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Abstract: Standard chlorophyll-a (chl-a) algorithms, which rely on Moderate Resolution Imaging
Spectro-radiometer (MODIS) data aboard the Aqua satellite, usually show different performances
depending on the area under consideration. In this paper, we assessed their accuracy in retrieving the
chl-a concentration in the Basilicata Ionian Coastal waters (Ionian Sea, South of Italy). The outputs
of one empirical (Med-OC3) and two semi-analytical algorithms, the Garver–Siegel–Maritorena
(GSM) and the Generalized Inherent Optical Properties (GIOP) model, have been compared with
ground measurements acquired during three different measurement campaigns. The achieved results
prove the poor accuracy (adjusted R2 value of 0.12) of the investigated empirical algorithm and,
conversely, the good performance of semi-analytical algorithms (adjusted R2 ranging from 0.74 to 0.79).
The co-existence of Coloured Dissolved Organic Matter (CDOM) and Non-Algal Particles (NAP) has
likely determined large errors in the reflectance ratios used in the OCx form algorithms. Finally,
a local scale assessment of the bio-optical properties, on the basis of the in situ dataset, allowed for the
definition of an operational local scale-tuned version of the MODIS chl-a algorithm, which assured
increased accuracy (adjusted R2 value of 0.86). Such a tuned algorithm version can provide useful
information which can be used by local authorities within regional management systems.

Keywords: chlorophyll-a; algorithms; empirical; semi-analytical; MODIS; Basilicata Ionian
coastal waters

1. Introduction

The European Marine Strategy Framework Directive (MSFD) aims at developing a comprehensive
structure in which member states are required to develop and implement adequate measures necessary
to achieve or maintain “good environmental status” (GES) by 2020 through the establishment of eleven
key descriptors [1]. Ocean colour (OC) remote sensing data offer potential advantages for monitoring
GES, providing near real-time and synoptic information as well as long-term archive data about optical
in-water constituents such as Coloured Dissolved Organic Matter (CDOM), Suspended Particulate
Matter (SPM), and phytoplankton [2]. Among these, phytoplankton represents a key parameter both
to ensure the sustainable exploitation of the food chain and to confront marine environmental threats,
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such as eutrophication, one of the above-mentioned descriptors [3]. Satellite retrievals of chlorophyll-a
(chl-a) concentration, commonly used as a proxy of phytoplankton, can be easily assimilated into
marine forecasting models for the detection of harmful algal blooms as well as the investigation of
ongoing eutrophication phenomena [4]. Efficient exploitation of this framework requires a detailed
analysis of possible error sources associated with retrieval procedures as well as the selection of the
most suitable chl-a algorithm for a specific study area [5].

Since the launch of the NASA Coastal Zone Color Scanner (CZCS) on the Nimbus-7 satellite in
1978, empirical relationships of blue-to-green water reflectance ratios have been used to derive total
chl-a concentration [6]. O’Reilly et al. [7] developed the first version of the “band ratio” algorithm
for the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data by exploiting a large optical dataset
of remote-sensing reflectance, Rrs(λ), i.e., just above the sea surface, and in situ sea water chl-a
measurements. This empirical blue-green band ratio algorithm, named Ocean-Chlorophyll-2 (OC2),
quantifies the chl-a concentration as a function of how much blue and green light is reflected from
the sea surface [8]. The standard OCx algorithm has been subject to additional updates and has
been implemented as a three-band OC3 algorithm form [9] on the Moderate Resolution Imaging
Spectro-radiometer (MODIS) on board the Aqua satellite.

Although the empirical OCx algorithms have been developed to retrieve chl-a concentration in
the open ocean for global scale studies, they exhibit poor accuracy at the basin/regional level [10,11].
For this reason, different regionally tuned OCx algorithms, such as NL (Non Linear)-DORMA,
L (Linear)-DORMA, BRIC, and Med-OCx, have been designed for SeaWiFS/MODIS data, allowing a
reduction in the overestimation of the standard OCx algorithms in the Mediterranean Sea [5,10,12,13].
However, in optically complex coastal waters (e.g., Case 2 waters), the OCx algorithms cannot
discriminate chl-a from other in-water constituents, assuming that CDOM and Non-Algal Particles
(NAP) absorb blue light deeply, as chl-a [14–19]. In these productive waters (e.g., inland, estuarine,
and coastal waters), empirical algorithms based on red-Near Infrared (NIR) band ratios [20–22] were
designed to discriminate the contribute of chl-a absorption from the other in-water constituents [23].
However, the exploitability of these algorithms depends on the trophic regime of the investigated area,
given that their calibration data and root mean square errors (RMSEs) indicate a minimum applicability
threshold at 10 mg/m3 of chl-a concentration [14].

In this scenario, the semi-analytical algorithms (SAA) aim at retrieving spectral Inherent Optical
Properties (IOP, i.e., absorption and backscattering coefficients) from Rrs(λ), also enabling the
separation of the total absorption and backscattering coefficients into different subcomponents (e.g.,
the absorption of algal, non-algal particles, and CDOM) [24–28]. The Garver–Siegel–Maritorena
(GSM) algorithm [29] and the Generalized Inherent Optical Properties (GIOP) model [30] fall into
this wide group of model-based approaches, in which semi-analytical reflectance models are used
to describe the relationship between Rrs(λ) and IOP [31]. However, the main SAA limitations could
derive from an unsuitable selection of IOP parameterizations or optimization approaches as well as
uncertainties resulting from the assumptions used [32–35]. In consideration of both the advantages
and disadvantages endemic to both the empirical and semi-analytical algorithms, several authors
have compared their accuracy, with particular emphasis on critical areas or optically complex waters,
such as the northern South China Sea [36] or Arabian Sea [37].

The Basilicata Ionian coastal waters (BICW, Southern Italy), located in the Gulf of Taranto
(Northern-Ionian Sea, Mediterranean Sea), represent a test case of a complex-optical water environment
(Figure 1). The proximity of pollution sources (i.e., the Taranto harbor) and river discharges can
determine continuous fluctuations in the concentration of the bio-optical components along the water
column [38] and/or changes in the biological response of the BICW marine ecosystem. Such an
area has been poorly investigated thus far in terms of chl-a satellite estimates, with only several
regional/basin scale studies [39], which aimed at monitoring the chl-a inter-annual variability [40]
or at better characterizing the phytoplankton phenology in the Mediterranean Sea [41–43]. To fill
such a research gap, BICW have been studied within the “IOnian Sea water quality MOnitoring by
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Satellite data” (IOSMOS) project, a European Transnational Cooperation action co-funded by the
ERDF Operational Programme Basilicata 2007–2013. Within the three-year-long IOSMOS project, three
different in situ measurement campaigns were performed to collect water sampling data (chl-a, SPM,
and IOP) and radiometric sea surface (above-water) measurements useful to assess the most suitable
chl-a algorithm for the area.

In this framework, the goal of this paper is to evaluate the performance of three MODIS-Aqua
chl-a algorithms (empirical or semi-analytical), namely Med-OC3, GSM, and GIOP, diagnosing their
potential sources of consistency or discrepancy due to the specific BICW bio-geochemical features.
Afterward, using the in situ dataset (Rrs(λ), chl-a, and absorbing coefficients), a local scale assessment
of the bio-optical properties allowed for the definition of an operational BICW-tuned version of MODIS
chl-a algorithm.

2. Materials and Methods

2.1. Study Area

BICW represent a Gulf of Taranto sub-set related to the Ionian Sea continental shelf area within
the administrative boundaries of the Basilicata Region, Italy (Figure 1b) [44].
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Figure 1. (a) BICW localization (red box) in the Mediterranean Sea; (b) magnification of the study area
within the red box of (a) where the Basilicata region is depicted in orange. The main rivers of the region
(blue lines) and the bathymetry from 50 to 500 m (in blue tones and with the black contour lines) are
also reported.

Concerning the bathymetry of the area, the shallow coastal waters are characterized by 50 m
mean depth and extend up to 8 km away from the shoreline in proximity of the Sinni River (Figure 1b).
Notably, there is a sharp reduction of the continental shelf close to the Bradano River mouth, due to
the presence of the Taranto Valley (a NW-SE submerged extension of the onshore Bradanic foredeep),
which can reach a depth up to 500 m at just 4 km from the coastline [45].

With regard to water mass dynamics, the large-scale circulation in the Gulf of Taranto [46,47] is
anticyclonically oriented and connected to the Ionian Surface Waters (ISW) flow, which enters from
the central Ionian Sea. Furthermore, the circulation is also affected by the Western Adriatic Coastal
Current (WACC) flowing around Apulia into the Gulf from the northern Adriatic Sea [48]. A complex
interaction between large and coastal scales [49] characterizes the Gulf, generating cyclonic vortices
in shelf areas [50]. Recent observational and modeling studies [51–53] found evidence of intense
mesoscale and sub-mesoscale variability at the rim of large scale.
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On the basis of scientific studies conducted both at basin (Mediterranean Sea) [41,43] and
regional (Gulf of Taranto) scales [40], the investigated area largely has been characterized by a chl-a
“non-blooming” regime, indicating the absence of a marked chl-a peak bloom and generally showing
oligotrophic conditions. However, BICW chemical/physical properties are influenced by the seasonal
outflows of the Basilicata major rivers, such as Bradano, Basento, Cavone, Agri, and Sinni (from NE to
SW, Figure 1b), which can be considered as the main freshwater inputs of the Gulf of Taranto [38,54].
These rivers exhibit typical seasonal fluctuations, with a maximum hydrometric level between late fall
and early spring, and a minimum fluctuation in the summer. The Bradano, Basento, and Cavone River
basins are all characterized by low precipitation levels and a small number of springs [54]. Such factors
suggest lower flow rates during summer when compared to the Agri and Sinni basins, which are
characterized by a higher precipitation rate and a larger number of springs [55].

Within these hydrographic basins, the development of specific infrastructures for water storage
and hydropower production has increased the industrial and socio-economic benefits of the Basilicata
region. On the other hand, such infrastructures also have exposed the coastal marine environment to
widespread retreating phenomena or changes in sediment budget and water quality [44].

Finally, the proximity to the Taranto harbor enhances the BICW relevance from an environmental
point of view, given that the biological balance of this coastal marine environment has been altered
by the presence of iron and steel factories, petroleum refineries and shipyards for many decades [56].
For such reasons, the area of interest has become the target of extensive scientific research since 2012,
specifically within the framework of the already-mentioned IOSMOS project which investigates and
monitors the bio-optical properties of the Ionian coastal region and its water quality [38].

2.2. In Situ Data Collection

Within the three-year IOSMOS project, three measurement campaigns were performed in the area
of interest in April 2013, July 2013, and July 2014 (Figure 2). The sampling scheme adopted for each
measurement campaign aimed at better investigating the bio-physical properties of the area potentially
most affected by river discharges. The measurement stations occupied an area ranging in distance
from 300 m up to 10 km away from the coastline, allowing for improved assessment of the gradient of
the main bio-optical components.
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Sub-surface (i.e., 0–1 m depth) water samples were collected using Niskin bottles during these
campaigns for subsequent laboratory measurements of chl-a concentrations and absorption spectra
analysis (i.e., phytoplankton, NAP, and CDOM). A total of 55 stations were sampled: 25 collected
in the first (18–19 April 2013), 9 in the second (16 July 2013), and 21 in the third (1–2 July 2014)
campaigns, respectively. Furthermore, above-water radiometric measurements were collected with an
ASD FieldSpec spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA), as well as
vertical profiles of several physical parameters (such as temperature, conductivity, salinity, density,
PH, etc.) were acquired by a Idronaut 316 multi-parametric probe (IDRONAUT S.r.l., Brugherio (MB),
Italy) for most of the selected sampling stations. In the following paragraphs, an in-depth description
of the above-mentioned measurements is provided.

2.2.1. In Situ Chl-a and Absorption Spectra Analysis

For the analysis of chl-a concentration, 2 L of seawater per station were immediately pre-filtered
with a 250 µm pore size mesh for the removal of mesozooplankton and larger-size particles; they were
then filtered through 0.7 µm GF/F Whatman filters (25 mm ø) in a Gelman Science filtration system
equipped with 300 mL funnels. The filters were stored at −20 ◦C in 100% acetone and successively
analysed with a UVmini1240 Shimadzu spectrophotometer [57].

Regarding the CDOM absorption measurements, 2 L of seawater per station were filtered
through pre-rinsed 0.2 µm Nuclepore filters and then stored in 200 mL amber borosilicate bottles
preconditioned with ultrapure water and kept refrigerated for the analysis in accordance to the
Ocean Optics Protocols [58]. The CDOM absorbance was measured using an UVmini1240 Shimadzu
spectrophotometer with a 10 cm quartz cell in the 250–700 nm spectral range. The absorbance values
obtained were converted into absorption coefficients following the methods of Twardowski et al. [59].

Phytoplankton (ph) and NAP absorption spectra (namely, aph(λ) and aNAP(λ), respectively) were
obtained using the filter pad technique [60]. In particular, water sub-samples (2 L) were filtered
using a 0.7 µm GF/F Whatman filters (25 mm ø), immediately stored in liquid nitrogen and then
maintained in a laboratory freezer at −80 ◦C before analysis. Particulate absorption measurements
were performed using a LI-COR 1800UW spectroradiometer equipped with integrating sphere LI-COR
1800-12S. After the first measurement, the particulates collected on filters were extracted with pure
methanol at 4 ◦C for 4 h [60], pre-soaked with filtered seawater, and measured again to determine
aNAP(λ) spectra. Table 1 summarizes the relevant statistics of chl-a and IOP obtained during the three
performed measurement campaigns.

Table 1. Descriptive statistics of chl-a and IOP derived during the three measurement campaigns.

Parameter Values 18–19 April 2013 16 July 2013 1–2 July 2014

Chl-a (mg·m−3)

Min 0.4905 0.1200 0.1559
Max 1.2009 1.0700 0.5407

Mean 0.8000 0.3900 0.3306
Stdv 0.1663 0.2727 0.0893

aph (440) (m−1)

Min 0.0032 0.0025 0.0021
Max 0.0091 0.0114 0.0248

Mean 0.0060 0.0053 0.0157
Stdv 0.0013 0.0025 0.0055

aNAP (440) (m−1)

Min 0.0032 0.0032 0.0032
Max 0.0091 0.0091 0.0091

Mean 0.0060 0.0060 0.0060
Stdv 0.0013 0.0013 0.0013

aCDOM (440) (m−1)

Min 0.0061 0.0120 0.0100
Max 0.0306 0.0626 0.0700

Mean 0.0165 0.0275 0.0233
Stdv 0.0069 0.0159 0.0156
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2.2.2. In Situ Rrs(λ)

In addition to seawater sampling, above-water radiance measurements were performed and then
processed following the methods described in the ViewSpec Pro software manual [61] (for above-water
measurements). The radiometric measurements were acquired during the three campaigns from
the cruise deck by using an ASD Field Spec Pro spectroradiometer equipped with a 8 deg foreoptic.
After normalizing radiance data through a standard Spectralon (Labsphere, NH, USA) grey (30% albedo)
panel, multiple spectra were acquired and averaged for each measurement station and then processed
by the ViewSpec Pro software 6.0 (ASD Inc., Boulder, CO, USA). Notably, these measurements were
acquired in the absence of cloudy coverage and with a wind velocity not higher than 5 m/s. The reflected
radiation field over the collected samples in the different stations was assumed to be Lambertian.

Additionally, such measurements aimed at retrieving the remote sensing reflectance Rrs(λ) (sr−1),
defined as the ratio between the water-leaving radiance Lw(θ, φ, λ) and the downwelling spectral
irradiance Es(λ) [35]. The Rrs(λ) was calculated as:

Rrs(λ) =
Lw(θ,φ, λ)

Es(λ)
(1)

However, within above-water radiometric measurements, the total radiance measured should
refer to the surface radiance Lsfc, defined as:

Lsfc(θ,φ, λ) = Lw(θ,φ, λ) + ρ∗Lsky(θsky,φsky, λ) (2)

where Lsfc represents the radiance arising from the sea surface at zenith angle θ (usually chosen
between 30 and 50 deg) and azimuth angle φ (usually measured relative to the sun’s azimuth); in
contrast, Lsky is the sky radiance measured with the radiometer looking upward at angles θsky and φsky
and ρ is the reflectance factor [62]. From Equation (2) the water-leaving radiance Lw(λ) is defined as:

Lw(θ,φ, λ) = Lsfc(θ, φ, λ) − ρ∗Lsky(θsky, φsky, λ) (3)

A horizontal plaque (i.e., grey Spectralon panel with 30% albedo) was used to estimate the
downwelling spectral irradiance Es(λ), which can be expressed as:

Es(λ) =
π∗Sg(θg, φg, λ)
Rg(θg, φg, λ)

(4)

where, Sg(θg, rg, λ) is the sensor signal when the plaque is viewed at angles (θg, φg) with the sun at
(θ0, φ0), and Rg(θg, ng, λ) represents the plaque bi-directional reflectance function for that sun and
viewing geometry [62]. Introducing the Equations (3) and (4) into the Equation (1), it is possible to
compute the Rrs(λ) as:

Rrs(θ,φ, λ) =
Lsfc(θ,φ, λ) − ρ∗Lsky(θ,φ, λ)

π∗Sg(θg,φg, λ)
∗ Rg(θg,φg, λ) (5)

2.3. MODIS Satellite Data

Data recorded by the MODIS sensor on board the Aqua satellite were analysed in this work.
MODIS Level 1A data, at 1 km spatial resolution, were acquired from NASA’s ocean color web
site [63] for the corresponding days of in situ sampling. The downloaded MODIS Level 1A data
were reprocessed using the SeaDAS software (version 7.3) to produce Level 1B and geo-location
files. During the processing phase from L1B to L2 chl-a products, the standard NASA atmospheric
correction [64] was not used due to its poor accuracy in optically complex waters [5,65]. Accordingly,
we applied the MUMM method [66], properly designed for coastal waters and already successfully



Remote Sens. 2018, 10, 987 7 of 24

implemented by Di Polito et al. [38] for SPM monitoring in BICW. The derived chl-a product (L2 at
1-km spatial resolution) was then calculated for the selected empirical and semi-analytical algorithms
(i.e., Med-OC3, GSM, and GIOP). In the following paragraphs, the above-mentioned chl-a algorithms
are briefly described in consideration of their standard/default configurations.

MODIS Chl-a Algorithms: Med-OC3, GSM and GIOP

The empirical Med-OC3 algorithm is the MODIS version of the corresponding Med-OC4
(originally implemented on SeaWiFS) developed to improve the OC3 poor accuracy exhibited in
the Mediterranean basin [5]. Similar to OC3M, Med-OC3 is based on a fourth-degree polynomial
regression between log-transformed chl-a and log-transformed maximum band ratio (MBR) of Rrs(λ),
as defined in Equation (6) [9]:

Chl-a = 10C0+C1R+C2R2+C3R3+C4R4
(6)

where,

R = log10(
max(Rrs443; Rrs488)

Rrs547
) (7)

This algorithm differs from the OC3M algorithm only in terms of the regression coefficients (Ci,
i = 0, 4), which are obtained after the calibration on a representative bio-optical dataset collected in the
Mediterranean area [5].

The GSM algorithm, initially developed by Garver and Siegel [25] and later updated by Maritorena
et al. [29], aims at retrieving simultaneous estimates of chl-a, aCDM(λ) (namely the sum of aCDOM(λ)
and aNAP(λ)) and particulate backscattering—bbp(λ)—from Rrs(λ). GSM is based on a quadratic
relationship between the Rrs(λ) and the absorption and backscattering coefficients, namely a(λ) and
bb(λ), respectively [67–69]. The unknown terms, chl-a, aCDM(λ), and bbp(λ), are retrieved by setting
fixed parameters, namely aph*(λ), S and η, and applying a non-linear least-square technique to fit Rrs(λ)
data (Equation (8)) for more than three wavelengths [29].

Within the GSM standard configuration, the above-mentioned parameters (aph*(λ), S, and η) are
set on standard values through a global scale optimization, as summarized in Table 2.

Table 2. The set of fixed parameters at various wavelengths used by GSM as updated by
Maritorena et al. [29]. From left to right: the chl-a specific phytoplankton absorption coefficients
(aph*(λ)), the Colored Detrital Matter (CDM) light absorption values (S) and the spectral slopes of
particle backscattering (η).

λ (nm) a∗ph [m2mg−1] S [nm−1] η

412 0.00665

0.0206 1.0337

443 0.05582
490 0.02055
510 0.01910
555 0.01015
670 0.01424

Although the GSM algorithm was initially developed for the SeaWiFS wavebands (i.e., 412,
443, 490, 510, 555, 670 nm), the SeaDAS software allowed for the retrieval of the MODIS aph*(λ) by
interpolating the aph* values derived from the SeaWiFS with the corresponding MODIS bands (i.e.,
412, 443, 488, 531, 547, 667 nm).

The GIOP algorithm (developed by the NASA Ocean Biology Processing Group, OBPG) was
designed as a satellite data processing framework where SAA can be developed at runtime by selecting
input parameters from an assortment of published models/parameterizations [30,31]. Similar to the
GSM algorithm, GIOP attempts to retrieve IOP from rrs(λ, 0−), starting from the Equation (8):
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rrs(λ, 0−) = G(λ)
bb(λ)

a(λ) + bb(λ)
(8)

where, rrs(λ,0−) is the remote sensing reflectance just beneath the sea surface and is determined from
Rrs(λ) by adopting the method of Lee et al. [70] and G(λ) is a coefficient that varies with illumination
conditions, sea surface properties, and the shape of the marine volume scattering function.

The GIOP is based on the assumption that each absorption and scattering sub-components can be
characterized by a magnitude (i.e., M, eigenvalue) and a spectral shape. In this framework, the end
user can freely choose different parameterizations or empirical relationships to determine the spectral
shape functions of the non-water absorption and scattering components (identified by the asterisk
in Table 3) [69]. An inversion process is then performed to find the eigenvalue optimum set that
minimizes the difference between the modeled rrs(λ,0−) from the MODIS-Aqua rrs(λ,0−) over a range
of sensor wavelengths by using the Levenburg-Marquardt optimization scheme [30].

Within the standard GIOP configuration, the empirical relationships adopted are summarized in
Table 3.

Table 3. Empirical relationship of the non-water components of absorption and scattering selected for
the default GIOP configuration.

Parameter Empirical Relationship Selected Values

aph(λ) a∗ph(λ) = A(λ)[Tchl-a]−B(λ) A(λ) and B(λ)
tabulated in [71]

aCDM(λ) a∗CDM(λ) = eS(λ−λ0) S = 0.018

bbp(λ) b∗bp (λ) =
(
λ0
λ

)η η derived by
Quasi Analytical Algorithm (QAA-v5) [70]

2.4. Chl-a Match-Up Analysis

MODIS chl-a products were averaged on a 3 × 3-pixel box centered on the location of the in situ
chl-a samples [5]. To provide the best quality data for comparison with in situ chl-a measurements,
a quality control procedure was automatically implemented to discard MODIS data associated with
some of the quality flags currently used for the OC level 3 processing (e.g., atmospheric correction
warning, large viewing angle, large sun angle, clouds, stray light, low water-leaving radiance, chl
algorithm failure) [36]. All the pixels associated with at least one of the considered quality flags were
discarded, and only the boxes containing at least 50% of valid pixels were retained for match-up
analysis [72]. With regard to the temporal buffer, only the satellite passes at ±3 h time window around
the time of in situ measurements were considered, assuming that the atmospheric conditions were
reasonably stable over this period [72].

To evaluate the chl-a algorithms performance, we adopted several regression indices and statistical
indicators, such as the adjusted coefficient of determination (adjusted R2), the p-value, the average
ratio of satellite-to-in situ data (r), the average absolute (unsigned) percent difference (APD), and the
root mean square error (RMSE). The r, APD and RMSE definitions are given by the following equations,
wherein xi is the ith satellite-derived value, yi is the ith in situ-derived value, and N is the number of
samples selected.

r =
1
N ∑N

i=1

(
xi

yi

)
(9)

APD = 100
1
N ∑N

i=1

(
|xi − yi|

yi

)
(10)

RMSE =

√
1
N ∑N

i=1(xi − yi)
2 (11)

All the statistical analyses were performed using the open source statistical software R ver. 3.3.1 [73].
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3. Results

3.1. Accuracy Assessment of MODIS-Aqua Chl-a Algorithms

Following the steps described in the Section 2.3, chl-a maps were generated for the corresponding
days of in situ measurements by implementing each of the analysed chl-a algorithms. Qualitative
differences in chl-a spatial variability between Med-OC3, GSM, and GIOP algorithms could be
evaluated through a comparison of chl-a maps of spring and summer days. In particular, chl-a
maps, which refer to one sampling day of April 2013 and one of July 2014, are shown in Figure 3.

Within the spring chl-a maps in Figure 3 (top panels), the Med-OC3 algorithm shows a
well-defined chl-a concentration gradient from coastal to open sea. The empirical algorithm exhibits
chl-a values higher than 1 mg/m3 in shallow waters with a sharper decrease in chl-a values, with about
0.25 mg/m3 at just 10 km from the coastline. On the other hand, the GSM e GIOP algorithms generally
exhibit a less pronounced chl-a spatial variability due to a slight decrease in chl-a concentration,
with values between 0.8 and 0.5 mg/m3 representative of coastal and off-shore waters, respectively.

If one compares the spring chl-a maps with the summer ones (top vs. bottom panels), the Med-OC3
algorithm shows no substantial differences in chl-a values, especially in coastal waters (Figure 3a,b),
highlighting a possible chl-a overestimation, at least in the summer season. On the other hand, both GSM
and GIOP algorithms exhibited low chl-a values between 0.2–0.3 mg/m3 in the summer period in most
of the study area, except for the region close to the Taranto harbor (North-East corner of the scene),
characterized by chl-a values constantly higher than 1 mg/m3.
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Figure 3. Daily chl-a maps derived from MODIS-Aqua using (a) Med-OC3, (b) GSM, (c) GIOP for
19 April 2013 (top panel) and 1 July 2014 (bottom panel).

As mentioned above, to provide an accuracy assessment of these chl-a algorithms, a match-up
analysis between in situ chl-a measurements and the corresponding MODIS-A chl-a data was
performed. After applying the quality control procedure and the spatial and temporal criteria
described above, a total of 26 samples among the three different campaigns were retained for
the match-up analysis. Figure 4 shows the derived scatter plots for Med-OC3, GSM, and GIOP
algorithms, respectively.
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The accuracy of the three MODIS chl-a algorithms was evaluated by computing the regression
indices and statistical indicators summarized in Table 4.

The Med-OC3 algorithm exhibited the worst performance, as evidenced firstly by the low adjusted
R2 value (0.12) and the statistically non-significant p-value (0.04). Additionally, the average ratio of
satellite-to-in situ data (r) suggested an almost twofold over-estimation (with r equal to 1.81), also
confirmed by the highest APD (84.11%) and RMSE (0.35) values.

Focusing on SAA, the regression indices indicated a significant increase in the algorithm
performance from Med-OC3 to GSM and GIOP models (with adjusted R2 ranging between 0.74
and 0.79); additionally, the r values close to 1 suggest an almost nil over-estimation. The RMSE and
APD statistical errors significantly decreased, reaching the minimum values of 0.09 (for GIOP) and
21.61% (for GSM), respectively.

The scatter plots and the chl-a match-up statistics demonstrate the poor accuracy of the
investigated empirical algorithm and, conversely, the good performance of the semi-analytical
algorithms, thus highlighting the best suitability of the SAA for this specific study area.
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Table 4. Regression indices and statistical indicators for the chl-a match-up analyses (see Section 2.4
for definitions).

Algorithm Adjusted R2 p-Value r APD RMSE

Med-OC3 0.12 0.04 1.81 84.11 % 0.35
GSM 0.74 <0.001 1.12 21.61 % 0.10
GIOP 0.79 <0.001 1.14 25.12 % 0.09

3.2. In Situ Rrs(λ) Spectra and Water Types Characterization

To better understand whether in-water components might affect the performance of the analysed
chl-a algorithms, we conducted a bio-optical BICW characterization by exploiting the in situ Rrs(λ)
spectra available within IOSMOS project.

The in situ Rrs(λ) spectra (in the range 400–700 nm) of the 26 stations previously considered within
the match-up analysis are represented in Figure 5.
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Figure 5. In situ Rrs(λ) spectra acquired on 26 IOSMOS stations. Within the legend, two numbers
characterize each spectrum: the first is the identification of the stations and the second (in parentheses)
relates to the measurement campaigns (from 1 to 3).

With respect to the 26 Rrs(λ) spectra in Figure 5, it is possible to identify some stations (depicted
by the lightest green lines) characterized by the maximum Rrs(λ) in the blue region at about 400 nm.
On the other hand, others (depicted by the darkest green lines) exhibited a peak at about 490 nm,
while all the spectrum reached the minimum Rrs(λ) value in the red region of the visible domain,
beyond 600 nm. To divide the measurements into homogenous optical groups, we implemented the
supervised classification [74] (namely, max-classification) within a modified version that allowed the
definition of three water types which correspond to classes A–C, as shown in the flowchart in Figure 6:

• Class A: Phytoplankton dominant waters, characterized by the spectral peak at about 400 nm.
• Class B: CDM dominant waters, with the maximum Rrs(λ) at approximately 490 nm.
• Class C: Mixed waters with no dominant bio-optical components, with a flat Rrs(λ) peak between

500–550 nm.

After implementing this classification method, seven sampling stations fall into class A, 19 into
class B, and none into class C. To better analyze the spectral characteristics of each class, we plotted
the normalized average spectral shapes (Rrs(λ)/max(Rrs(λ)) for the two identified classes, A and B
(Figure 7a). Moreover, we also analysed the locations of the stations falling within the classes A
and B (Figure 7b) to better investigate the strong/poor influence of the main river discharges on the
Rrs(λ) spectra.
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(b) Locations of the analysed stations falling within the classes A (red dots) and B (green dots).
The continuous lines are bathymetry depths ranging from 50 to 500 m depth.

Class A showed a peak at 400 nm, a slight decrease up to about 500 nm, and a more marked
fall up to longer wavelengths (beyond 600 nm). This class identifies oligotrophic waters in which
the phytoplankton is the main constituent with consequent low concentrations of CDOM and NAP.
This water type usually characterizes off-shore (open) waters which are a significant distance from
river discharges and thus scarcely affected by coastal contribution.

Class B exhibited a peak at around 490 nm, with a progressive decrease in values as wavelengths
increase. The typical spectral shape of CDM dominant waters is the blue region absorption peak
(approximately at 443 nm), directly related to the presence of highly blue-absorbing materials, such as
CDOM and NAP, both absorbing exponentially from longer to shorter wavelengths.

All seven stations belonging to class A were, as expected, those farthest from the coastline (with
depths ranging between 200 and 500 m), where the influence of river discharges in terms of CDM
amount should be attenuated or less relevant (Figure 7b). On the other hand, the other 19 stations which
comprise class B are located in shallower waters (up to 100 m depth), where the NAP re-suspension
is not negligible, and the land-originated CDOM concentration increases due to the proximity of
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river outflows (i.e., Cavone, Agri, and Sinni Rivers). Such results are in accordance with the strong
coastal-offshore gradients of bio-optical variables observed by Marcelli et al. [75] in the same area
through the use of in situ innovative technologies.

The performed Rrs-based classification highlights that BICW are mostly characterized by the
co-existence of CDOM and NAP, thus indirectly justifying the poor capability of the empirical Med-OC3
algorithm in retrieving chl-a concentration.

3.3. Local Scale Tuning

The results achieved thus far clearly suggest that a local scale tuning of the chl-a algorithm should
be focused on the analysed SAA. For this reason, we looked for the best locally tuned configuration of
the absorption and scattering non-water components, a*

ph(λ), aCDM(λ), and bbp(λ), adopting the most
appropriate empirical relations and IOP parameterizations by exploiting a bio-optical dataset of the
available in situ measurements (Rrs(λ), chl-a, aCDM).

To this aim, we considered a dataset of 46 stations (considering all the three measurement
campaigns) for which simultaneous in situ measurements of Rrs(λ), chl-a, aCDM(λ) were available.
Subsequently, we divided all the stations into two independent datasets, namely those of calibration
and validation, characterized by 70% and 30% of stations, respectively, which were comparable also in
terms of bio-optical characteristics and seasonal conditions with the same percentage of spring and
summer stations.

In consideration of the 32 stations within the calibration dataset, we analysed the average CDM
absorption spectrum aCDM(λ) in the 350–500 nm spectral domain for its locale scale tuning (Figure 8).
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Looking at Figure 8, the aCDM(λ) spectrum exhibits a common exponential decay with increasing
wavelengths, defined as:

aCDM(λ) = eS(λ−λ0) (12)

In addition, the dashed red line and the satisfactory derived coefficient of determination R2

(R2 > 0.99) confirms the reliability of this exponential best fit, which returned a S (coefficient of
exponential decay) value of 0.0201.

Concerning the particulate back-scattering coefficient bbp(λ), we adopted a power-law relationship
(as defined in Equation (13)):

bbp(λ) =

(
λ0

λ

)η

(13)

where the exponent η has been derived from the in situ Rrs(λ) measurements (in situ bbp(λ)
measurements were not available) via the Equations (14) and (15) [70]:
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η = 2.2×
[

1− 1.2× e
−0.9×

rrs(443)
rrs(555)

]
(14)

rrs(λ) =
Rrs(λ)

0.52 + 1.7Rrs(λ)
, (15)

Entering the averaged ratio rrs(443)/rrs(555) into Equation (15), we obtained the exponent η equal
to 1.2031, as shown in Figure 9.
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With regard to the local tuning of the chl-a specific absorption coefficient a*
ph (λ), it was derived

from the total chl-a concentration [Tchl-a] using the empirical power law relation originally developed
by Bricaud et al. [71] (see Table 3) and adopting the coefficients A(λ) and B(λ) (tabulated in [76]),
which have been recently updated for the Mediterranean basin:

a∗ph(λ) = A(λ)[Tchl-a]−B(λ) (16)

Specifically, the averaged a*
ph(λ) values computed for the six reference wavelengths are illustrated

in Figure 10, where also the a*
ph(λ) standard ones have been plotted for a comparison analysis.
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scale configuration (hereafter GSM-BICW, red line) and the standard ones related to the default
configuration (GSM—standard, blue line). All the a*ph(λ) values were normalized at 443 nm to
facilitate the comparison.
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The local scale tuning of the non-water absorption and scattering components is summarized in
Table 5.

Table 5. Empirical relationship of the non-water components of absorption and scattering selected for
the locale scale configuration (GSM-BICW).

Parameter Empirical Relationship Adopted Values

a∗ph(λ) a∗ph(λ) = A(λ)[Tchl-a]−B(λ)

λ

412 0.04973

443 0.06336

490 0.04155

510 0.02471

555 0.00799

670 0.02507

S aCDM(λ) = eS(λ−λ0) S = 0.0201

η bbp(λ) =
(
λ0
λ

)η
η = 1.2031

The adopted values of a*
ph(λ), S and η shown in Table 5 are similar to those adopted within the

GSM standard configuration (Table 2). Additionally, the S value is almost coincident with that of the
GSM standard, the η value is slightly higher (1.2031 vs 1.0337), while the derived a*

ph(λ) absolute
values differ, especially at 412 nm (see Figure 10).

Finally, we performed the tuned-version of the GSM algorithm (GSM-BICW) by implementing
this local scale configuration (Table 5). To investigate possible improvements in terms of algorithm
accuracy, we carried out a chl-a match-up analysis on the 14 stations within the validation dataset
(30% of the whole dataset) after applying the quality control procedure and the spatiotemporal criteria
defined in the Section 2.4. Figure 11 shows the derived scatter plots for the GSM-standard (default
configuration) and GSM-BICW algorithms.
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The comparison between GSM-standard and GSM-BICW was performed by computing the same
regression indices and statistical indicators adopted previously, as summarized in Table 6.
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Table 6. Regression indices and statistical indicators computed based on the previous chl-a match-up
analyses (Figure 11).

Algorithm Adjusted R2 p-Value r APD RMSE

GSM-standard 0.82 <0.001 0.95 12.12 % 0.083
GSM-BICW 0.86 <0.001 1.02 11.03 % 0.070

On the basis of the regression analyses (Figure 11) and the associated statistics (Table 6) performed,
the GSM-DC and GSM-BICW algorithms exhibited only few appreciable differences, as expected,
in consideration of the similar setting of the IOP parameterizations (Tables 2 and 5). However,
GSM-BICW showed a slightly better accuracy, thus recording the best regression index (adjusted
R2 = 0.86) and the lowest APD and RMSE statistical errors (11.03% and 0.070%, respectively).

4. Discussion

The accuracy of MODIS standard chl-a algorithms can change depending on different marine
waters because the global scale optimized regression coefficients are applied universally [10,77].

The validation of chl-a products plays a crucial role in establishing their accuracy or assessing their
scientific relevance, especially in optically complex waters. Although in situ chl-a measurements are
frequently referred to as the “ground truth”, chl-a satellite data might contain different error sources
due to calibration, navigation, and data processing issues as well as atmospheric conditions [35].
These instrumental and environmental issues can introduce uncertainties in retrieval water leaving
radiance Lw, which is the main radiometric parameter involved in the generation of derived products
such as the chl-a concentration [2].

In this work, owing to the availability of an in situ measurement dataset acquired through three
measurement campaigns performed within the IOSMOS project, the chl-a match-up analyses and the
associated statistics have highlighted the extent to which SAA (GSM and GIOP) are more suitable than
the Med-OC3 algorithm in retrieving chl-a concentration in BICW. The large gap in performance between
the empirical and semi-analytical algorithms could be related to the specific bio-optical conditions of the
investigated area. The bio-optical BICW characterization through the Rrs(λ) supervised classification
allowed us to better understand the effect the presence of other in-water components (i.e., NAP and
CDOM) has on chl-a algorithm performance. The percentage of stations falling into CDM dominant
waters is significant enough to indirectly justify the poor capability of the empirical algorithm in
retrieving chl-a concentration in such coastal waters, where variations in Rrs(λ) spectra are not primarily
driven by the abundance of phytoplankton. The co-existence of these bio-optical constituents has
likely introduced large errors in the reflectance ratios used in the OCx form algorithms, which were
developed to retrieve chl-a concentration in phytoplankton dominant waters. Conversely, SAA, for their
inherent design, tend to overcome this limitation, also allowing for the discrimination of the relative
contributions of other bio-optical constituents (i.e., NAP and CDOM) [6]. GSM is designed to assign
fixed values to the setting parameters (i.e., aph*(λ), S, and η) [29], whereas the GIOP configuration
allows for the determination of the constituent absorption and scattering properties by choosing from a
wide assortment of IOP parameterizations or empirical relationships [30].

In this framework, GSM and GIOP accuracy depends on how well the IOP setting configurations
fit the bio-optical properties of the study area. For this reason, it is worth selecting the most appropriate
empirical relationships and shape functions of the IOP components for BICW by using a bio-optical
dataset of in situ measurements (Rrs(λ), chl-a, aCDOM, aNAP).

With regard to the local setting of CDM absorption spectra, the key parameter for aCDM(λ) setting
was the average spectral slope S, which accounted for the contribution of each component, namely
aCDOM(λ) and aNAP(λ). However, the S value could vary, depending on the different fitting technique
(linear vs. non-linear) and wavelength reference range (starting at 300 nm or 400 nm) adopted [78,79].
In this work, the 350–500 nm wavelength range allowed for the maintenance of a sufficiently high
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signal to noise ratio, considering the CDOM and NAP high absorption properties at these wavelengths.
At the same time, the choice of an exponential fitting approach (R2 > 0.99) ensured a more appropriate
weighting of the absorption spectrum in comparison to the linear fit, which relies more on the low
absorption/high wavelength region of the spectrum [78,80].

With regard to the particulate back-scattering coefficient bbp(λ), the lack of in situ bbp(λ)
measurements could have determined a less accurate local scale setting of η value and the
derived bbp(λ). The Rrs(λ)-based η value may contain uncertainties arising from in situ radiometric
measurements due to non-ideal sea and sky conditions or calibration issues [72]. However, the η

estimation from a Rrs(443)-to-Rrs(555) ratio [70] enabled the minimization of uncertainties due to
atmospheric conditions, which are usually comparable for the green and blue bands when aerosols
are not absorbing [81]. Among the different methods available in literature [26,29,82] to estimate η,
the model proposed by Lee et al. [70] (QAA-v5) is mathematically simple and physically transparent;
it is also easily adaptable to various multi-spectral/hyperspectral sensors, such as the ASD Field Spec
Pro spectroradiometer used in this work [35].

Within the local tuning of the chl-a specific absorption coefficient a*
ph(λ), it is worth considering

that phytoplankton light absorption properties can change according to the algal community size
structure, pigment composition [83,84], or their physiological state [76,85,86]. Although it is difficult
to account for all these phenological variables, the constant/fixed a*

ph(λ) values are less realistic than
those derived from an empirical relation in which the a*

ph(λ) coefficients can vary as a function of
[Tchl-a] as in Bricaud et al. [71].

Accordingly, it was possible to identify the best configuration for the BICW in terms of IOP
parameterizations. The BICW-tuned version of MODIS-A chl-a algorithm was performed on the GSM-based
configuration, taking into account the slightly better performance of the GSM algorithm in comparison
to GIOP (Table 4). Furthermore, the IOP dataset available for the GSM-BICW implementation was not
so bio-optically comprehensive as to suggest the adoption of a GIOP-based algorithm, that was more
inherently complex than GSM [30].

For this reason, the bio-optical characterization at the local scale should be improved, providing
a BICW sufficiently more representative in situ dataset through additional IOP estimates, such as in
situ bbp(λ) measurements. Additionally, the acquisition of sampling data in all the seasonal conditions
could make both the IOP local setting and the validation phase more statistically significant.

Finally, the implications of these results should be investigated within the broader framework
of the European MSFD directives aimed at maintaining GES. The Copernicus Marine Environment
Monitoring Service (CMEMS) lends support to both European and regional decision makers implied
in European policies linked to MSFD [87] by delivering several products (both based on in situ and
satellite data) related to the state of oceans and regional seas [87]. Among these, the CMEMS chl-a
product (OCEANCOLOUR_MED_CHL_L3_REP_OBSERVATIONS_009_073, hereafter abbreviated
as CMEMS-L3) [88] is a multi-sensor merged output (reprocessed at daily scale and 1 km spatial
resolution) that identifies the surface chl-a concentration via two switchable algorithms, namely
Med-OC4 [5] for Case 1 waters and AD4 [89] for Case 2 waters type.

Beginning with the in situ measurements already used for the match-up analysis (see Figure 4),
a comparison between GSM-BICW and CMEMS-L3 outputs was performed but which only considered
13 among the 26 stations available (taking into account the standard CMEMS-L3 quality check) (Figure 12).

Between the two products, CMEMS-L3 exhibited the lowest adjusted R2 value (0.59 vs. 0.88 of
GSM-BICW) and an average ratio of satellite-to-in situ data (r) not higher than 0.43, thus suggesting
a clear underestimation.

Considering that CMEMS-L3 is a merged Case 1–Case 2 product, this result could have been
affected by uncertainties in discrimination between the two water types at pixel level. The identification
of the two water types was performed by comparing the satellite spectrum at pixel level, with the
average water type spectral signature from two distinct in situ Rrs(λ) datasets, namely Med-OC4 [5]
for Case 1 and CoASTS [90] for Case 2 waters.
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The availability of the in situ Rrs(λ) measurements allowed for a better assessment of the nature
of such uncertainties. On the basis of the results of the Rrs(λ) supervised classification (see Section 3.2),
70% of the chl-a samples (i.e., nine stations) considered in this last analysis fell into CDM dominant
waters (class B) or Case 2 waters, but all of them were marked by Case 1-water type within the
CMEMS-L3 product, as shown in Figure 13.

Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 24 

 

 
Figure 12. Scatter plot between in situ and satellite chl-a data. The blue rhombus are chl-a values 
obtained by GSM-BICW algorithm, while the red circles are related to the CMEMS-L3 product. The 
dashed line is the 1:1 line. 

The availability of the in situ Rrs(λ) measurements allowed for a better assessment of the nature 
of such uncertainties. On the basis of the results of the Rrs(λ) supervised classification (see Section 
3.2), 70% of the chl-a samples (i.e., nine stations) considered in this last analysis fell into CDM 
dominant waters (class B) or Case 2 waters, but all of them were marked by Case 1-water type within 
the CMEMS-L3 product, as shown in Figure 13. 

 
Figure 13. Comparison between the water type masks (averaged value on a 3 × 3-pixel box centered 
on the location of the in situ chl-a samples) included in the CMEMS-L3 product and the classes 
derived by the Rrs(λ) supervised classification implemented on the chl-a samples selected for the 
match-up analysis (Figure 12). The full circles represent the classes (red and green for classes A and 
B), while the empty circles the water types (red and green for Case 1 and Case 2 waters). The 
continuous lines are bathymetry depths ranging from 50 to 500 m depth. 

Figure 13. Comparison between the water type masks (averaged value on a 3 × 3-pixel box centered
on the location of the in situ chl-a samples) included in the CMEMS-L3 product and the classes derived
by the Rrs(λ) supervised classification implemented on the chl-a samples selected for the match-up
analysis (Figure 12). The full circles represent the classes (red and green for classes A and B), while the
empty circles the water types (red and green for Case 1 and Case 2 waters). The continuous lines are
bathymetry depths ranging from 50 to 500 m depth.
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For most of the considered stations, the wrong water type characterization could have determined
the implementation of an unsuitable algorithm, Med-OC4 in this case, which generally shows poor
accuracy in case waters 2 [8].

The inclusion of in situ Rrs(λ) measurements related to this poorly investigated area (i.e., BICW)
in the Rrs(λ) development datasets might have improved the CMEMS-L3 product performance.
Furthermore, the recent availability of new chl-a products in the CMEMS catalogue probably
allowed these limitations to be overcome. The new Near-Real-Time (NRT) L3 chl-a products (i.e.,
OCEANCOLOUR_MED_CHL_L3_NRT_OBSERVATIONS_009_040) [88], available since April 2016,
have been updated through a reliance on more recent OC sensors, such as Ocean and Land Colour
Instrument (OLCI) on board Sentinel-3A (S3A). The better spatial resolution and spectral configuration
of S3A-OLCI should guarantee an accuracy improvement of the chl-a satellite estimates [91]. The 300 m
spatial resolution of these data can, at least, improve the accuracy in detecting the chl-a spatial
variability on the 3 × 3-pixel box used for chl-a match-up analysis. In addition, the OLCI spectral
configuration, properly designed for optically complex waters, is more suitable to retrieve information
about different in-water components by including, for instance, different red and near-infrared (NIR)
spectral bands (e.g., at 665, 673.75, and 681.25 nm) associated with chl-a absorption and fluorescence
features [92].

The findings achieved in this work highlight the need to regionalize the standard satellite-based
chl-a algorithms, which have not been properly developed for coastal or optically complex waters.
Several studies [32,33,93,94] have already highlighted the usefulness to define locally tuned chl-a
algorithms for monitoring poorly investigated area or crucial marine environments. In different
regions, such as the northern South China Sea [32], Arabian Sea [33], the Alboran Sea [93], or the
Patagonian Continental Shelf [94], the empirical and semi-analytical algorithms have showed dissimilar
performances in chl-a retrievals, thus confirming that each marine environment deserves a local scale
tuning based on its specific bio-optical properties.

Finally, accurate chl-a satellite estimates can play an important role in providing ongoing
information useful for the end-user involved in all the activities linked to the exploitation of marine
resources, such as water quality status, fishing, or aquaculture. The chl-a concentration, considered a
good predictor for phytoplankton growth or primary production, can indeed be regarded as a fish
stock index or a biological indicator of water quality status. Furthermore, the derived estimation
of primary production is a quick way to measure roughly the phytoplankton biomass involved in
aquaculture systems [95].

5. Conclusions

In this study, we evaluated the most suitable chl-a algorithm for the Basilicata Ionian Coastal
Waters (BICW), a sub-set of the Gulf of Taranto, by comparing the performance of three empirical and
semi-analytical MODIS-Aqua chl-a algorithms, namely Med-OC3, GSM, and GIOP. Representative
chl-a maps of spring and summer days related to the above-mentioned chl-a algorithms showed a
predictable chl-a overestimation of the empirical Med-OC3 algorithm, specifically in the summer
season, when constantly high chl-a values occurred especially in coastal waters. The chl-a match-up
analyses and the associated statistics further confirmed the poor performance of the Med-OC3
algorithm that showed a statistically not significant regression index (adjusted R2 equal to 0.12)
and an almost twofold over-estimation (with 1.81 r value), also confirmed by the highest APD (84.11%)
value. Otherwise, the SAA, GSM, and GIOP exhibited good performance and a nil over-estimation,
as proved by an adjusted R2, ranging between 0.74 and 0.79, and r values close to 1, respectively.
Furthermore, RMSE and APD statistical errors significantly decreased, recording the minimum values
of 0.09 (for GIOP) and 21.61% (for GSM), respectively.

The subsequent Rrs(λ) spectra analysis and the proposed supervised classification allowed for
a better characterization of the specific bio-optical conditions and an understanding of the large gap
in performance between the empirical and semi-analytical algorithms. Most of the analysed stations
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(70%) fall into CDM dominant waters, where NAP re-suspension and land-originated CDOM probably
affected the Rrs(λ) spectra of the stations closest to the shoreline.

Finally, a local scale assessment of the IOP components was performed by exploiting a bio-optical
dataset of in situ measurements (Rrs(λ), chl-a, aCDM, aNAP). Subsequently, the most appropriate
empirical relationships and shape functions of the IOP components were selected and implemented
to define a BICW-tuned version of GSM algorithm, namely GSM-BICW. The regression analysis of
this algorithm showed the best regression index (adjusted R2 = 0.86) and the lowest APD and RMSE
statistical errors (11.03% and 0.070 respectively), thus recording a slight improvement in accuracy
compared to the GSM-standard algorithm.

The results achieved in this work further confirm the need to regionalize the standard MODIS
chl-a algorithms, especially in optically-complex or poorly investigated area (i.e., BICW) to ensure
their adequate exploitation within coastal management systems.
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