
part of the tensor elements is computed. As shown in Figure 6, to compute a partial tensor, the ANN
searching algorithm is applied once again to find the 3 most similar triangles in GT for TS

1,2,3 (As shown
in Figure 6, TT

1′ ,2′ ,3′ , TT
4′ ,5′ ,6′ , and TT

5′ ,6′ ,7′ are the searching results). That is, the tensor elements a1,4′ ;2,6′ ;3,5′ ,
a1,5′ ;2,6′ ;3,7′ , and a1,1′ ;2,2′ ;3,3′ are non-zero, and the remaining tensor elements are zero. In this way, the
effects of outliers are alleviated, and the tensor is much sparser.
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(4) Making the graph nodes distribute evenly. Though UR-FAST makes image features distribute
evenly, there is still some possibility that triangles in the graphs occasionally have small areas, and the
vertices of the triangles are approximately collinear. Thus, a threshold of 15 pixels is set to make the
triangles have relatively large areas. If a triangle in either graph has an area fewer than 15 pixels,
then all the tensor elements related to this triangle are set to zero. Formally, if Area(TS

i,j,k) < 15,

then ai,.;j,.;k,. = 0; if Area(TT
i′ ,j′ ,k′) < 15, then a.,i′ ;.,j′ ;.,k′ = 0. The threshold (15 pixels) has less relationship

with sensor types, and it is not case specific but more of an empirical value. Since UR-FAST avoid
clustered image features, the area constraint condition is seldom violated unless the triangle vertices
are approximately collinear.

2.3. Power Iteration of the Affinity Tensor

In the perspective of graph theory, the feature correspondence problem is to find the maximum
similar sub-graphs (i.e., maximize the summation of the node similarities). The best matching should
be satisfied by

z∗ = arg max
z

∑
i,i′ ;j,j′ ;k,k′

ai,i′ ;j,j′ ;k,k′zi,i′zj,j′zk,k′ , z∗ ∈ {0, 1}mn×1

s.t. Z∗1 ≤ 1 and (Z∗)T1 ≤ 1
(3)

where Z∗ ∈ {0, 1}m×n is the assignment matrix, z∗i,i′ = 1 indicates that i, i′ are the indices of matched
points; z∗ is the vectorization of Z∗; 1 is a vector with all elements equal to 1.

The constraint term in Equation (3) shows that all the elements in Z∗1 and (Z∗)T1 are less than 1,
i.e., every node in GS has at most one corresponding node in GT , and every node in GT has at most
one corresponding node in GS (that is, the node mapping between GS and GT is an injective mapping).
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Equation (3) actually is a sub-graph isomorphism problem, with no known polynomial-time
algorithm (it is also known as an NP-complete problem [37]). However, the solution of Equation (3)
can be well approximated by the leading vector of the affinity tensor which can be obtained by tensor
power iteration [34]; the interpretation is as follows.

Based on Equation (1), if ai,i′ ;j,j′ ;k,k′ is bigger, then the possibility that TS
i,j,k and TT

i′ ,j′ ,k′ are matched
triangles is higher, and vice versa. Thus, the tensor elements can be expressed with probability theory
under the assumption that the correspondences of the node pairs are independent [37]:

ai,i′ ;j,j′ ;k,k′ = P(i, i′)P(j, j′)P(k, k′) (4)

where P(i, i′) is the matching possibility of feature pair i and i′.
Equation (4) can be rewritten in a tensor product form [38]

A = p⊗K p⊗K p (5)

where p is the vector with its elements expressing the matching possibility of feature pairs; ⊗K is the
tensor Kronecker product symbol; and A is a tensor constructed by two graphs that have no noise or
outliers, and all the node correspondences are independent.

Though in practical matching tasks, noise, and outliers are inevitable, and the assumption that
the node correspondences are independent is weak, the matching problem can be approximated by
the following function

p∗ = arg min
p
‖A− p⊗K p⊗K p‖F (6)

where ‖•‖F is the operator of Frobenius norm.
Though the exact solution of Equation (3) generally cannot be solved in polynomial-time, it can

be well approximated by Equation (6), of which the computational complexity is O((mn)3). The tensor
power iteration is illustrated in Algorithm 1.

Algorithm 1: Affinity tensor power iteration.
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The output of Algorithm 1 is the leading vector of the tensor A (i.e., the solution to Equation (6)). 
The size of the affinity tensor A is mn mn mn× ×  (i.e., the tensor has mn columns, mn rows, and mn 
tubes), so p*, the leading vector of the tensor A, has the length of mn. Besides, the elements of the 
tensor A are real numbers, so the elements of p* are real numbers too. To obtain the assignment matrix, 
we should firstly transform p* to a m n×  matrix (the matrix is called soft assignment matrix because 
its elements are real numbers. In the manuscript, we donate by Z), then discretize Z to Z* by use of 
greedy algorithm [39] or Hungarian algorithm [40]. Finally, the correspondences of image features 
are generated by the assignment matrix Z*. 
  

The output of Algorithm 1 is the leading vector of the tensor A (i.e., the solution to Equation (6)).
The size of the affinity tensor A is mn×mn×mn (i.e., the tensor has mn columns, mn rows, and mn
tubes), so p*, the leading vector of the tensor A, has the length of mn. Besides, the elements of the
tensor A are real numbers, so the elements of p* are real numbers too. To obtain the assignment matrix,
we should firstly transform p* to a m× n matrix (the matrix is called soft assignment matrix because
its elements are real numbers. In the manuscript, we donate by Z), then discretize Z to Z* by use of
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greedy algorithm [39] or Hungarian algorithm [40]. Finally, the correspondences of image features are
generated by the assignment matrix Z*.

2.4. Matching Blunder Detection by Affinity Tensor

Though the aforementioned tensor matching algorithm gets rid of most of the mismatching points,
there are still matching blunders caused by outliers, image distortions, and noise. Thus, this paper
proposed an affinity tensor-based method for eliminating erroneous matches.

The proposed method is based on the observation that the structures among images are relatively
static. Meanwhile, the affinity tensor includes structural information of the image features. Therefore,
the two matched graphs can induce an attributed graph. In the induced graph, every node has an
attribute that is computed by the summation of the similarities of the triangles which include such a
node. As shown from Figure 7, GS and GT are two matched graphs including six pairs of matched
nodes, and the node pair 6 and 6′ is an erroneous correspondence. Therefore, in this induced graph,
the node induced by erroneous matched node pair (i.e., node 6 in GA, which is induced by node pair
6 and 6′) has a small attribute which measures the similarity that comes from other nodes. In a more
formal expression, the attribute of induced node i can be expressed as follows

sI =
1
N ∑

j,j′
∑
k,k′

ai,i′ ;j,j′ ;k,k′ , i 6= j 6= k, i′ 6= j′ 6= k′ (7)

where sI is the attribute of node i in GA; i and i′, j and j′, and k and k′ are the matched node pairs;
and N is the number of the matched triangles.
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Equation (7) is the basic formula for matching blunder detection. In a practical matching task,
the number of the blunders is more than illustrated in Figure 7, and it is very hard to distinguish
blunders from noise. Thus, we embed Equation (7) in an iterative algorithm: the big blunders are
eliminated first and then the small ones until the similarities are kept constant. The algorithm is
illustrated in Algorithm 2.

In Algorithm 2, I, J, K are the abbreviations for feature index pairs (i,i’), (j,j’) and (k,k’); p represents
for p-th iteration. c is a constant; it can be calculated by the average similarity of triangles which
constructed by two error-free matched feature set (the calculating formula is shown in Equation (7)).
In this paper, it is empirically set to 0.85.
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Algorithm 2: Blunder detection by the affinity tensor.
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As can be seen from Figure 8a, 30 pairs of evenly distributed tie points are selected from the
sub-image pairs. To verify the robustness of the two algorithms, from 10 to 100 pairs of randomly
generated tie points are added in the matched feature sets as the matching blunders. Two parameters
are used to evaluate the effectiveness of the algorithms. The first one is rf (rf = fp/t), where fp is
the number of falsely detected blunders (that is, the detected matching blunders are actually correct
matches, the detection algorithm falsely mark them as erroneous matches), t is the total number of
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correctly matched points. In this experiment, t is 30. In the ideal case, rf is 0, as a lower rf indicates
a better algorithm. The other parameter to measure the usefulness of the algorithms is rc (rc = ct/g),
where ct is the number of correctly detected blunders and g is the total number of matching blunders
in the matched points; in this experiment, g varies from 10 to 100. By the experimental results, rc of
RANSAC and tensor-based algorithms was 1.0, this means both algorithms detected all the gross
errors. The results of rf were demonstrated in Figure 8b. Although both algorithms can detect all
the blunders, the tensor-based algorithm seems to perform better than RANSAC because the average
rf of the former one is only 0.03, which is far below that of the latter. The essence of RANSAC is
randomly sampling, the global geometric transform model is fitted by the sampled points, and the rest
of the points are treated as verification set. The drawback of RANSAC is that the probability of correct
sampling is very low when encountered with considerable mismatches, and finally RANSAC is stuck
in a local minimum. However, graph-based detection method avoids these drawbacks, because the
node attributes represent other nodes’ support. If the node is an outlier, other nodes’ support will be
very small, and thus the attribute indicates whether the node is an outlier or not.

3. Experimental Results

The proposed ATBM was evaluated with five pairs of images which were captured by ZY-3
backward (ZY3-BWD), ZY-3 nadir (ZY3-NAD), GF-1, GF-2, unmanned aerial vehicle (UAV) platform,
Jilin1 (JL1), SPOT 5, and SPOT6 sensors. To examine its effectiveness, five descriptor-based matching
algorithms were chosen as the competitors, namely, SIFT, SURF, NG-SIFT, OR-SIFT, and GOM-SIFT.
These five descriptor matching algorithms were state-of-the-art in matching multi-sensor images.
The matcher for these algorithms was ANN searching, and the NNDR threshold was set to 0.8. In the
following, evaluation criteria, experimental datasets, implementation details, and experimental results
are presented.

3.1. Evaluation Criterion and Datasets

In order to evaluate the proposed method, two common criteria including recall and precision [10]
were used. The two criteria are defined as follows: recall = CM/C and precision = CM/M, where CM
(correct matches) was the number of correctly matched point pairs, C (correspondences) was the
total number of existing correspondences in the initial feature point sets, and M (matches) was the
number of matched points. However, for large images covering mountainous and urban areas, a global
transformation such as projective and second-order polynomial models could not accurately express
the geometric transformation among such images [18]. Thus, in the estimation of C and CM, 25 pairs
of sub-images grabbed from the complete image pairs were used for evaluation. Each of the sub-image
pairs was typically characterized by non-linear intensity differences and considerable textural changes
(the details of the complete image pairs were listed in Table 1; the sub-image pairs were shown in
Figure 9).

C and CM were determined as follows: A skilled operator manually selected 10–30 evenly
distributed tie points between image pairs, and an accurate homographic transformation was computed
using the selected tie points. Then the computed homographic matrix with the back-projective error
threshold of 3.0 pixels was used to determine the number of correct matches and correspondences.

Apart from recall and precision, positional accuracy was used to evaluate the matching
effectiveness of ATBM and other five matching algorithms. The positional accuracy was also used by
Ye and San [18] and was computed as follows. First, TIN was constructed using the matched points of
the complete image pair, and 13–38 evenly distributed checkpoints (or CPs, for short) were fed to the
Delaunay triangulation. Then, an affine transformation model was fitted by the matched triangles.
Lastly, positional accuracy was estimated via the root mean square error (RMSE), which was computed
through the affine transformation of the CPs.
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Table 1. Experimental image pairs.

No. Platform Acquisition
Date Location Image Size (Pixels) Pixel Size

(m/Pixel)
CPs

Number

1
GF-1 2013 Xinjiang, China 18,192 × 18,000 2.0

30ZY-3 2012 24,530 × 24,575 2.1

2
GF-2 2015 Beijing, China 9376 × 9136 1.0

32ZY-3 2012 24,530 × 24,575 2.1

3
ZY3-BWD 2014

Wuhan, China
24,525 × 24,419 2.1

38ZY3-NAD 2015 16,292 × 16,348 3.5

4
UAV 2014 Changchun, China 4990 × 3908 0.5

36JL1 2014 4765 × 4070 1.0

5
SPOT5 2009 Barcelona, Spain 598 × 551 2.5

13SPOT6 2012 792 × 729 1.5

3.2. Implementation Details and Experimental Results

In the process of feature extraction, UR-FAST was applied in the source image, and standard FAST
was used in the target image. It was shown by our experiments that this feature extracting strategy
could greatly improve the feature repetitiveness compared to commonly used feature detectors such as
Harris features, BRISK, DoG, and ORB. In the construction of the affinity tensors, to guarantee repetitive
rate of image feature, it retained 50 UR-FAST features in the source image. For every UR-FAST feature,
ANN algorithm was applied to search for its 4 candidate correspondences; for every triangle in the
source image, ANN algorithm was applied again to search for its 3 candidate matched triangles (by our
experiments, the matching recall reached the peak when the numbers of candidate matching features
and triangles were 4 and 3, respectively). The Gaussian kernel bandwidth ε in Equation (1) was set to
π/15, and any computed tensor elements that were higher than π/5 were set to zero. The balanced
weighted factor in Equation (1) was empirically set to 0.01 (the more precise balanced weighted factor
could be calculated by Equation (2) if necessary). Besides, to trade off computational cost and accuracy,
we made 5 trials in power iterations (the power iteration was shown in Algorithm 1).

The complete image pairs listed in Table 1 were the testing datasets for estimating positional
accuracy. There were thousands of feature points in these image pairs. Thus, computing the affinity
tensors for such image pairs was very time consuming. Meanwhile, storing all the feature descriptors
in computer memory was nearly impossible. Therefore, SIFT algorithm (SIFT algorithm was optional;
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other algorithms such as SURF and ORB were also sufficient for the coarse matching) was used to
obtain some tie points in down-sampled image pairs. Then, we roughly computed the homographic
transformation between the image pairs. Next, the two images of an image pair were gridded
to sub-image pairs, and every sub-image pair would be overlapped under the constraint of the
homographic transformation (this coarse-to-fine strategy was also applied by the compared algorithms).
In the end, all the sub-image pairs were matched by ABTM as illustrated in Figure 2.

ABTM, SIFT, SURF, NG-SIFT, OR-SIFT, and GOM-SIFT were also evaluated with the testing
data listed in Table 1. All the test image pairs were selected from different sensors and, hence,
had considerable illumination differences particularly in images with higher resolution. In addition,
these test images had different scales and topographic relief, so obvious geometric distortions and
considerable texture changes were present.

Figure 10 showed the matching results of ABTM on the five test image pairs. It seemed clear that
ABTM obtained favorable matching results though there were non-linear intensity differences with
considerable texture changes and somewhat obvious geometric distortions.
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As shown in Figure 10, ATBM obtained abundant and evenly distributed matches in all of the
experimental images. The first pair of images was from Xinjiang, China and captured by GF-1 and
ZY-3 sensors; therefore, the illumination differences were obvious as evidenced by the matching details.
Besides, there were also changes in scale caused by the differences of ground sampling distance (GSD)
of sensors and the vast topographic relief caused by the Chi-lien Mountains. These two factors resulted
in locally non-linear intensity differences and geometric distortions. Nevertheless, ATBM obtained
evenly distributed tie points in the sub-image pairs (as shown in Figure 10f). However, in the middle
of the first image pair (Figure 10a), there was no tie point. This is because the two images were
captured at different moments, and the image textures changed dramatically. Thus, there was hardly
any feature repetition. Although feature correspondences by geometric constraints are found in the
initial matching process, the tensor-based detection algorithm eliminated all the false positive matches
in the gross error detection process of ATBM.

The second image pair consisted of two images from the GF-2 and ZY-3 sensors. The two images
were captured at different moments which spanned over three years; therefore, considerable textural
changes were presented as a result of the rapid development of modern cities in China (as shown
Figure 10g). The tie points of the second sub-image pair were clustered in unchanged image patches
because ATBM detected feature correspondences using radiometric and geometric constraints. It could
find feature matches in the unchanged textures which were surrounded by numerous changed textures.
Therefore, the tie points of the complete image pair (as shown in Figure 10b) distributed well.

The third pair of images was captured by the ZY3-BWD and ZY3-NAD sensors. The two images
were taken in different seasons—namely early spring and midsummer. The different seasons led to
much severer intensity changes compared to the first two image pairs. For example, it seemed clear
that in Figure 10h, some of the pixel intensity was reversed. However, ATBM was immune to intensity
changes and obtained stable matching results in this image pair as well.

The fourth pair of images was shot by UAV and JL1 sensors (the camera equipped on UAV
platform was Canon EOS 5D Mark III), and it could be seen that JL1 image was blurrier than UAV
image. The transmission distance between the sensed target and satellite sensors was much longer
than that of UAV sensors and their targets, the reflected light lost more in the transmission, thus the
UAV images looked sharper than satellite images. Besides, as in the second image pair, the two images
were captured at different seasons. JL1 image was covered by thick snow, while the UAV image was
covered by growing trees (as shown Figure 10i). However, both these two challenges had few impacts
on the matching results, and ATBM still obtained abundant tie points.

The fifth pair of images was from an urban area and the image resolution was high (2.5 m for
SPOT5 and 1.5 m for SPOT6), and the two images were characteristic with structured textures (as
shown in Figure 10j). These textures benefitted FAST corner detector, and thus the matching result was
satisfied too.

Figure 11 gave a quantitative description of ATBM and a comparison of the five feature descriptors.
ATBM outperformed the other five matching algorithms in all the evaluation criterion including
matching recall, matching precision, number of correct matches, and positional accuracy.

ATBM outperformed the other five algorithms in all the test images which contained locally
non-linear intensity differences, geometric distortions, and numerous textural changes. The better
performance owed to the higher matching recall (higher than 0.5 in matching recall for ATBM as shown
in Figure 11a), which resulted in more correct matches between image pairs. In addition, ATBM used
the affinity tensor-based gross error detection algorithm which could distinguish true matches among
a number of wrong ones. Thus, the matching precision and the number of correct matches was higher
too (the average number of correct matches for ATBM was approximately 20 for sub-image pairs).
Higher positional accuracy (an average of 2.5 pixels for ATBM) was consequent because positional
accuracy was mainly determined by the number of correct matches and matching precision.
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ATBM tended to match feature points with the similarities in both geometry and radiometry.
Both geometric and radiometric information played the same role in matching texturally fine and
well-structured images (i.e., images with small geometric and radiometric distortions). The higher
matching recall benefitted from the affinity tensor which encoded geometric and radiometric
information. Geometry described the intrinsic relations of feature points. Meanwhile radiometry
represented local appearances. When geometric or radiometric distortions were considerable,
ATBM could make the two constraints compensate for each other. For example, in sub-image pair 1,
the geometric distortions were relatively large, and thus, radiometric information played a leading
role in matching. While in sub-image pair 3, the flat farmlands resulted in relatively small geometric
distortions, and such information compensated for the radiometric information in matching.

In general, descriptor-based matching algorithms are determined via NNDR of the radiometric
descriptors. When encountered with non-linear intensity differences and changed textures,
the drawback of the NNDR strategy in matching multi-sensor images was exposed: descriptor distance
of two matched features was insufficiently small. OR-SIFT and GOM-SIFT modified the descriptor to
adapt the textures in which the radiometric intensity differences were reversed, while these image pairs
were not such the case because the intensity differences were non-linear. NG-SIFT used normalized
descriptors and abandoned gradient magnitude, though it had a certain of capability to resist non-linear
intensity differences, it had problems in descriptor distinctiveness. Therefore, the descriptor-based
matching methods such as SIFT, SUFR, OR-SIFT, GOM-SIFT and NG-SIFT had relatively lower
matching recall in the experimental image pairs. ATBM avoided NNDR rule and tended to find the
best matches in geometry and radiometry, and thus leading to higher matching recall. Benefitting from
higher matching recall, there were more correct matches for ATMB in the sub-image pairs (shown in
Figure 11c), and it could also be concluded that there would be more correct matches in the complete
image pairs (evidences were shown in Figure 10a–e). With more correct matches, the positional
accuracy was higher, too (as shown in Figure 11d).

The experimental results of the five descriptor-based matching algorithms were strongly
dependent on the image contents: GOM-SIFT obtained the most correct matches and highest matching
recall (Figure 11a,b), SIFT had the best matching precision (Figure 11c). In most cases, OR-SIFT and
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GOM-SIFT had similar matching results, because OR-SIFT used the same manner as GOM-SIFT to
build feature descriptors; the differences between them were that OR-SIFT had the half-descriptor
dimensions of GOM-SIFT, thus OR-SIFT had efficiency advantage in ANN searching. SIFT had the best
matching precision in the experimental data; this is because SIFT descriptor had higher distinctiveness
than another four feature descriptors. NG-SIFT and SURF had no obvious regularity in the testing
data, though both of them were characteristic with scale, rotation, and partly illumination change
invariance, which were also the capabilities of SIFT, OR-SIFT, and GOM-SIFT.

ATBM outperformed other five matching algorithms again in positional accuracy (shown in
Figure 11d). Positional accuracy was mainly determined by the matching precision, number of
correct matches and their spatial distribution. In most cases, more numbers of correct matches (as we
can see from Figure 11b, ATBM had more numbers of correct) meant a better spatial distribution,
and the matching precision of ATBM was higher than other five algorithms too (shown in Figure 11c).
Therefore, ATBM had higher positional accuracy than other five descriptor matching algorithms.

4. Conclusions and Future Work

Image matching is a fundamental step in remote sensing image registration, aerial triangulation,
and object detection. Although it has been well-addressed by feature-based matching algorithms,
it remains a challenge to match multi-sensor images because of non-linear intensity differences,
geometric distortions and textural changes. Conventional feature-based algorithms have been prone to
failure because they only use radiometric information. This study presented a novel matching algorithm
that integrated geometric and radiometric information into an affinity tensor and utilized such a
tensor to address matching blunders. The proposed method involved three steps: graph building,
tensor-based matching, and tensor-based detection. In graph building, the UR-FAST and ANN
searching algorithms were applied, and the extracted image features were regarded as graph nodes.
Then the affinity tensor was built with its elements representing the similarities of nodes and triangles.
The initial matching results were obtained by tensor power iteration. Finally, the affinity tensor was
used again to eliminate matching errors.

The proposed method had been evaluated using five pairs of multi-sensor remote sensing
images covered with six different sensors: ZY3-BWD, ZY3-NAD, GF-1 and GF-2, JL-1 and UAV
platform. Compared with traditionally used feature matching descriptors such as SIFT, SURF, NG-SIFT,
OR-SIFT and GOM-SIFT, the proposed ATBM could achieve reliable matching results in terms of
matching recall, precision correct matches, and positional accuracy of the experimental data. Because
the tensor-based model is a generalized matching model, the proposed method can also be applied in
point cloud registration and multi-source data fusion.

However, a few problems should be addressed in future research. The bottleneck of the computing
efficiency is ANN algorithm when using in the searching for n most similar triangles. For example,
if a feature set consists of 50 image features, these features constitute 503 triangles, then the KD-tree
will have 503 nodes, and lead to a very time-consuming result for construction of KD-tree. In addition,
the efficiency of searching for n most similar triangles in a 503 nodes KD-tree is very low in essence.
The computational time of ATBM is higher than that of SURF, SIFT because the considerable size of the
affinity tensor increased computing operations in the power iterations. Further research can introduce
new strategies to make the tensor sparser and reduce computational complexity in power iterations.
Besides, power iterations also could be implemented in a GPU-based parallel computing framework
which could immensely speed the power iterations.
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