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Abstract: Global, near-real-time satellite-based soil moisture (SM) datasets have been developed
over recent decades. However, there has been a lack of comparison among different passing
times, retrieving algorithms, and sensors between SM products over various regions. In this study,
we assessed seven types of SM products (AMSR_A, AMSR_D, ECV_A, ECV_C, ECV_P, SMOS_A,
and SMOS_D) over four different continental in-situ networks in North America, the Tibetan Plateau,
Western Europe, and Southeastern Australia. Bias, R, root mean square error (RMSE), unbiased
root mean square difference (ubRMSD), anomalies, and anomalies R were calculated to explore the
agreement between satellite-based SM and in-situ measurements. Taylor diagrams were drawn for
an inter-comparison. The results showed that (1) ECV_C was superior both in characterizing the SM
temporal variation tendency and absolute value, while ECV_A produced numerous abnormal values
over all validation regions. ECV_P was able to basically express the SM variation tendency, except for
a few overestimations and underestimations. (2) The ascending data (AMSR_A, SMOS_A) generally
outperformed the corresponding descending data (AMSR_D, SMOS_D). (3) AMSR exceeded SMOS
in terms of the coefficient of correlation. (4) The validation result of SMOS_D over the NAN and OZN
networks was unsatisfactory, with a rather poor correlation for both original data and anomalies.

Keywords: satellite-based soil moisture; in-situ measurements; AMSR; SMOS; ECV; evaluation

1. Introduction

Soil moisture (SM) plays an important role in storing and exchanging water on the land surface,
and a significant feedback mechanism between SM and corresponding regional climate change
exists [1,2]. In addition, it is of profound significance to analyze the effect of SM content variation
on evapotranspiration [3], precipitation [4], heat extremes [5], and vegetation growth [6]. As a result,
SM products with reliable quality and spatial-temporal sequences are a prerequisite to monitor the
fluctuations in environmental, meteorological, ecological, and agricultural elements across the globe.

Since the 1980s, airborne and spaceborne remote-sensing technology have continually
developed and have become increasingly popular, which has made obtaining near-real-time, global
remote-sensing band information a reality [7,8]. Meanwhile, satellite-based SM-retrieving algorithms
have also rapidly developed. Chang et al. showed that there is a positive correlation between L band
data and SM in bare soil [9]. On the basis of the inversion of surface parameters via a microwave
interferometer [10], Pellarin et al. [11] and Wigneron et al. [12] developed a model to split brightness
temperature into a weighted average form of four land surface cover types (bare soil, forest, grassland,
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and water). Under the guidance of these researchers, Kerr et al. [13] put forward the Soil Moisture and
Ocean Salinity soil moisture (SMOS_SM) inversion algorithm, which is based on using the radiative
transfer model of different land cover types to obtain the integrated pixel brightness temperature and
then adopting the iterative method to obtain the optimal combination of parameters. Additionally,
by synthesizing the microwave brightness temperature from the C, X, and Ka bands, Njoku and
Li [14] proposed an iterative algorithm to simultaneously calculate the SM and vegetation water
content as well as land surface temperature, termed the Advanced Microwave Scanning Radiometer
(AMSR-E, which was launched in 2002 by the National Space Development Agency of Japan) algorithm.
Njoku and Chan [15] subsequently improved the original model and developed the Normalized
Polarization Difference Algorithm (NPDA). Moreover, with the increasing variety of SM products
and their own working modes of sensor-based merits and drawbacks, a multi-source merged SM
retrieval algorithm appeared. The Essential Climate Variable (ECV) soil moisture (ECV_SM) algorithm,
initiated by the European Space Agency (ESA), was synthesized using four passive and two active
microwave products [16]. It provided a long time series (from 1 November 1978 to 31 December 2016),
daily, and global SM dataset with a coarse resolution of 0.25°.

Various microwave remote-sensing-based SM products have exhibited unprecedented data
accessibility and availability in large-scale, long time series SM and related hydrological element
modeling and analyses. However, the spatial heterogeneity caused by natural condition differences
increases the uncertainty of SM within a pixel that covers dozens to hundreds of square kilometers.
In addition, radio frequency interference (RFI) can be an obstacle in microwave signal reception, which
can result in an inaccurate SM value or even a gap area [17,18]. In addition, each SM inversion as
well as merging model has its own conditional and regional applicability, and the SM data accuracy
may vary as the corresponding land cover type or hydrothermal condition changes [19-21]. Thus, it is
necessary to conduct assessments and evaluations of microwave remote sensing-retrieved SM products
to clarify their quality in both variation tendency and value. Numerous studies focusing on evaluating
satellite SM products using ground-based observations have been completed. Mei Sun Yee et al. [22]
compared the performance of the AMSR2 and SMOS SM products using in-situ measurements in
Southeastern Australia and concluded that the AMSR2 product performed better both in terms of
absolute and temporal accuracy of SM. Jian Peng et al. assessed four microwave-based SM products
and one reanalysis SM product over Southwest China [23]. The accuracy levels showed that both the
reanalysis and ECV_SM products achieved satisfactory validation results. Dorigo et al. [24] assessed
ECV_SM using ground-based measurements worldwide from 1979 to 2010 and found that ECV_SM
had an increasing trend over time in general in terms of quality, except for a decreasing fitting trend
during the period from 2007-2010.

Although many researchers have analyzed the degree of accuracy among different SM products,
few have compared the applicability degrees of different SM products among diverse regions across
the world. Consequently, in this study, ECV_SM (including active, passive, and combined products,
individually named ECV_A, ECV_P, and ECV_C), SMOS_SM (including ascending and descending
data, individually named SMOS_A and SMOS_D), and AMSRE_SM and AMSR2_SM (including
ascending and descending data, individually named AMSR_A and AMSR_D) were separately
evaluated over four dense in-situ networks in the south-central region of the United States of America,
Northwestern Iberian Peninsula, the Tibetan Plateau, and Southeastern Australia. The objective of our
study was to explore and differentiate the adaptability and accuracy of the different SM products over
different regions globally.

2. Study Areas and Data Resources

2.1. Study Areas and In-Situ Measurements

To evaluate the applicability of global SM products over different continents, four different
continental regions were used to separately assess the performance of satellite-based SM products:
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Oklahoma in the USA, Northwestern Spain, the Central Tibetan Plateau, and Southeastern Australia.
In addition, these regions all had relatively stable and long-time-series observations of SM during
recent years.

(1) Oklahoma Mesonet (OKM)

The Oklahoma Mesonet (OKM) network was built jointly by the Oklahoma State University
and the University of Oklahoma [25]. As shown in Figure 1a, the OKM network is situated in the
south-central United States of America. With more than one hundred stations in total, this network has
been broadly used in multidisciplinary hydrologic management, such as drought monitoring, water
balance exploration, and remote sensing SM assessment. It monitors daily SM values at 5 cm, 25 cm,
60 cm, and 75 cm depths. Furthermore, Oklahoma has a temperate continental climate with four clearly
distinct seasons. The temperature increases from the northwest to the southeast, corresponding to the
terrain (which is relatively higher in the northwest and lower in the southeast), while the precipitation
decreases from east to west. With a mean temperature of 15.5° Centigrade, the relatively dry climate
throughout the year results in slightly higher SM during winter compared to that during summer,
as the evaporation during summer is more intense than that during winter. The land cover types,
station numbers, and station percentages in the OKM area are shown in Table 1. With many flowing
rivers, this area is mainly covered by rainfed croplands, broadleaf deciduous forest, and herbaceous
vegetation. Considering the depth limitation of satellite penetration, we used the 5 cm measured
values to validate the quality of the satellite-based SM.
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Figure 1. Distribution of soil moisture (SM) networks and elevation for (a) Oklahoma Mesonet (OKM),
(b) REMEDHUS (REM), (c) Naqu Network (NAN), and (d) OZNET (OZN). The grids represent the
size of a Soil Moisture and Ocean Salinity soil moisture (SMOS_SM) pixel.
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Table 1. Land cover types, station percentages, and station numbers in the OKM area.

Land Cover Type Station Number Station Percentage
Cropland 45 45.45%
Grassland/Shrubland 29 29.29%
Sparse Deciduous Forest 8 8.08%
Herbaceous Vegetation 17 17.17%
(2) REMEDHUS (REM)

The REMEDHUS (REM) is a dense observational network with twenty four SM stations within a
35 x 35 km area in northwest Spain [26]. Figure 1b shows the specific distribution of each monitoring
site. It provides hourly 0-5 cm SM records as well as soil temperature via a type of sensor termed
a Hydra Probe. In addition to evaluating satellite SM products across scales, REMEDHUS has also
been engaged in the calibration of a hydrologic model [27]. Additionally, affected by North Atlantic
Drift, northwest Spain belongs to a temperate maritime climate that includes considerable rainfall
and a humid climate. Its annual precipitation is approximately 800 mm which largely falls during
winter. Comparatively, summer is warm and dry [28]. Influenced by seasonal variation in precipitation
and temperature, SM is high during winter and low during summer. Table 2 shows the land cover
type, station percentage, and station number in the area. The Douro river flows through the plains
supporting large tracts of farmland via irrigation. In addition, 65% of the stations are situated in
cropland areas. There is also a minor distribution of shrubland and forest.

Table 2. Land cover types, station percentages, and station numbers in the REM area.

Land Cover Type Station Number Station Percentage
Cropland 13 65%
Grassland /Shrubland 1 5%
Sparse (<15%) Vegetation 6 30%
(3) Naqu Network (NAN)

As seen in Figure 1c, the Naqu Network (NAN) is situated in the Central Tibet Plateau which has
an average altitude of 4000-5000 m and an alpine plateau climate. Basically, the year is divided into a
cold, dry winter and a humid, cool monsoon season. Affected by the South Asian summer monsoon,
its precipitation is intense during summer and approximately 400-500 mm annually. Table 3 shows the
land cover types, station percentages, and station numbers in this area. The dominant land surface
cover type of alpine grasslands is the distinguishing feature of the region [29] and is also the main
land cover type of the SM network stations (with 43 stations). Antecedent rainfall and evaporation are
dominant in the SM variation, which could change from residual to saturated contents [30]. Because of
its climatic particularity and ecological fragility, the Tibetan Plateau is termed the third pole [31].
Thus, it is critical to systematically validate the accuracy of satellite SM products over the Tibetan
Plateau when globally assessing the validity and accuracy of certain satellite SM products. The sensors
monitored and recorded SM every 30 min at four depths (5 cm, 10 cm, 20 cm, and 40 cm). We used the
5 cm measurements to evaluate microwave SM products.

Table 3. Land cover type, station percentage, and station number in the NAN area.

Land Cover Type Station Number Station Percentage
Cropland 6 10.53%
Grassland /Shrubland 43 75.33%

Herbaceous Vegetation 8 14.04%
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(4) OZNET (OZN)

OZNET (OZN) is situated in the Murrumbidgee River catchment in Southeastern Australia [22].
Figure 1d shows that most monitoring stations are in the central and southeast parts of the area with
stable, low elevation. This area has a temperate marine climate. Although the climate is similar to
that of Spain, the seasons are quite the opposite owing to the opposite temperature change rhythm
between the Northern and Southern hemispheres. The mean daytime temperature is 32° Centigrade
during January and 13° Centigrade during July, and the approximate 400 mm of annual precipitation
is evenly distributed throughout the year. As is shown in Table 4, the area in which the stations are
located is composed of cultivated land (31 stations), native vegetation (three stations), and built-up
area (three stations) [32]. Flood irrigation during November, artificial irrigation, and well-distributed
precipitation constitute the main factors that increase the SM [22]. In addition to SM, several stations
measure soil temperature and precipitation as well. OZN data has been broadly used to validate
satellite SM products [33], Moderate Resolution Imaging Spectroradiometer (MODIS, which was a
key part of Earth Observation System launched by National Aeronautics and Space Administration)
evapotranspiration [34], and land surface models [35]. In addition, OZN monitors hourly SM at five
different depths (0-5 (or 0-8), 0-30, 30-60, and 60-90 cm) [36]. Given that only surface SM can be
detected via the microwave sensor, we applied topsoil layer measurements and averaged them to a
daily value during the evaluation process.

Table 4. Land cover types, station percentages, and station numbers in the OZN area.

Land Cover Type Station Number Station Percentage
Cropland 31 83.78%
Grassland /Shrubland 2 5.41%
Sparse (<15%) Vegetation 1 2.70%
Artificial Surfaces 3 8.11%

2.2. Satellite-Based SM Products

(1) AMSR-E and AMSR2

The Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) was onboard
the EOS-Aqua satellite, which was launched in 2002 by the National Space Development Agency of
Japan (NASDA) [37]. EOS-Aqua was a solar synchronous satellite and scanned the earth at 1:30 p.m.
local time (ascending) and 1:30 a.m. local time (descending). This microwave scanning radiometer
instrument provided data over six bands (from 6.9 to 89 GHz) using a horizontal vertical dual
polarization mode and twelve channels in total, from 19 June 2002 to 2 October 2011. In addition,
both the 6.9-GHz (C band) and 10.7-GHz (X band) bands offered brightness temperature data.
The brightness temperature measured by the 10.7-GHz X band was mainly employed in the land
parameter retrieval model (LPRM) considering that the C band is susceptible to RFI (Radio Frequency
Interference) [38]. With the storage format of a network, Common Data Form (NetCDF), the daily
SM product had a spatial resolution of a 0.25° global grid. Moreover, the frozen area was masked out
via land surface temperature data during the preprocessing stage so as to avoid inaccurate retrieval
values [39].

As a follow on from AMSR-E, the Advanced Microwave Scanning Radiometer 2 (AMSR?2) has
the same overpass times and adds a new 7.3-GHz frequency band. AMSR2 was launched on 18 May
2012 on board the Global Change Observation Mission 1st-Water satellite (GCOM-W1, developed
by Japan Aerospace Exploration Agency) [40,41]. Horizontal polarization channel brightness and
vertical polarization channel brightness temperature as well as time records are the three main datasets
provided by this instrument, and the Hierarchical Data Format (HDF5) is used as the storage format.
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(2) Soil Moisture Ocean Salinity (SMOS)

The Soil Moisture Ocean Salinity (SMOS) satellite, successfully launched on 2 November 2009,
by the European Space Agency (ESA), is currently the only one in the world that can simultaneously
observe changes in SM and salinity [13,42]. The SMOS can obtain global coverage data every three
days with ascending and descending orbits at 6 a.m. local solar time and 6 p.m. local solar time,
respectively. Additionally, the synthetic aperture radar equipped on the SMOS satellite can penetrate
to a 5-cm depth in the soil at a frequency of 1.4 GHz (band) with vegetation coverage of up to 5 kg/m?
vegetation water content. The retrieved daily 0.25° pixel resolution SM product has been available
since 15 January 2010. Furthermore, this instrument also provides a 3-day and 10-day arithmetic
averaged SM product as well as a daily global SM product [43]. In this study, we used the level 3 (L3)
daily SMOS SM product acquired from the Centre Aval de Traitement des Données SMOS (CATDS).
Compared to the level 2 products, the SMOS L3 SM has both temporally and spatially improved its
features via resampling and processing in version 3.0 which was released on 20 April 2016 [44]. Also,

its theoretical uncertainties are no more than 0.04 m® x m=3.

(3) ECV

Aimed at monitoring the long-term tendencies of linked global climate change elements, the ESA
initiated the Climate Change Initiative (CCI) program, also known as the Global Monitoring of Essential
Climate Variables (ECV) [45,46]. It is SM that acts as a key carrier in the process of water heat exchange
on the underlying surface. Thus, the program acknowledged SM as one of the ECV and then merged
six active and passive SM products to finally produce a unique, long time serial (from 1 November
1978 to 31 December 2016), daily 0.25° SM product [47]. Data from version 3.3 was utilized in our
study. Because previous researchers have proved that active-based SM products behave better in arid
and bare regions, while, in contrast, SM products with a passive basis have superior performance in
relatively humid and thickly vegetated areas [19,48], the active, passive, and combined ECV (ECV_A,
ECV_P and ECV_C) were analyzed and compared to explore the characteristics of each product,
particularly the advantages of the combined ECV_C.

3. Assessment Strategy

Considering the penetration depth of the microwave, only the surface layer SM measurements
(usually 5 cm or 8 cm) were used in the assessment. Additionally, abnormal values and trends could
appear because of the sensitivity heterogeneity of in-situ SM sensors. To maintain the reality and
reliability of the in-situ data, soil samples were periodically taken near stations to gravimetrically
determine the SM content and the loggers recorded readings for calibration purposes [30]. In addition,
the surface SM value is sensitive to surrounding environmental change (for example, artificial watering
and short-term precipitation) and can considerably fluctuate over one day. All of the four ground-based
networks monitored SM hourly and a null value occasionally appeared owing to sensor malfunction
and ageing. Consequently, the arithmetic mean was calculated to access the daily SM value. Notably,
to ensure the stability of the in-situ measurements, only SM data covering more than 12 h within one
day was treated as valid data. Furthermore, the four SM networks that we selected have dense sites,
thus there were usually several stations within an 0.25° (approximately 25 km) pixel. We retrieved
the average values of these stations to decrease the heterogeneity between the point-scale and 0.25°
pixel-scale SM data and to increase the representativeness of the in-situ measurements. The averaged
data were utilized to represent the integral SM and as reference data to validate the satellite-based
SM products.

The validation was processed based on SM ground networks to analyze the regional suitability.
For the sake of evaluating the agreement between the satellite-based SM and in-situ measurements,
four metrics were used to express the quality of the SM products. They were bias, correlation coefficient
(R), root mean square error (RMSE) and unbiased root mean square difference (ubRMSD). Additionally,
we developed a Taylor diagram as it can describe the performance of SM products via a single diagram
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with R, ubRMSD, and standard deviation (SD) together [49]. We utilized the Taylor diagram to enhance
the contrast among the different metrics. Moreover, we calculated the anomalies to decrease the
influence of seasonally resulted changes and then reanalyzed the correlation coefficient. The principle
of the anomaly algorithm was a five-week sliding window [19]. If at least five days of data were
available during the five-week period, the ANO(t) could be obtained using Equation (6). All of the
calculation equations were as follows:

) TSi—Yiii G
Bias = 1 . 1= @
R — 17!:1 [(Gl — C) (Sl B S)] , (2)

JELG-o] | [Emsi-5)]

n PRV

RMSE = M, 3)
n
ubRMSD = \/ 1l(Gi=C) = (5 _g)f, )
n
n .77 2
SD = M, (5)
n

ANO(t) =S(t) = S(t—17:t+17) (6)

where G;, G, S;, and S are the ground-based SM measurements at site i, averaged ground-based SM
value of all sites, remote-sensed SM value at grid i, and averaged remote-sensed SM value of all grids,
respectively. S(t) is the SM value at day ¢, and S(t — 17 : t 4+ 17) is the average SM during the period
(from t — 17 to t 4+ 17).

4. Results
4.1. Regional Performance Comparison

4.1.1. OKM Area

There were 99 stations with relatively stable measurements within the OKM area. This area
is mainly covered by rainfed croplands, broadleaved deciduous forest, and herbaceous vegetation.
Table 5 shows the daily bias, R, RMSE and ubRMSD between the in-situ measurements and seven
SM products over the OKM area. In addition, considering that the boxplots can effectively show
the upper edge, upper four quantile, median, lower four quantile, lower edge, and outliers of an
array, we used boxplots to intuitively reflect and compare the parameter values (Figure 2). As shown
in Figure 2a, both the AMSR_D and ECV_A SM products overestimated the in-situ values, while
underestimation occurred among all other products. Notably, AMSR_A had a tiny bias of a mere
—0.001 m® x m~3, as shown in Table 5, which is quite close to the in-situ measurements. In addition,
the correlation coefficient varied from 0.578 (SMOS_A) to 0.679 (ECV_C). Moreover, when speaking
to RMSE, ECV_A showed the maximum deviation between the observed value and the true value,
while ECV_C showed the minimum. The situation was similar for the ubRMSD, which is an important
basis for measuring the stability of the derived values. In general, AMSR_A and AMSR_D behaved
similarly in the five indexes, and the superiority of AMSR_A was obvious in terms of bias. As shown
in Figure 2, it is noteworthy that although AMSR_A, AMSR_D and SMOS_A, SMOS_D are of nearly
the same quality, the ascending retrieved data always performed slightly better than the corresponding
descending data. This phenomenon could have been a result of the difference in day/night land
surface temperatures in the satellite-based SM disaggregation algorithms [50]. Furthermore, ECV_C



Remote Sens. 2018, 10, 1161 8 of 27

outperformed all of the other products, except in terms of bias, and showed both excellent accuracy
and stability in active-passive combined products.

Table 5. Daily bias, R, root mean square error (RMSE), and unbiased root mean square difference
(ubRMSD) of seven SM products over the OKM area.

. Products
Metrics
AMSR_A AMSR_D SMOS_A SMOS_D ECV_A ECV_C ECV_P
Bias (m® x m~3) —0.001 0.047 —0.098 —0.093 0.128  —0.084 —0.048
R 0.589 0.627 0.578 0.607 0.643 0.679 0.654
RMSE (m3 x m~3) 0.123 0.136 0.145 0.140 0.231 0.098 0.114
ubRMSD (m® x m~3) 0.106 0.108 0.091 0.088 0.185 0.042 0.079
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Figure 2. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the seven SM products over the OKM area.

We calculated the anomalies and then drew boxplots to analyze the correlation between seasonal
fluctuation-eliminated satellite-based SM products and in-situ measurements (Table 6 and Figure 3).
On average, the ECV products, particularly ECV_A, had the best fitting trend with a high and stable
R, as shown in Table 6 and Figure 3a, followed by SMOS. AMSR ranked last. However, SMOS and
AMBSR ranked oppositely in terms of correlation coefficient between the original SM and the anomalies.
Generally, ECV_C showed an outstanding performance, with a relatively higher R, lower RMSE
and ubRMSD, and smaller bias of anomalies than the other products. In addition, ECV_C showed
stability and robustness in these parameters with quantiles closer to the median than those of the other
products, as shown in both Figures 2 and 3. Moreover, the R values of the anomalies were largely
smaller than those of the original SM, which is coincident to the results of previous research focused
on satellite-based SM evaluation and validation using in-situ measurements [51,52].
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Table 6. Daily bias, R, RMSE, and ubRMSD of the anomalies over the OKM area.

. Products
Metrics
AMSR_A AMSR_ D SMOS_A SMOS_ D ECV_A ECV_C ECvV_P
Bias (m3 X m*3) —0.00022 0.00035 —0.0004 —0.00052 —0.00087 —0.00011 0.00029
R 0.357 0.348 0.434 0.445 0.524 0.498 0.434
RMSE (m? x m~3) 0.0551 0.0616 0.0765 0.0726 0.1358 0.0324 0.0546
ubRMSD (m3 X m_3) 0.0551 0.0616 0.0764 0.0725 0.1357 0.0324 0.0546
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Figure 3. Bias (a), R (b), RMSE (c), and ubRMSD (d) of anomalies over the OKM area.

4.1.2. REM Area

Because the 20 stations were densely situated within a 35 x 35 km region, we calculated the
arithmetic mean of certain stations that were distributed in the same 0.25°-resolution SM pixel.
The main land cover types here included farmland and a sparse distribution of shrubland and forest.
Table 7 shows the comparison statistics between the seven SM products and the in-situ measurements.
The statistics were box-plotted (Figure 4) to quantitatively evaluate their accuracy as well as their fitting
degree. As shown in Table 7, the SMOS products underestimated the in-situ measurements. However,
their absolute values of bias were smaller than those of the overestimated products, which illustrates a
distinct fitting degree of SMOS-retrieved SM. However, the correlation coefficient of the SMOS data
was lower compared to that of the AMSR and ECV data. In terms of RMSE and ubRMSD, it was clear
that ECV_C had the minimum values while the maximum values occurred in ECV_A, as shown in
Figure 4c,d. Hence, the best performance was found with ECV_C data, while the worst was always
in ECV_A data, illuminating the unfitness of active sensor-based SM products. Generally, SMOS
outperformed AMSR with a smaller absolute value of bias and lower RMSE, ubRMSD. Additionally,
SMOS had the minimum bias among all products, indicating good data accuracy. However, AMSR
did well in terms of R, showing that it has a better fitting degree for the variation tendency of ground
measurements compared to that of SMOS. On the whole, ECV_C exceeded not only ECV_A and
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ECV_P in terms of performance, but also AMSR and SMOS in all indexes, with a superior accuracy,
higher fitting degree, and smaller fluctuation, except for bias, as shown in Figure 4.

Table 7. Daily bias, R, RMSE, and ubRMSD between the in-situ measurements and the seven SM
products over the REM area.

. Products
Metrics

AMSR_A AMSR_D SMOS_A SMOS D ECV_A ECV_C ECV_P
Bias (m® x m~3) 0.091 0.139 —0.039 —0.026 0.197 0.075 0.131
R 0.788 0.803 0.745 0.663 0.721 0.826 0.822
RMSE (m? x m~3) 0.141 0.176 0.089 0.097 0.286 0.088 0.152
ubRMSD (m? x m~3) 0.104 0.105 0.061 0.074 0.206 0.037 0.074

0.3 0.90

0 ? 0.80

E
fo gy B e =
& 1 ®070 } T 1{
o = —
T 0.60
-0.1
i 0.55
-0.2 0.50
AMSR_AAMSR_DSMOS_ASMOS_D ECV_A ECV_C ECV_P AMSR_AAMSR_DSMOS_ASMOS_D ECV_A ECV_C ECV_P
(a) SM products (b) SM products
0.36 0.24
0.30 0.20 ?
7 0.24 == ™. 0.16
E £
£0.18 §0.12
| = *
= e =
&z 0.12 : Dgf 0.08 == =
S| = 1
0.06 B T L 0.04
0.00 0.00
AMSR_AAMSR_DSMOS_ASMOS D ECV_A ECV_C ECV P AMSR_AAMSR_DSMOS_ASMOS D ECV_ A ECV_C ECV_P
<) SM products (d) SM products

Figure 4. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the seven SM products over the REM area.

According to Figures 4b and 5b, both the R values derived from the original SM and anomalies
had an identical ranking order, which is distinct from that of the OKM area. This phenomenon clarifies
the difference in the same SM products in depicting surface SM fluctuation trends among diverse
areas. Additionally, the ECV products agreed better than the AMSR and SMOS products, proving
that they can competently represent SM temporal variation. Moreover, as shown in Table 8, SMOS_D
is unqualified to describe the feature of SM over the REM region, because the average anomaly R
was less than 0.40, far less than that of all the other products. Additionally, Table 8 shows that the
anomalies had almost the same value and range in RMSE and ubRMSD.
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Figure 5. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the anomalies over the REM area.
Table 8. Daily bias, R, RMSE, and ubRMSD of the anomalies of the seven SM products over the
REM area.
Product
Metrics roducts
AMSR_A AMSR_D SMOS_A SMOS_D ECV_A ECV_C ECV_P
Bias (m3 X m*3) —0.00176 —0.00129 0.00004 0.00010 —0.00075 —0.00002 —0.00007
R 0.485 0.519 0.542 0.375 0.512 0.539 0.531
RMSE (m3 X m’s) 0.0657 0.0698 0.0521 0.0554 0.1353 0.0280 0.0505
ubRMSD (m3 X m_3) 0.0657 0.0698 0.0521 0.0554 0.1353 0.0280 0.0505

4.1.3. NAN Area

A total 56 stations were included in the NAN area, and the characteristic land surface cover type
in this area is alpine grasslands. As shown in Table 9, AMSR_A, AMSR_D, ECV_A, and ECV_P had
a positive bias, while the other three products had a negative bias. In particular, ECV_C, derived
from the combination of ECV_A and ECV_P, showed a negative average bias, which was contrary
to both ECV_A and ECV_P. In terms of correlation coefficient, SMOS was remarkably inferior to
AMSR and ECV, with Rgpmos_a = 0.347 and Rgmos p = 0.325, in contrast to Recy_a = 0.805, as shown
in Table 9. In addition, ECV_C had the minimum degree of discretization as reflected by the RMSE,
followed by that of AMSRA_A, ECV_P, AMSR_D, and SMOS_D, and ECV_A had the maximum
dispersion. Moreover, ECV_C had a prominent small value in terms of ubRMSD (ubRMSDgcy ¢ =
0.041), illustrating a preferable coincidence to in-situ measurements. To summarize, the ascending SM
outperformed the descending SM in AMSR, while the situation was the opposite for SMOS. In addition,
because the average and total goodness of fit values were fairly low, as shown in Table 9 and Figure 6b,
the daily changes in SMOS products could not effectively coincide with the in-situ measurements.
In contrast, ECV_C showed excellent data quality in terms of accuracy, stability, and correlation
coefficient, as seen in the box-plots of Figure 6a,b. Because ECV_A performed poorly in terms of bias,
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RMSE, and ubRMSD, and showed a comparatively obvious deviation from in-situ measurements,
as shown in Figure 6, it is inappropriate to employ this product in the NAN area.

Table 9. Daily bias, R, RMSE, and ubRMSD between the in-situ measurements and the seven SM
products over the NAN area.

Metrics Products
AMSR_A AMSR_ D SMOS_ A SMOS_ D ECV_A ECV_C ECV_P
Bias (m3 X m*3) 0.074 0.102 —0.145 —0.114 0.477 —0.049 0.082
R 0.755 0.696 0.347 0.325 0.805 0.788 0.759
RMSE (m? x m—3) 0.108 0.142 0.179 0.154 0.493 0.085 0.123
ubRMSD (m? x m—3) 0.061 0.081 0.097 0.093 0.125 0.041 0.082
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Figure 6. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the seven SM products over the NAN area.

Figure 7 shows the value ranges of bias, R, RMSE, and ubRMSD among each SM product using
bars with different lengths and marking lines. Table 10 lists the average value of bias, R, RMSE,
and ubRMSD to represent the general levels of these parameters. As shown in Figure 7, ECV_A,
ECV_C, and ECV_P, which generally had anomalies R greater than 0.6, could comparably address
the change characteristics of surface SM. In comparison, the ability of AMSR to fit in-situ records
cannot compare to that of ECV, but it was much better than that of SMOS. In other words, the SMOS
products, with R values ranging from —0.26 to 0.43, barely reflected the temporal evolution tendency
in topsoil humidity. In terms of an inter-comparison between ascending and descending products,
the performance of the ascending AMSR_A and SMOS_A were basically preferable to those of AMSR_D
and SMOS_D, individually.
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Figure 7. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the anomalies over the NAN area.
Table 10. Daily bias, R, RMSE, and ubRMSD of the anomalies over the NAN area.
P
Metrics roducts
AMSR_A AMSR_D SMOS_A SMOS_D ECV_A ECV_C ECV_P
Bias (m3 X m*3) —0.01126 —0.02136 0.00422 0.07745 —0.00398 —0.00206 —0.00157
R 0.488 0.392 0.228 0.130 0.637 0.596 0.592
RMSE (m3 X m*3) 0.0311 0.0464 0.1148 0.1508 0.0775 0.0255 0.0361
ubRMSD (rn3 X m_3) 0.0311 0.0464 0.1141 0.1495 0.0774 0.0254 0.0361

4.1.4. OZN Area

There were 37 ground stations distributed in the OZN area. Considering that several stations
were located in the same 0.25° pixel, the arithmetic means were calculated to represent the SM value of
the corresponding area. The main land surface types in this area are cultivated land, native vegetation,
and built-up area. As shown in Table 11 and Figure 8, all the products had positive biases, particularly
ECV_A which seriously overestimated the in-situ measurements. Similarly, the RMSE and ubRMSD of
ECV_A were evidently larger than those of the other products, as shown in Figure 8c,d. In general,
the ECV series products had better correlation coefficient value ranges than those of the AMSR and
SMOS products, as shown in Figure 8b. For AMSR, the ascending product was superior to the
descending one in every parameter at all times. While, for SMOS, the ascending product displayed
a closer variation tendency to the in-situ measurements, but the descending product performed
better in terms of absolute values. On the whole, based on Table 11, ECV_C could, to some extent,
comprehensively represent both the trend (Rgcy ¢ = 0.763) and the values (Biasgcy ¢ = 0.026 m® x m3)
of SM properly and accurately. The performance of passive sensor-combined ECV_P was not as good
as that of ECV_C. The poor expression of active sensor-combined ECV_A indicates its unfitness to
describe SM over the OZN area. The AMSR series products generally depicted SM slightly better than
those of SMOS, in terms of both accuracy and stability.
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Table 11. Daily bias, R, RMSE, and ubRMSD between the in-situ measurements and the seven SM
products over the OZN area.

. Products
Metrics
AMSR_A AMSR_D SMOS_A SMOS_D ECV_A ECV_C ECV_P

Bias (m® x m~3) 0.047 0.085 0.023 0.017 0.383 0.026 0.070
R 0.684 0.585 0.638 0.579 0.716 0.763 0.740
RMSE (m? x m~3) 0.085 0.128 0.085 0.100 0.427 0.068 0.104
ubRMSD (m? x m*3) 0.062 0.090 0.072 0.091 0.183 0.049 0.069
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Figure 8. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the seven SM products over the OZN area.

To further quantitatively and intuitively assess the adequacy levels of these SM products in
showing variation in accordance with ground-based records, Figure 9 shows the corresponding
parameters of the anomalies’ ranges, respectively. Table 12 lists the specific values of these parameters.
According to Figure 9, compared to the other SM products, ECV_C had smaller values in terms of
bias, RMSE, and ubRMSD and a higher value for goodness of fit. As a result, the active and passive
product-combined ECV_C showed its superiority in representing the temporal and spatial trends
of SM. Remarkably, an unprecedented larger gap than any other sample area between the R of the
ascending products and the descending products over the OZN area occurred, as shown in Figure 9.
In general, AMSR_A, SMOS_A, ECV_A, ECV_C, and ECV_P were able to characterize the evolutionary
trend of surface soil water content to a similar extent. In addition, as shown in Table 12, both ECV_C
and ECV_P were able to simultaneously and accurately depict the in-situ measurements in anomalies,
as they showed similar values for the four selected parameters.
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Figure 9. Bias (a), R (b), RMSE (c), and ubRMSD (d) of the anomalies over the OZN area.

Table 12. Daily bias, R, RMSE, and ubRMSD of the anomalies of the seven SM products over the

OZN area.
P
Metrics roducts
AMSR_A AMSR_D SMOS_A SMOS_D ECV_A ECV_C ECV_P
Bias (m3 X m*3) 0.00023 —0.00017 —0.00012 —0.00013 0.00297 0.00047 0.00051
R 0.623 0.471 0.584 0.485 0.627 0.657 0.597
RMSE (m3 X rn*3) 0.0466 0.0637 0.0670 0.0981 0.1150 0.0348 0.0522
ubRMSD (rn3 X m_3) 0.0466 0.0636 0.0670 0.0980 0.1149 0.0347 0.0522

4.1.5. Inter-Comparison

To conduct and integrally evaluate the fitness levels of different satellite- and sensor-based SM
products among different regions across the globe, we drew Taylor diagrams (Figure 10) to analyze
their performance. As shown in Figure 10, the ordinate axis represents the standard deviations of the
SM data; the abscissa axis represents the gap between the standard deviations of the observational and
SM products; and the polar axis represents the correlation coefficients between the in-situ observations
and satellite-based SM products. The Taylor diagrams provide an efficient and intuitive means to
compare results derived from different products. The subfigures (a), (b), (c), and (d) represent the OKM,
REM, NAN, and OZN areas, respectively. The seven points inside each subfigure indicate the results of
the seven satellite-based SM products. According to Figure 10, it is clear that the e point, representing
ECV_A, always has the largest standard deviation and the highest correlation coefficient. In contrast,
the f point (ECV_C) has the smallest standard deviation. The g point (ECV_P) is situated between e
and f. Because points a, b (AMSR_A, AMSR_D) and points ¢, d (SMOS_A, SMOS_D) were derived
from the same sensor, respectively, they have similar positions in Figure 10a,b. However, there is a
difference in the NAN and OZN areas. This phenomenon may be attributed to the following: (1) The
NAN network on the Tibetan Plateau has a special hydrothermal combination (large temperature
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difference between day and night), unique elevation (>5000 m), and an alpine/grassland-dominated
land cover. (2) The OZN network is situated in the Southern hemisphere, which has an opposing
seasonal variation and related temperature as well as precipitation variation compared to that of the
Northern hemisphere. In summary, ECV_C, with its splendid performance in terms of data accuracy
and variation fitting, was able to competently express the absolute values and variation in SM in
the four selected experimental regions. In contrast, ECV_A could barely indicate any SM condition
in the four areas because of its remarkable bias. ECV_P was average among the three ECV series
products. Both the AMSR and SMOS products performed well in terms of correlation coefficient,
but their standard deviations were larger than that of ECV_C. Moreover, AMSR behaved slightly better
than SMOS in trend fitting. Furthermore, as the fitting coefficients between the SMOS products and
ground measurements were less than 0.4, it is inappropriate to depict SM over the Tibetan Plateau
using SMOGS-retrieved data.

a: AMSR_A, b: AMSR_D, ¢: SMOS_A, d: SMOS_D, e: ECV_A, f: ECV_D, g: ECV_P
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Figure 10. Taylor diagrams of the OKM (a), REM (b), NAN (c), and OZN areas (d).

Given that there may have some heterogeneity between the original data and anomalies, Taylor
diagrams of anomalies were drawn as well (Figure 11). As shown in Figure 11, the abscissa axis
represents the standard deviations of the SM anomalies; the ordinate axis represents the gap between
the standard deviations of the observational anomalies and the anomalies of the SM products; and the
polar axis represents the correlation coefficients between the anomalies of the in-situ observation and
those of the satellite-based SM products. The distribution of anomaly points was basically coincident
with the original data points. Specifically, the ECV_A had a rather high value in terms of both
standard deviation and correlation coefficient. In contrast, the ECV_C invariably had the smallest
deviation and preferable correlation. However, a difference was that the anomalies of SMOS_A
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and SMOS_D had abnormally large standard deviations and weak correlations in the NAN area
(Figure 11c). This phenomenon is not that obvious in the original data Taylor diagram, as shown
in Figure 10c. Thus, we assumed that this further indicated the unfitness of SMOS SM products in
determining the characteristics of topsoil humidity over the Tibetan Plateau.

a: AMSR_A, b: AMSR_D, c: SMOS_A, d: SMOS_D, e: ECV_A, f: ECV_D, g: ECV_P
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Figure 11. Taylor diagrams of the anomalies in the OKM (a), REM (b), NAN (c), and OZN areas (d).

4.2. Temporal Series Comparison

To explore the temporal fitness degree of the seven products, we drew scatter plot diagrams
to observe the performance of different products over different regions. Figures 12-15 show the
temporal fitting trend between the in-situ measurements (black solid line) and satellite-based SM
products (scatter points) over the OKM, REM, NAN, and OZN areas, respectively. For AMSR,
the morning-pass and night-pass products overestimated the in-situ observations from November
to April and underestimated the in-situ observations from May to October over the OKM and REM
areas, as shown in Figures 12 and 13. Curiously, AMSR presented a prevalent trend of overestimation
over the NAN and OZN areas, as shown in Figures 14 and 15. As for ECV, the ECV_A value was
generally much larger than that of all the in-situ measurements over all areas. Meanwhile, ECV_C
underestimated the ground monitoring value over the OKM and NAN areas, while it overestimated
the ground monitoring value over the REM and OZN areas. The performance of ECV_P was similar to
that of ECV_C, except in the NAN area where ECV_P showed an overestimation tendency. Moreover,
the SMOS showed varied behavior over different regions. Overall, the SMOS data showed lower
values than the in-situ values over the OKM area, but higher values than the in-situ values over
the OZN area. Furthermore, it overvalued the REM in-situ records from December to March and
undervalued the REM in-situ records during all other months. In addition, in the NAN region,
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as shown in Figure 14, the SMOS distribution range could barely express any relevance between the
SMOS SM and in-situ measurements.
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Figure 12. Time series variation over the OKM area.
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Figure 15. Time series variation over the OZN area.

Figures 16-19 show the time series variation in the averaged anomalies of the in-situ

measurements and seven satellite-based SM products over each sample area.

The black fold

line represents the evolutionary tendency of the ground SM records, and the scatter represents
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satellite-based SM products at the corresponding positions. We found that the ECV_C was good
at characterizing both the data values and the temporal evolution of the in-situ measurements with a
relatively high accuracy across all regions. For example, as shown in Figure 17, the variation trend of
the time series of ECV_C was highly consistent with that of the in-situ measurements. In addition,
ECV_P could, to some extent, express the SM variation tendency, except for a few overestimations and
underestimations. In contrast, a large number of abnormal peak and valley values appeared in the
ECV_A data, proving that it is inadequate to feature SM values or evolution. For the AMSR datasets,
the consistency with ground records was fairly good. However, as shown in Figures 16 and 19, the bias
of AMSR_D was, to a certain extent, larger than that of AMSR_A, particularly in the OKM and OZN
areas. In terms of SMOS, as shown in Figures 18 and 19, it was difficult to find any correlation with
in-situ-measured SM over the NAN and OZN areas, indicating its inapplicability and irrelevance in
these two regions.
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5. Discussion

Satellite-based SM has already become an important resource for acquiring and monitoring
global land surface near-real-time water storage and variation situations. Numerous SM products
have appeared since the 1980s. However, considering the significant spatial heterogeneity of SM
and the diverse band combinations as well as SM-retrieving algorithms, their fitness degree for
different land cover types and climatic zones remains unclear. Although many validations have
been conducted to evaluate the performance of certain SM products in characterizing the temporal
evolution of surface soil water, there has been a lack of analyses among ascending, descending,
active sensor-combined, and passive sensor-combined SM products over regions with distinct
climates, land covers, and elevations as well as hemispheres. In this study, we evaluated the AMSR
products (including ascending and descending data), ECV products (including active combined,
passive combined, and active-passive combined products), SMOS products (including ascending
and descending data) over four dense in-situ networks in south-central USA, Northwestern Iberian
Peninsula, the Tibetan Plateau, and Southeastern Australia. Four metrics (bias, R, RMSE, and ubRMSD)
and anomalies were calculated to attempt a comprehensive comparison.

To summarize, the active-passive combined ECV_C showed general applicability throughout the
four selected areas. It was able to preferably seize the features of evolutionary trend and accurately
fit factual SM values recorded with a higher R values and lower bias, RMSE, and ubRMSD than the
other products. Additionally, the anomalies of ECV_C showed an outstanding correlation coefficient
with the anomalies of in-situ records. This result is coincident with previous studies that compared the
performance of ECV and SMOS products based on the OzNet monitoring network in Australia and
in-situ measurements across the continental USA [36,53]. ECV_P showed a tolerable overestimation
tendency in all networks, except for that of OKM. In addition, it could, on the whole, represent the
temporal change characteristics of in-situ measurements. In contrast, unbearable abnormal values
were prevalent in ECV_A, which suggested the inappropriateness of the active sensor-combined
SM products to depict surface soil humidity. Moreover, AMSR slightly exceeded SMOS in terms
of R. Furthermore, the ascending products (AMSR_A and SMOS_A) generally outperformed the
corresponding descending products (AMSR_D and SMOS_D), which may be explained by the
differences in day/night land surface temperatures in the satellite-based SM disaggregation algorithms.
AMSR_A could basically represent both the tendency and values of soil humidity with stabilization.
Comparatively, the bias of AMSR_D in the OKM and OZN areas was obviously greater than that of
AMSR_A. In addition, Rajat Bindlish et al. illustrated that the AMSR products can act as a long-term
dataset to describe SM and have a larger SM dynamic range than in-situ observations [54]. The larger
dynamic range was similar to that shown in Figures 12a, 13a and 14a in our study. In terms of SMOS
products, the original data had a poor correlation coefficient over the NAN region and the R values of
the anomalies over the NAN area as well as the OZN area were also small. Moreover, SMOS showed
an underestimation bias over all areas other than the OZN area. To a certain extent, this phenomenon
reflects that the quality of the SMOS data has much room for improvement over the Tibetan Plateau
and Australia. However, according to the validation of the NAN area carried out by Chen et al. [55],
the SMOS product did not perform poorly in the NAN area from 21 June to 30 September 2015 and 1
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May to 27 September 2016, which reflects a period difference, resulting in heterogeneity. Apart from the
validation parameters employed in this research, an effective technique, termed the triple collocation
method, has an advantage in estimating the RMSE. This method can solve for systematic differences
in three mutually independent types of data [56]. In addition, sufficient in-situ measurements are a
precondition for application of the triple collocation method. Using this technique, W. A. Dorigo et al.
successfully featured the error characteristics of global active and passive microwave SM datasets [21].
Miralles et al. used the triple collocation technique to clarify the spatial sampling uncertainty of coarse
resolution SM estimates derived from ground observations [57]. Given that the triple collocation
method is a powerful tool for estimating the error in global soil moisture datasets, we plan to compare
the features and performances of the triple collocation method and a traditional parameter evaluation
method in SM validation in a future study.

Given the varied performances of different SM products over different regions during different
periods, we tentatively attempt to explain this phenomenon from the following aspects: (1) Both
ascending and descending satellite-based products instantaneously record the surface SM at different
time points, while the ground networks monitor and record SM hour-by-hour. We averaged the hourly
data to obtain a daily SM. Hence, a gap appeared between the instantaneous values and periodic values.
Furthermore, an uncertain match degree between the instantaneous SM and periodic SM could lead to
a fluctuation in the validation results. (2) Soil texture can profoundly affect the water storage capacity.
For example, soil with a high sediment concentration typically has a poor water storage capacity, while
low sediment concentration soil has a strong water-holding capacity. However, although SM-retrieving
algorithms have considered this, soil texture can change considerably within a small region due to
human factors such as fertilization, flood irrigation, and straw burning. This drawback limits the
further improvement of accuracy and tendency between satellite-based SM and ground measurements.
Additionally, a land cover difference resulting from spatial heterogeneity could increase the error
in SM within a 0.25°-resolution pixel. Specifically, forest as well as dense vegetation would have a
negative influence on microwave penetration and increase the SM error. Moreover, the extent of the
impact varies among different continents because of complex natural condition combinations [58].
(3) Frequent radio frequency interference (RFI) could be an obstacle in microwave signal reception,
which could result in inaccurate SM values. For example, RFI at the C band affected radiation reception
in the USA. RFI at the L band has also been detected and has had an effect in China and Europe [17,18].
(4) Although there have been several in-situ measurements inside one-pixel grid, a mismatch remains
between the point-scale and a 0.25° spatial resolution scale. This would decrease correlations in
the validation procedure. (5) In addition, the uncertainty and error of SM products derived from a
vegetation cover area is also a critical issue. For example, the L band signal is predominantly composed
of SM, vegetation factors, and the land surface temperature [13]. There is a necessity to account for the
effect of vegetation as it could influence the brightness temperature and vegetation optical thickness.
During the SM retrieval process, dense canopies/forests can induce nonlinear effects; thus, ancillary
data (i.e., NDVI, LAI and vegetation maps) was considered to separate the impacts [42].

6. Conclusions

Numerous satellite-based SM products have appeared and have been broadly utilized in
surface hydrology analysis for decades. The diversity in satellite passing time, sensor working
mode, band combination, and retrieving algorithms, and the complexity of land cover, soil texture,
and hydrothermal condition have co-contributed to the uncertainty in satellite retrieved SM products.
Consequently, we validated seven currently frequently-used SM products (AMSR_A, AMSR_D,
SMOS_A, SMOS_D, ECV_A, ECV_C, ECV_P) over four varied continental regions.

The evaluation parameters applied during the evaluation process were bias, R, RMSE, ubRMSD,
and anomalies. The results indicated that ECV_C is superior in determining both tendency and absolute
data over the four test areas, which suggested the advantage of active and passive-combined SM
products. In contrast, ECV_A, which showed numerous abnormal overestimations, was inappropriate
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for the depiction of topsoil moisture. The performance of ECV_P was slightly worse than that of
ECV_C, but much better than that of ECV_A. In addition, AMSR performed better in trend fitting
than SMOS did, and the ascending products performed better than the corresponding descending
products on the whole. Moreover, weak correlations occurred in the evaluation of SMOS over the
NAN and OZN areas, which showed that SMOS is unqualified to represent SM on the Tibetan Plateau
and in Australia.

This study compared the capacity and suitability of seven satellite-based SM products by
describing the data values and temporal evolution features across the globe over four dense ground
networks. Because these networks are in North America, central Asia, Southwestern Australia,
and Western Europe, networks distributed in South America, Africa, and other locations with unique
features are needed in the future to conduct a more comprehensive assessment. In addition, it is
necessary to further explore the mechanisms that result in different fitting degrees for the same SM
product over different networks.
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