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Abstract: High-density point clouds are valuable and detailed sources of data for different processes
related to photogrammetry. We explore the knowledge-based generation of accurate large-scale
three-dimensional (3D) models of buildings employing point clouds derived from UAV-based
photogrammetry. A new two-level segmentation approach based on efficient RANdom SAmple
Consensus (RANSAC) shape detection is developed to segment potential facades and roofs of the
buildings and extract their footprints. In the first level, the cylinder primitive is implemented to trim
point clouds and split buildings, and the second level of the segmentation produces planar segments.
The efficient RANSAC algorithm is enhanced in sizing up the segments via point-based analyses for
both levels of segmentation. Then, planar modelling is carried out employing contextual knowledge
through a new constrained least squares method. New evaluation criteria are proposed based on
conceptual knowledge. They can examine the abilities of the approach in reconstruction of footprints,
3D models, and planar segments in addition to detection of over/under segmentation. Evaluation of
the 3D models proves that the geometrical accuracy of LoD3 is achieved, since the average horizontal
and vertical accuracy of the reconstructed vertices of roofs and footprints are better than (0.24, 0.23)
m, (0.19, 0.17) m for the first dataset, and (0.35, 0.37) m, (0.28, 0.24) m for the second dataset.

Keywords: building reconstruction; photogrammetric point cloud; efficient RANSAC; UAV;
contextual/conceptual knowledge; architectural model; step roofs

1. Introduction

Three-dimensional (3D) city models have been in demand since the mid-1990s for various
applications such as photorealistic real-time visualization of terrestrial walkthroughs [1]. More recently,
it has become widespread through the internet in such applications as Google Earth [1]. One of
the significant entities of 3D city model is building, which includes roof and walls with various
structures. These features can be modelled in different details. The City Geography Markup Language
(CityGML) is an Open Geospatial Consortium (OGC) interoperable data model and encoding standard
for demonstrating city models. According to CityGML version 2.0, there are five levels of detail (LoD)
for its building module. The architectural model of a building is represented by a geometrically exact
outer shell in LoD3 [2]. Each LoD should enforce a minimum horizontal and vertical accuracy [2],
and thus LoD3 should observe a specific accuracy, which is 0.5 m horizontally and vertically. This model
can be employed in Building Information Modelling (BIM) [3] and evacuation scenarios [4].
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3D building reconstruction can be characterized by the approach taken, the data used, the target
feature which should be reconstructed, and assumptions of modelling, which are discussed in
the following.

Reconstruction can most broadly be classified as bottom-up/data-driven and top-down/model-driven.
In data-driven approaches, the building is divided into individual elements, which are reconstructed
directly from the geometric information of the data. In model-driven approaches, a reconstruction model
is selected from a library as a hypothesis. The data is then used to verify the model [5]. In addition, some
researchers use hybrid approaches to benefit from the advantages of both, e.g., [6–8]. In [8] cardinal planes
of the roof, which include adequate data, were reconstructed through a data-driven method, whereas
dormers, which consist of insufficient data, were modelled through a model-driven method. Furthermore,
some research such as [6,7] integrate additional knowledge to the data-driven approach in the form of
target-based graph matching and feature-driven approach, respectively. In [6] a limited number of common
roof shapes as targets and features found in the laser data are matched. Then, the matching is carried out
between topological relations among segments with the topology of target objects. In [7] the point cloud is
segmented via a sub-surface segmentation method, then a rule-based feature recognition approach detects
different sections of the building, next the geometry in each collection of features is adjusted with regard to
other features.

A good deal of methodological research is pursued for building reconstruction from different
types of data. The most important data sources used in the literature for building reconstruction
consist of LIDAR data [9–12], terrestrial laser scanning data [13], DEM [14], satellite images [15],
aerial images [16], images captured by unmanned aerial vehicle (UAV)s [17], image-derived point
cloud [18–20], building footprint [21], InSAR [22], etc. Each of the aforementioned data types has
special characteristics and is most profitable for a part of building reconstruction process and even on
occasion in a particular LoD. Furthermore, usually several sources of data, such as DSM and aerial
images or LiDAR and optical images, are fused in the reconstruction process [23–26].

UAVs have advanced capabilities for capturing nadir and oblique images close to the object, which
could be applied for coating surfaces of buildings completely [27]. In addition, UAVs can provide
images for small urban environments. Therefore, UAV images could be employed for producing dense
point clouds for 3D building reconstruction with high details [28]. Dense image matching (DIM) is
employed to generate image-derived or so-called photogrammetric point clouds [29]. However, due to
occlusions, illumination changes [28], improper viewing angles and ambiguous areas [30] applying
DIM to oblique imagery causes different problems. Photogrammetric point clouds usually have
versatile spatial distributions [31] and suffer from clutter in depth, because of improper viewing angles
and the rapid motion of the platform, plus noisy data on reflective surfaces [32]. Nonetheless, they are
cheaper than LiDAR point clouds, especially when they are derived from UAV imagery, and carries
texture and color information [31]. Indeed UAVs are fairly inexpensive platforms, also amateur
digital cameras, costing a few-hundred euros, can be utilized to produce point clouds with cm-level
resolution [33,34]. Furthermore, it is worthy of attention that if this type of point cloud benefits from
images with large overlaps and high resolutions, it can be comparable to terrestrial laser scan data,
from the viewpoint of quality [28].

Subclasses of the building, which have been reconstructed in 3D city models, are various
according to the CityGML standard [35]. Features of interest in semi/full automatically 3D building
reconstruction mostly belong to the building’s roof or walls. Additionally, footprint is an essential
part in the building reconstruction, in that it indicates the boundary of the building point cloud
and separates it from other objects. Generating footprint in [36] is composed of boundary edges
identification, tracing edges to form an irregular boundary and boundary regularization. Tracing edge
points, collecting collinear points, adjusting the extracted lines and generating footprint are different
steps of the proposed method in [37]. Additionally, in some research such as [38], building outline
generation is performed via regularization of boundary points of the roof rather than walls, due to
the lack of points on walls and neighboring grounds of the building. Moreover, in a wide range of
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research on wall reconstruction, it was assumed to be vertical. Then, the reconstruction was performed
by placing reliance on this assumption and extruding the footprints such as in [38–40], to name but
a few.

Concerning the aforementioned papers, a new data-driven approach without considering any
assumption is applied on the image-derived point cloud. The point cloud is generated from images
captured by UAV to produce an accurate 3D model of building and its footprint. One of the important
problems in 3D reconstruction with photogrammetric point cloud is its heavy clutter. Moreover, point
clouds of the buildings contain different parts, which cannot be of interest in the reconstruction process,
and therefore should be removed. Another problem is that working with high-density point clouds
is data intensive. In most researches on the metric 3D reconstruction, geometrical accuracy is also a
significant parameter. Hence, the processes ought to be managed. To accomplish the aims of the paper,
the following contributions are included in this research:

• New data: utilizing high-density photogrammetric point clouds as the only source of data. According
to the literature review, most of the papers exploit photogrammetric point clouds as an additional
source of data. The capabilities of this type of point cloud in building reconstruction have not been
much appreciated.

• Improving segmentation method: point-based analyses are performed to improve the segmentation
method in sizing up segments.

• New constrained planar modelling: the modelling method is developed to create models of facades,
roofs and the grounds by imposing the constraints on local normal vectors. The plane-based generation
of footprints is a novel usage of points on walls and grounds in building reconstruction.

• New evaluation method: this method examines segmentation in the viewpoint of generation of
planar segments and proposes vertex-based criteria to explore over/under segmentation and
refine the reconstructed footprint.

The following parts of the article are organized to establish the aforementioned items. In Section 2,
overview of the proposed approach and background of the research will be explained. In this section,
segmentation and the constrained least squares modelling of buildings will be described. In Section 3,
data and methods of the research will be discussed. It consists of 2-level segmentation, improvement
in the efficient RANSAC algorithm and planar modelling. In Section 4, results of the research and
evaluation of segmentation and 3D models will be elaborated. In section 5, discussions are presented.
Finally, the most important achievements will be summarized in Section 6.

2. Overview of the Method and Background

Briefly, this research adopts a RANSAC shape detection method and improves this method,
via applying knowledge, to firstly break down high-density point clouds of buildings into smaller
sections, and secondly segment them to potential facades and roofs. In addition, point clouds of
surrounding grounds of buildings are segmented to generate their footprints. Then, a knowledge-based
plane fitting method constructs planar models from segmented patches of point clouds, which are
derived from UAV-based photogrammetry. The knowledge is employed to constrain the modelling
process in addition to check the reconstructed models. The evaluation step is performed through the
new criteria for segmentation and reconstruction. In Figure 1 the workflow of the proposed method is
delineated. The details of the method will be explained in Section 3, along with applying the method
on data.
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Figure 1. The general diagram of the proposed 3D reconstruction method.

2.1. Segmentation

Segmentation is a prominent part of point cloud processing. The objective of this part is to group
points into meaningful clusters, whose points have similar characteristics. In [41] segmentation methods
were divided into five categories, including edge-based, region-based, attribute-based, graph-based,
and model-based. In model-based methods, all points with the same mathematical characteristics are
grouped as one segment, e.g., sphere, plane, and cylinder [41].

In [42] a model-based algorithm was proposed to detect basic shapes in unorganized point
clouds. Their algorithm is based on RANSAC. This algorithm deals with the shape extraction as
an optimization problem utilizing a score function. So that, the primitive with the maximal score is
searched using RANSAC. Candidates for all shapes are generated for each minimal subset. The score
evaluation scheme counts the number of compatible points for a shape candidate, which constitutes
the largest connected component on the shape. The best candidate is selected whenever the probability
that no better candidate was overlooked, is high enough. Our research adopts the algorithm proposed
in [42], namely the efficient RANSAC, to segment unorganized point clouds of buildings. Because this
algorithm yields good results even if a high degree of outlier and noise exists in the point cloud [41].
In addition, it can produce models for the patches of points, which include holes. However, it has
deficiency in sizing up the shapes within the point cloud [41].

The efficient RANSAC algorithm uses octree structure and have several parameters including
minimum points per primitive to access the optimum sampling, maximum distance of points from
primitives, sampling resolution to find connected components, maximum normal deviation of a point
from the normal of the sample primitive, and overlooking probability [42]. Optimum sampling is
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determined in regard to outlier density and distribution and shape size [42]. Overlooking probability
relates to the probability of points belonging to each primitive and exhibits the probability of
overlooking a better candidate for the shape.

2.2. Constrained Least Squares Modelling

After breaking down point clouds into planar segments, planar models are constructed using the
following Equation.

axi + byi + czi + d = 0, (1)

where [xi, yi, zi] are coordinates of point i and [a, b, c, d] is the unknowns vector of the fitted plane.
Furthermore, the angle of the local normal vector with the normal vector of the surface (∠n, ni) is
employed as the constraint through the next Equation.

cos−1((n.ni)/ (‖n‖.‖ni‖)) ≤ toleranceangle, (2)

where n = [a, b, c]. The adjusted planar models for the detected segments are computed via the
constrained least squares adjustment (the following Equation), whose initial values for the unknown
vector come from the efficient RANSAC.

Ax = l + v subject to Hx ≤ w, (3)

where A is the coefficient matrix, x = [a, b, c, d] is the unknowns vector, l is the observations vector
and v carries the residuals. In addition, H is the constraint matrix and w is the constant restriction
vector.

One of the presentation method of 3D models is boundary representation (B-rep), which is based
on surfaces and consists of two types of information including geometry and topology. Topology
graphs of faces are provided and utilized to compute the vertices. Vertices on at least three faces
are computed using Cramer’s rule (the next Equation) for solving a system of linear equations with
unique solution.

AX = D then xi =
det(Ai)

det(A)
, (4)

where ith column in A is replaced with D to reach Ai. For the vertices, which are placed on more
than three planes, the adjusted coordinates are examined via the weighted average to remove the
possible cartographic error due to the existence of several candidates for one corner. The weights are
set proportional to the size of the smallest plane in each intersection to generate its candidate.

3. Materials and Methods

We applied our method on the data, which include two photogrammetric point clouds from different
building blocks. These buildings are demonstrated in Figure 2 and are located in Baden-Wuerttemberg,
Germany. Both of the datasets include several blocks of connected buildings, which have eaves. Moreover,
existence of step roofs in the second building makes the reconstruction process more challenging.
The second building is composed of three connected buildings, of which two make L-shaped junction.
In addition, both buildings include towers. Scaffolding around the tower of the first building and the walls
of the second building, arch holes on the walls of the first building, besides digging part and building
materials scattered on the grounds of the second building, plus big and frequent windows on the walls of
both buildings, in addition to several stairs around both buildings, all raise challenges of 3D reconstruction
process and 3D footprint generation considerably. In Figure 2, some of these details are demonstrated.
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Figure 2. Two building blocks and their surrounding areas.

In order to generate point clouds, multiview images were captured by a Sony camera with focal
length of 35 mm, which was conveyed by a Falcon octocopter. The UAV flew around the entire building
and performed nadir and oblique imaging. Details of the flight plan are explained in the following: The
average GSD is 1 cm/pixel. In addition, 22 ground control points (GCPs) are prepared and employed
for georeferencing and model calculation. The average end lap of the images is 80% and the average
side lap is 70%. Moreover, the overall number of the images, which are used in models calculation,
are 526. Images were processed with Photoscan software by Agisoft. The self-calibration report of the
camera is presented in Appendix A. The sparse point clouds were generated using SFM. Next, dense
photogrammetric point clouds were produced via DIM. The average horizontal and vertical errors on
16 GCPs as control points are 0.5 and 1.2 cm, respectively. The average horizontal and vertical errors
on 6 check points are 0.7 and 1.5 cm.

Two case studies include about 20 and 53 million points, which spread over areas of 520 m2 and
1240 m2. The average density of the point clouds on roofs is 30 points/dm2. Furthermore, the average
density on walls is 20 points/dm2. This amount for grounds is 24 points/dm2.These data are intricate
and bear many details, clutter, noises and holes.
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3.1. Two-Level Segmentation

According to Section 2.1, the efficient RANSAC algorithm is adopted for the segmentation.
At the first stage, the effects of clutter, noise and unwanted parts should be decayed. Then, in order to
manage the high volume of data, the point cloud is broken down into several smaller parts. Therefore,
the efficient RANSAC is utilized in a new manner.

Cylinder is a good candidate to reach the general shape of a rectangle building, because it can be
surrounded by the ambient cuboid or surround the encircled cuboid. Based on this idea, buildings
are divided via cylinder primitive of the efficient RANSAC (Figure 3a–c). Ranges of the parameters
of the algorithm are listed in Table 1. The first two parameters are set to segregate the close points,
which are mostly on neighboring patches. The second couple of parameters determine the majority
of the compatible points for primitive fitting into patches. The minimum points per primitive is
a determining parameter to match sizes of the segments. This item improves the shape detection
procedure by localizing sampling and is determined in next section.
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Table 1. Parameters of the efficient RANSAC algorithm for cylindrical shape detection.

Parameter Value (s)

Maximum distance to the primitive (m) 0.15
Maximum normal deviation (degree) 10–15

Sampling resolution (m) 0.1
Overlooking probability (%) 85–90

Minimum points per primitive Equation (5)

Improvement in the Efficient RANSAC

In the first level of segmentation, to overcome the deficiency of the efficient RANSAC in sizing up
the shapes, the minimum points per primitive is approximated with the following proposed Equation.

Minimum points per primitive = Number of points of the point cloud × µ/Np, (5)

where Np is the maximum number of clusters. In addition, µ controls the clusters’ sizes concerning the
heterogeneity of point clouds and sizes of subsections of the buildings.

In a homogeneous point cloud, a sphere can show local distribution around a point appropriately.
Nevertheless, in a heterogeneous point cloud the direction of the highest local distribution around a
point is demonstrated by the longest diameter of the ellipsoid of local distribution. The ratio of areas
of the cross sections of sphere and ellipsoid with the horizontal plane implies the ratio of their surface
densities. Considering the schematic Figure 4a, the ratio of local surface density on an ellipse-shaped
and a circle-shaped neighborhood (ρe, ρc) is calculated via Equation (6), where Se, Sc are the areas of
ellipse and circle, respectively with the same number of points. The circle is the unit circle.

Furthermore, λ3 e and λ2 e are the biggest and the second covariance-based local eigenvalues of
point distribution on ellipse. These parameters for the unique circle are 1.

ρe/ρc = Sc/Se, Sc/Se = 1/(λ3 e . λ2 e), (6)

µ is estimated by ρe/ρc. In (Figure 4b), the histogram of 1/(λ3 e . λ2 e) is displayed. Concerning the
histogram, the limits of µ are computed through Equation (7).

B ≡ max frequency (Histogram (1/ (λ3 e . λ2 e), nbin)) ∴ µ ≈ [minB, maxB] (7)

where B is the bin with the maximum frequency in the histogram. The number of bins (nbin) are
computed via Rice rule [43]. A number of segmented parts of buildings and footprints are displayed
in Figure 3d–f).

In the second level of segmentation, firstly point clouds are filtered using statistical outlier removal
filter, proposed in [44]. Secondly, the planar patches are segmented from the point clouds via the
efficient RANSAC plane detection. They can be from facades, roof or the grounds and this matter
is not determining. Ranges of the parameters of the algorithm are listed in Table 2. The contextual
knowledge represents the angles of the bonnet roofs as the maximum tolerance of normal deviation.
Sampling resolution starts from the minimum distance between points in the point cloud after the first
level of segmentation.

Table 2. Parameters of the efficient RANSAC for planar shape detection.

Parameter Values

Maximum distance to the primitive (m) 0.01–0.05
Maximum normal deviation (degree) 1–8

Sampling resolution (m) 0.03–0.1
Overlooking probability (%) 95–99

Minimum points per primitive npi
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To overcome the drawback of the efficient RANSAC for plane detection, the covariance-based

point eigenvectors are computed. These vectors imply the state of local dispersion of points.
→
λ1,

the eigenvector which corresponds the smallest eigenvalue, demonstrates the inclination of the

underlying surface. Therefore, the histogram of cosine of inclination of
→
λ1 roughly shows the number

of points on different planar patches (npi ) (Figure 5a). As Equation (8) declares, cumulative distribution
of the points among every two successive local minima (k1, k2) determines approximate value of the
minimum number of points on each planar patch.

[
npi

]
≈

k2

∑
k1

hist (cos (inclination (
→
λ1))) (8)

In Figure 5b–e histograms of the inclination angle of
→
λ1 for several clusters of the footprint,

the roof, the step roof and the wall are demonstrated. In Figure 5b’,c’,d’,e’, points in the histograms are
marked on the corresponding parts of the clusters with color.

In an iterative approach with a few iterations, the efficient RANSAC algorithm generates shapes
of the segmented points with accurate sizes (the following Equation).

n̂ = npi + vi (9)
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Figure 5. Approximating number of points of the planar segments for the efficient RANSAC. (a) The

histogram of cosine of the inclination angle of
→
λ1. (b–e) Histograms of the inclination angle (in radian)

of the footprint, roof, step roof and walls. (b’,c’,d’,e’) corresponding marked points in clusters (units of
axes are m).

In Figure 5d, no sharp peak is displayed on account of the existence of step roofs. In addition,
in Figure 5a no differentiation between patches of step roofs is recognizable. In order to approximate
the number of points on the step roofs, λ2/λ3 is computed, where λ3 is the largest covariance-based
eigenvalue. According to [45], this feature shows significant difference for edges of the borders of
half-planes. Therefore, histogram of this feature recognizes the outer edges of the roof (Appendix B
Figure A1a,b). Employing the algorithm of line generation discussed in [45], the edges longer than a
length tolerance are produced (Appendix B Figure A1c). The directions of these edges correspond to
→
λ3. If any step roof exist in the data, then at least a parallel edge with one of the lowest edge of the roof
exists. Thus, the coefficient of Sv is computed via Equation (10), where h is the height of the edge.

if ∃
→
λh

3
∼=
−−−−−−−−−−−−→
λ

the minimum height
3 , h > min heightroo f then

Sv =
(h − min heightroo f )

(max heightroo f − min heightroo f )

(10)

Then number of points of each section of step roof (NumPsec) derives from Sv. Therefore, Sv is
used to compute the parameter of minimum points per primitive in efficient RANSAC algorithm for
each parallel part of the step roof via (NumPsec = Minimum points per primitive Step roof × Sv) .

The improved method to reconstruct roofs with various horizontal planar patches in different heights
is represented in Appendix C. The outcome indicates successful segmentation and reconstruction of
horizontal step roofs alongside intersected roof faces.

The efficient RANSAC [42] plugin in CloudCompare in the first level of segmentation, MATLAB
and the library of primitives coded in [42] in the second level of segmentation are used to implement
different steps of the two-level segmentation approach.
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3.2. Planar Modelling

After segmentation, a planar model of each segment is computed via Section 2.2 in MATLAB,
in which toleranceangle = 3◦ in order to keep 95% of all points. This tolerance is set considering
deviations of normal vectors in clusters. It is worthy of notice that in order to avoid very big coordinates
due to geo-referencing, a global shift was applied on the coordinates. The adjustments show that the
highest standard deviation of the constructed planar models of both buildings is less than 10−2 m.

Additionally considering the issue that generation of planar segments is a matter of importance
in this research, surface variation is analyzed employing the planarity criteria via Equation (11) [46].
In Figure 6, this parameter is computed for all the extracted segments of roofs, walls and grounds of
both datasets.

λ = λ1/(λ1 + λ2 + λ3), (11)

where λ s are the covariance-based eigenvalues of each segment and λ1 is the smallest one. The less
the λ is, the more planar the point cloud of the segment is.
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Figure 6. Planarity. (a,c) for the point clouds of the roof (5–8, 7–19), the walls (1–4, 1–7), and (b,d) for
the point clouds of the grounds. (a,b) point clouds of building 1, and (c,d) point clouds of building 2.

Figure 7 shows the planar models superimposed on the point clouds of building 1 (Figure 7a) and
2 (Figure 7b). In occluded parts, there is no data; therefore, no model is generated in these areas.
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Figure 7. Superimposing the constructed models on point clouds of (a) building 1 and (b) building 2.
(Units of axes are m).

In this research, adjacency relations are yielded via convex hulls of the segments, which are
computed with PCL (Point Cloud Library) [44]. So that, distances of points of each convex hull
are calculated from others’ points. Neighboring convex hulls have at least a number of points with
distances shorter than a tolerance, which are set empirically. Then, topology graphs are constituted for
two buildings. The vertices of the buildings are computed according to Section 2.2. The outer vertices
of the eaves and step roofs are generated through the regularized convex hulls, which are created by
the conceptual knowledge about shapes of the faces. It is worthy of attention that vertices in occluded
parts are computed employing neighboring models.

4. Results

The reconstructed buildings and the extracted footprints are depicted in B-rep models of
Figure 8a–f, in which red segments delineate the occluded segments of data 1 (Figure 8a–c), and red
circles show the occluded vertices in data 2 (Figure 8d,f).
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In order to evaluate the reconstructed models, an experienced operator digitized the reference
models on the geo-referenced point clouds. In Figure 8c,f, the reconstructed footprints besides their
reference data are displayed. In the reconstructed footprints, vertices with red are for building 1
(Figure 8c) and the orange star for building 2 (Figure 8f) were not generated by the reconstruction
approach, though they were digitized in the reference model.

In order to evaluate geometrically the reconstructed architectural models, vertex-based criteria
are used. Therefore, horizontal and vertical accuracies of the vertices are computed compared to the
reference model.

In addition, in order to check the quality of the generated models, two geometric constraints,
which are derived from the conceptual knowledge and were not employed in the reconstruction,
are examined. The first constraint is the matter that intersecting lines of the roof includes several
groups of parallel lines. The second constraint is that edges of the walls are parallel and vertical.
In order to check the first constraint, angles between should-be parallel edges of the roofs and the
expected parallel ridge are measured. Moreover, to check the second constraint, the zenith angle of
each edge of walls is computed.

In order to assess the existence of over/under segmentation, a vertex-level evaluation of footprints
is performed. In this evaluation, the vertices are counted as objects. To examine the existence of over
segmentation, every triad of successive vertices of footprints are checked considering the minimum
area in LoD3. So that, the middle vertex of the triad, whose area is less than the amount in the standard,
is ignored. Equation (12) calculates the proposed parameter of the correctness of the vertices, which
examines the existence of over segmentation.

CorVertex =
ncr

ncr + ncrN − nrvo
, (12)

in which ncr is the count of the correct reconstructed vertices, which have correspondences in the
reference model, ncrN is the count of the correct reconstructed vertices which have no correspondences
in the reference model, and nrvo is the count of the reconstructed vertices in the occluded or
heavy clutter areas. According to this equation CorVertex = 88% for the footprint of building 1 and
CorVertex = 86% for the footprint of building 2, which are less than 100%. Thus, over-segmentation
happened and produced several extra segments. The reason is that we prefer to have more segments to
guarantee the accuracy. The corrected footprints of buildings 1 and 2 are demonstrated in (Figure 9a,b),
after removing extra vertices.
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The next assessment pertains to the matter that the reference models of footprints have several
vertices more than the reconstructed footprints. However, these vertices are located in the occluded
areas or within heavy clutter at the feet of the buildings, which are hardly likely to be reconstructed
via non-operational methods. The proposed parameter of the completeness of the vertices is defined
as Equation (13) to check the existence of under segmentation.

CompVertex =
ncr

ntv− n f vo
, (13)

in which ntv is the number of total vertices in the reference model, and nfvo is the count of the reference
vertices in the occluded or heavy clutter areas. According to this equation, CompVertex = 100% for the
footprint of both buildings. Hence, no under segmentation happened and no additional vertex should
be inserted in the models.

To evaluate the results of segmentation, the metrics of completeness, correctness and quality,
proposed in [47], are computed as:

completeness =
‖TP‖

‖TP‖+ ‖FN‖ , (14)

correctness =
‖TP‖

‖TP‖+ ‖FP‖ , (15)

quality =
‖TP‖

‖TP‖+ ‖FP‖+ ‖FN‖ , (16)

where, with regard to the reference models of buildings, TP (True Positive) is a detected face, which
also corresponds to a building face in the reference. FN (False Negative) is a face from the reference
models, which is not detected by our method. FP (False Positive) is a face, which is detected by our
method but it does not exist in the reference models. The number of faces are denoted by ‖.‖.

These items are defined for building detection, in which buildings are mostly counted based on
their outline employing different criteria. Hence a face, after projecting to the corresponding reference
face, is pessimistically considered as: TP if it overlaps the corresponding reference face more than
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70%, FP if it overlaps the corresponding reference face less than 70%, FN if the reference face does not
correspond to any extracted face.

Comparing our method with other methods is not easy, because there are no datasets for
benchmarking of 3D building reconstruction in this scale. Therefore, the effect of improvement in efficient
RANSAC algorithm is analyzed. Thus, the aforementioned metrics are also calculated for the segmentation
via the original efficient RANSAC method. The evaluation results are listed in Table 3.

Table 3. Performance evaluation of the proposed segmentation method compared with the original
RANSAC shape detection method.

Completness Correctness Quality

Building1 Building2 Building1 Building2 Building1 Building2

the original efficient
RANSAC method 88% 86% 88% 83% 78% 73%

Our method 90% 88% 100% 97% 90% 86%

Additionally, “minimum points per primitive” computing is implemented via our method using
the plane primitive in the library of the efficient RANSAC [42] and number of iterations is demonstrated
in the diagram of Figure 10. This parameter is displayed for all the extracted faces of both datasets.
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In the next section, outcomes of the research are analyzed and the quality control of the proposed
method is discussed.

5. Discussion

To evaluate the proposed reconstruction approach, geometric accuracies of the reconstructed
models are computed. Furthermore, conceptual knowledge in the form of geometrical constraints
is employed. Moreover, segmentation of footprints in the viewpoint of planarity and existence of
over/under segmentation is analyzed. Additionally, the overall segmentation of buildings is assessed.

According to Figure 6, the planarity criteria of the segments of the roofs are lower than 6× 10−6

and 5× 10−5 for the buildings 1 and 2, respectively. In addition, this matter is correct for the walls
with the planarity better than 5× 10−5 and 2.5× 10−4. Furthermore, the planarity of the segments of
the grounds are better than 2× 10−4 and 1.5× 10−4. These results assert the fact that the processed
points lie well on the examined planes, especially on the roofs. Nonetheless, the walls carry heavy
clutter due to shutters, openings, and windows.
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The average accuracies of different vertices of both buildings are listed in Table 4. According
to this table, the horizontal and vertical accuracies of the vertices of ridges are the highest. Average
horizontal and vertical accuracies of the vertices of outer edges of eaves, generated from convex hulls,
are less than of the vertices, which are calculated from the intersection. Step roofs have the average
horizontal and vertical accuracies better than the eaves, on the grounds that step roofs have bigger
surfaces with higher densities.

Table 4. The average accuracies of the reconstructed vertices of roofs and footprints.

Building 1 Accuracy (m) Building 2 Accuracy (m)

Horizontal Vertical Horizontal Vertical

Roof

Vertices of ridges 0.11 0.11 0.09 0.10
Vertices of outer edges of eaves 0.24 0.23 0.35 0.37

Vertices of step roofs - - 0.28 0.32
Vertices calculated from intersection 0.14 0.21 0.21 0.23

Vertices of cylinders - - 0.29 0.30

Vertices of footprints 0.19 0.17 0.28 0.24

Employing the proposed plane-based method to generate footprints removes the necessity of
identifying boundary points, tracing points and regularizing boundaries, which are usually indispensable
steps in researches on the footprint reconstruction. The reconstructed vertices of the footprints, which
are close to the big holes in the walls, suffer the lowest accuracies. Furthermore, the vertices, which
are produced by the big surfaces in a flat area, have the best accuracies. Moreover, the average vertical
accuracies are better than horizontal, because segments of the footprints have lower vertical variations.

Evaluation of the conceptual knowledge shows that the constraint of being parallel is observed
by the edges of the roofs with errors better than 2◦. Furthermore, the edges of the walls of datasets 1
and 2 are vertical and parallel with errors less than 2◦ and 4◦, respectively. Heavy clutter of shutters
and big holes and intersection with the cylindrical tower and eaves result in the worst accuracies for
edge 1 in data 1 and edges 8 and 9 in data 2.

According to Equations (12) and (13), the correctness of the vertices displays existence of
over-segmentation for the footprints of both data. Although, the completeness demonstrates no
under-segmentation because we prefer to have more segments to guarantee accuracy.

According to Table 3, the completeness, correctness, and quality criteria show better results for
the proposed segmentation method compared with the original RANSAC shape detection method.
Since, the original RANSAC shape detection method cannot correctly detect small segments of the
eaves, especially near big dormers. Furthermore, clutter decays its detection quality, and leads to
merge segments near the scaffold and builds incorrect segments. While in the proposed segmentation
method, firstly the point cloud is divided and clutter decreases, then it is segmented employing the
calculated sizes of the primitives. Therefore, it produces more correct segments and achieves better
correctness in both datasets. In the latest section, the most significant conclusions of the research
are addressed.

6. Summary and Conclusions

This paper addresses the issue of using high-density image-derived point clouds for accurate 3D
rectangular building reconstruction through a novel knowledge-based approach. This approach can
deal with heavy clutter and unwanted parts of UAV-based photogrammetric point clouds in order to
achieve geometrical accuracy of LoD3 in 3D models of roofs, walls and footprints. A novel two-level
segmentation approach is utilized based on RANSAC shape detection algorithm and contextual
knowledge. At the first step, this method decreases clutter and unwanted sections and decomposes
point clouds into several smaller parts employing cylinder primitives. Then, it divides each part to
potential planar segments of facades, roofs or grounds. We enhance the efficient RANSAC in sizing
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up the segments via contextual knowledge and covariance-based analyses for both cylinder and
plane primitives. The method is applied on the datasets which include building blocks with different
complexity on the roofs, walls and surrounding grounds. These datasets are picked for architectural
purposes. The results of the planarity criteria confirm the ability of the proposed segmentation method
in grouping point clouds into planar segments, especially on the roof.

The new planar modelling method employs contextual knowledge as constraint in the least
squares plane generation approach. The plane-based method of footprint generation implements
points on the grounds around buildings, in a new way, along with points on neighboring walls.

The horizontal and vertical accuracies, besides the observed constraints, confirm the capability of
the proposed approach in reconstructing 3D models and 3D footprints of buildings with geometrical
accuracy of LoD3. For the roofs, the best accuracies are computed for the ridges and the least accuracies
are calculated for the outer edges of the eaves. Moreover the vertices of the footprints achieve the
best accuracies, which are in a flat area, while those close to big holes and clutter on the walls have
the worst accuracies. The criteria of the correctness and completeness of the vertices are employed
to reveal existence of over/under-segmentation. According to these parameters, over-segmentation
happened in the footprints to guarantee accuracy, which were corrected.

The reasonable approximation of sizes of primitives is proved through better completeness,
correctness and quality criteria in both datasets. The big difference of correctness criterion confirms
noticeable improvement in functionality of the improved efficient RANSAC algorithm in detection
of relatively small planar segments, especially near clutter areas, in complicated heterogeneous
point clouds.

Low number of necessary iterations for sizes of the faces computing proves the ability of the
proposed method in improving the efficient RANSAC algorithm to handle this challenging matter for
planar segmentation.

Two types of knowledge are employed in this research. Contextual knowledge is used in both
steps of segmentation to compute “minimum number of points per primitive” and in modelling step
via defining the constraint. In addition, conceptual knowledge is utilized to calculate the outer vertices
of the eaves and step roofs, in addition to establishing rules of being parallel and verticality in the
evaluation step.

Finally, the geometrical evaluations besides assessments of the segmentation confirm that the
proposed approach can successfully employ high-density photogrammetric point clouds generated
from UAV imagery as the only source of data in 3D reconstruction of buildings and their footprints with
the geometrical accuracy of LoD3. In our ongoing work, we would like to exploit color information of
photogrammetric point cloud to enrich the 3D reconstructed models of buildings semantically.
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Appendix A

Table A1. Calibration report of the Sony camera of ILCE-7R.

Properties Data

Focal length 35 mm
Resolution 7360 × 4912
Pixel size 4.89 × 4.89 µm

Fx 7429.05 pixel
Fy 7429.05 pixel
k1 0.0557213
k2 −0.219064
k3 −0.0120905
k4 0

skew 0
cx 3650.54
cy 2463.08
P1 −0.000600474
P2 0.000548429

Appendix B
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Appendix C

The optical data from a small building is captured using an Olympus camera with the calibrated
focal length of 16.53 mm and average GSD of 1.7 cm. These images are utilized to produce the
image-derived point cloud with the average linear density of 15 point/m (Figure A2). These data do
not bear oblique imaging. Therefore, points on walls gain a low density. In order to reconstruct a roof
with different intersections and step roofs, points on the roof are segregated by height thresholding
(Figure A2).
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Table A2. Parameters of the efficient RANSAC for planar shape detection.

Parameter Values

Maximum distance to the primitive (m) 0.01–0.10
Maximum normal deviation (degree) 1–5

Sampling resolution (m) 0.1
Overlooking probability (%) 95

Minimum points per primitive npi

npi is computed via Equation (8). The histogram of cosine of the inclination angle of
→
λ1 is demonstrated

in Figure A3. Two intersected vertical edges at the lowest height are set as x, y axes. Investigation of
step roofs leads in coefficients of Svhi

x and Svhi
y in directions of x, y at height of hi (Figure A4), so that

Equation (A1) works out. It means in three different heights, the parallel planes appear which are horizontal
and their points occupy bins around 0 in Figure A3. Hence, these bins (bin0) are employed to segment
horizontal step roofs.

Svhi
x = Svhi

y , i = 1 : 3 (A1)

Areas of the horizontal segments are approximated employing horizontal edges in Figure A4
through Equation (A2), where at height of hi, Lx,i

j is horizontal edge in x-z view, Ly,i
j is horizontal edge

in y-z view and Ai
jk is the area of the plane, which is surrounded by Lx,i

j and Ly,i
k . Number of points of

the horizontal step roof in height of hi (NumPi
j,k) is estimated via Equation (A3).

∀ hi : Ai
j, k = ‖Lx,i

j ‖ . ‖Ly,i
k ‖ i = 1 : 3, j = 1 : 3, k = 1 : 5 (A2)

NumPi
j,k = Ai

j,k/ ∑ Ai
j,k. Cumulative distribution of bin0 (A3)
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Figure A5 shows the reconstructed planar models of the point cloud. The vertices which are
placed on at least three planes are computed through the method of Section 2.2 and other vertices
are generated via the regularized convex hulls, within possible constraint of intersection with other
planar models.
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The reconstructed B-rep model of the roof is displayed in Figure A6. Vertex-based relative
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