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Abstract: Lake surface water temperature (LSWT) is an important parameter with which to assess
aquatic ecosystems and to study the lake’s response to climate change. The AVHRR archive of the
University of Bern offers great potential to derive consistent LSWT data suited for the study of
climate change and lake dynamics. To derive such a dataset, challenges such as orbit drift correction,
non-water pixel detection, and homogenization had to be solved. The result is a dataset covering over
3.5 decades of spatial LSWT data for 26 European lakes. The validation against in-situ temperature
data at 19 locations showed an uncertainty between +0.8 K and +2.0 K (standard deviation),
depending on locations of the lakes. The long-term robustness of the dataset was confirmed by
comparing in-situ and satellite derived temperature trends, which showed no significant difference.
The final trend analysis showed significant LSWT warming trends at all locations (0.2 K/decade to
0.8 K/decade). A gradient of increasing trends from south-west to north-east of Europe was revealed.
The strong intra-annual variability of trends indicates that single seasonal trends do not well represent
the response of a lake to climate change, e.g., autumn trends are dominant in the north of Europe,
whereas winter trends are dominant in the south. Intra-lake variability of trends indicates that trends
at single in-situ stations do not necessarily represent the lake’s response. The LSWT dataset generated
for this study gives some new and interesting insights into the response of European lakes to climate
change during the last 36 years (1981-2016).

Keywords: Advanced Very High Resolution Radiometer (AVHRR); Lake Surface Water Temperature
(LSWT); long-term data record; temperature trend; intra-annual variability

1. Introduction

Water temperature is an important parameter within aquatic ecosystems. The metabolic rate
of organisms and the activity of bacteria and algae is governed by water temperature [1-4].
Changing water temperature can alter the balance and the species composition of an aquatic ecosystem
and even alter its trophic state [5-7]. Lake dynamic processes such as thermal stratification and mixing
dynamics are firmly related to water temperatures [8,9]. The energy balance of large lakes is dominated
by heat exchange processes at the surface [8]. Lake surface water temperature (LSWT) governs energy
and mass exchange between the water body and the troposphere. It is also an important parameter
in mesoscale meteorology and local climate models [10-12]. LSWT can be seen as an indicator of
regional climate change [13], and several recent publications analyzed climate signals within lakes by
investigating LSWT trends [14-17]. Recognizing its importance, LSWT was also added to the list of
essential climate variables (ECV) by the Global Climate Observing System (GCOS), which needs to
be monitored [18].
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Traditionally, measurement of water temperature is done with in-situ thermometers, either
manually or with automatic recording stations. Depending on the objectives of organizations or
institutes, measurements are taken at various point-locations, at various intervals, and at various
depths. This leads to a high heterogeneity amongst available lake water temperatures data, preventing
the composition of consistent time series to be analyzed in the frame of climate change studies. Also,
for lake dynamic studies, the 1D point measurements from automatic in-situ stations are not well
suited; data with spatial coverage would be more valuable.

Remotely sensed earth observation data from satellites has the potential to overcome these limitations.
For the study of lake dynamic processes and climate change, the spatial and temporal homogeneity of a
dataset is of crucial importance, whereas the accuracy of an individual point-measurement is secondary.
Satellite observation does not provide highly accurate temperature measurement for a single point in
space. It provides a grid of temperature measurements, each averaged over a certain portion (depending
on the resolution) of the lake’s surface. It is also supposed to have higher uncertainties due to atmospheric
disturbance. However, the potential of temporal and spatial coverage is unique, and therefore remotely
sensed surface water temperature from satellites is a highly relevant topic in the scientific community.

Having the WMO definition of a climate period in mind, homogeneous time series covering more
than 30 years would be necessary to be relevant for the study of climate change. The Advanced Very
High Resolution Radiometer (AVHRR), mounted on various satellite platforms since 1981, offers the
possibility to generate such a data set. In 1981, the first AVHRR sensor recording in two TIR bands was
launched with the NOAA-7 platform. Since then, the AVHRR sensor was mounted on the platforms
of the NOAA series (until NOAA-19), and after on the last MetOp series, operated by EUMETSAT.
This leads to an archive of AVHRR data starting in June 1981 until today. This time series, which
covers over 35 years, is unique in satellite-based remote sensing, and therefore, despite the moderate
resolution and the noise rate, the almost antique AVHRR sensor is still of interest today.

For this study, we generated a LSWT dataset of European lakes covering 36 years from 1981
to 2016 considering AVHRR local area coverage (LAC) data, archived at University of Bern, with a
spatial resolution of 1.1 km in nadir. This data allows one to gain a unique insight into the response of
European lakes to climate change in the last 3.5 decades.

The next chapter gives an overview of data and study sites considering 26 lakes distributed in
Europe; in Section 3, the processing method is described in detail, which includes also post-processing
based on different quality indicators and a correction of the diurnal temperature cycle to minimize the
influence of orbit drift. Section 4 describes the results of this study, including validation with in-situ
measurements and, finally, shows the trends for European lakes. The discussion in Section 5 compares
the findings of LSWT trends with air temperatures of different periods and shows the influence of the
measurement site on the trend. Section 6 concludes the paper.

2. Data and Study Sites

2.1. The Study Site

Lakes in and around Europe were selected to have a good distribution from east to west and from
north to south (Figure 1). Only lakes exceeding a certain size were retained, because multiple adjacent
water-only pixels must be available to perform accurate LSWT retrieval. In the case of the AVHRR
sensor with a pixel size of roughly 1 km, this means that a lake should contain patches with open waters
exceeding 3 x 3 km. For validation purposes, lakes with suitable in-situ temperature measurements
also had to be among the selected lakes, in which ‘suitable’ means that the measurement should be
representative of the open surface waters of the lake in terms of location and measurement depth.
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Figure 1. Advanced Very High Resolution Radiometer (AVHRR) scenes subset available within the
University of Bern data archive with the lakes covered by the present study. Blue dots are all lakes for
which Lake Surface Water Temperature (LSWT) data was retrieved and analysed; the green dots are
the location where validation with in-situ data was performed.

With these criterions, a preselection adapted from Politi et al. [19] was used first, followed by a
final manual selection. This led to a selection of 26 lakes (Table 1), with latitudes reaching from 31.53°N
(Djorf Torba reservoir in Algeria) to 69.04°N (Inarijarvi in Finnland), and longitudes from 21.13°W
(Thingvallavatn in Iceland) to 61.90°E (Lake Onega in the Russian Federation). The exact locations,
where the LSWT data was resampled for the final time series, are shown in Table The sampling points
were preferentially placed in the middle of large undisturbed open water surfaces, as the priority was
to get the best possible conditions for an accurate measurement. Whereas, for the validation with
in-situ data, sometimes different locations within the lakes were chosen (Table 2) to be as close as
possible to the in-situ measurement location. These validation points were therefore often close to
the shores, which had the effect of decreasing the availability and reliability of the satellite data while
increasing the comparability with the in-situ measurements.
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Table 1. List of Lakes where LSWT was retrieved and trend analysis performed. The acronyms are the
same as those used in Figure 1.

Lake Name Country Acr. Location Alt. [m] [‘lt;f;] ge[i: l]l Illl)_g:;u

Lake Balaton HU Bala 46.75°N 17.43°E 126 578 3.3 Yes
Lake Bolsena 1T Bols 42.61°N 11.93°E 368 114 81.0 No
Lake Constance DE,CH,AUT Cons 47.60°N 9.45°E 431 472 101.0 Yes
Djorf Torba DZA Djor 31.53°N 2.75°W 716 77 6.1 No
Lake Garda 1T Gard 45.52°N 10.67°E 85 368 133.0 No
Lake Geneva FR, CH Gene 46.41°N 6.41°E 466 580 152.7 Yes
Inarijérvi FIN Inar 69.04°N 27.76°E 126 1110 14.0 Yes
Kiev Reservoir UA Kiye 50.80°N 30.47°E 93 420 4.0 No
Lappajarvi FIN Lapp 63.13°N 23.71°E 85 141 7.0 Yes
Lokka Reservoir FIN Loka 67.94°N 27.56°E 259 488 5.0 No
Miiritz DE Muri 53.43°N 12.67°E 63 110 6.5 Yes
Lough Neagh NIR Neag 54.62°N 6.41°W 58 380 9.0 No
Lake Ohrid MK,ALB Ohri 41.02°N 20.72°E 700 347 155.0 No
Lake Onega RU Oneg 61.63°N 35.53°E 56 9'608 30.0 No
Oulujérvi FIN Oulu 64.29°N 27.22°E 128 890 7.6 Yes
Lake Paijidnne FIN Paij 61.52°N 25.42°E 95 1080 16.0 Yes
Lake Peipus EST,RU Peip 58.53°N 27.50°E 29 3553 7.1 Yes
Lake Pielinen FIN Piel 63.24°N 29.64°E 113 870 9.0 Yes
Sakylan Pyhajarvi FIN Pyhj 61.00°N 22.28°E 52 150 5.5 Yes
Pyhaselka FIN Oriv 62.60°N 29.77°E 76 361 8.7 Yes
Sanguinet FR Sang 44.49°N 1.15°W 24 57 5.0 No
Thingvallavatn 1S Thin 64.16°N  21.13°W 105 83 34.0 No
Lake Trichonida GR Tric 38.57°N 21.57°E 40 95 30.0 Yes
Lake Vanern SWE Vane 59.07°N 13.60°E 45 5'650 27.0 No
Lake Vittern SWE Vatt 58.33°N 14.50°E 91 1890 40.0 No

Lake Yalpuh UA Yalp 45.42°N 28.63°E 10 225 2.0 No

Table 2. List of in-situ measuring locations from which data was available for this study. Most of
the measurements are either hourly or daily averaged temperatures from automatic stations. In the
case of Miiritz, Lake Trichonida, and the older measurements from Lake Balaton, the measurements
are sporadically and manually taken at specific locations on the lake. The average measurement
density varies from 12 measurements per year at Lake Trichonida (monthly measurements) to
8760 measurements per year at Bregenz, Lake Constance (hourly measurements).

Lake Country Sta. Name Type/Freq.  Coverage N/Yr Location
Keszthely old instant 1981-2003 21 46.74°N 17.29°E
Lake Balaton HU Keszthely hourly 2003-2013 4'043 46.76°N 17.27°E
Siofok daily 1992-2012 365 46.90°N 18.05°E
Bregenz old daily 1989-1996 365 47.51°N 9.74°E
Lake Constance P CH Bregenz new hourly — 1997-2000  8'760 4751°N 9.74°F
AUT Lindau hourly ~ 2005-2014 8261 4754°N 9.68°E
Buchillon hourl 2000-2011 8147 46.46°N 6.40°E
Lake Geneva FR,CH INRA dailyy 1991-2011 360 46.38°N 6.47°E
Lake Inari FIN Inari daily 1980-2014 153 68.90°N 28.10°E
Lappajérvi FIN Halkosaari daily 19802014 167 63.26°N 23.63°E
Miiritz DE Miiritz instant 1980-2013 18 53.42°N 12.70°E
Pyhajarvi FIN Sékylan daily 1996-2014 205 61.11°N 22.17°E
Oulujérvi FIN Oulujérvi daily 1980-2014 156 64.40°N 27.17°E
Lake Paijidnne FIN Paijatsalo daily 2003-2014 200 61.47°N 25.59°E
Kalkkinen daily 1980-1999 214 61.29°N 25.57°E
Lake Peipsi EST, RU Mehikoorma daily 1985-2011 267 58.24°N
Lake Pielinen FIN Nurmes daily 1980-2014 163 63.54°N
Pyhéselka FIN Joensuu daily 1980-2014 194 62.60°N
Lake Trichonida GRE Trichonida instant 2004-2006 12 38.57°N

2.2. The Data

The AVHRR data archive from the University of Bern [20] was used to retrieve LSWT time series.
The archive contains around 130,000 scenes from the European subset (Figure 1) and includes data
from all NOAA and MetOp satellites with an AVHRR-2 or AVHRR-3 sensor on board (Figure 2).
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The data in the archive was preprocessed (see [20] for details) and included a probability cloud mask
after Musial et al. [21] for each scene. The data of NOAA-15 was omitted, because the data from this
platform showed significantly increased amounts of erroneous pixels and scanlines. The data from
MetOp-1 was also omitted due to inconsistencies during the pre-processing.

80 81 82 83 84 85 86 87 83 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
NOAA-07
NOAA-09
NOAA-11
NOAA-12
NOAA-14
NOAA-15
NOAA-16
NOAA-17
NOAA-18
NOAA-19
METOP-1
METOP-2

Figure 2. Availability of AVHRR data by platform and by years. In blue, the data that was used
for the present study, and, in red, the data that was not processed due to the elevated amount of
inconsistent data.

The in-situ data available for this study is shown in Table 3 are, mainly, two types of measurements:
homogeneous averaged measurements on a daily or hourly basis, and sporadic instant measurements
at a defined point in time. For the measurements at lake Trichonida and Lake Balaton (Keszthely old),
only the date (day) without exact timestamp (hh:mm) was available; therefore 12:00 local time was
assumed. All the measurements are representing bulk temperatures close to the surface (taken at
0.1-1.0 m). Further, most of the northern lakes are ice covered during a certain amount of time per year.
For these lakes, the amount of data per year (N/Yr. in Table 2) is considerably below of the expected
365 measurements (daily averaged data) per year.

The in-situ data were filtered for outliers and physically inconsistent values, as well as checked
for irregularities such as systematic temperature changes due to modification of the equipment or the
location. In the case of the INRA (Institute Nationale de la Recherche Agronomique) measurement at
Lake Geneva, a systematic temperature decrease of roughly 0.4 °C was detected after autumn 2007,
probably due to a dislocation of the station. Therefore, only the data from 1991 to 2007 from the INRA
station was used.

It is assumed that the best validation performance will result from comparison with the hourly
averaged and instant measurements, whereas for the daily measurements, the error between an
individual satellite measurement and the daily average temperature can theoretically be as high as the
amplitude of the diurnal temperature cycle.

3. Method

3.1. LSWT Processing Chain

Figure 3 shows a scheme of the main LSWT retrieval and processing steps performed for this
study. For accurate LSWT retrievals, also the pre- and post-processing of the satellite data is very
important, e.g., only reliable clear sky observations with accurate geocoding should be retained to
ensure that the resulting temperatures correspond to the features we actually investigate. Conservative
cloud and land masking are responsible for the elimination of non-water pixels. Parameters like
view angles and spatial consistency of LSWT are additional indicators for the quality and reliability
of the measurements. All this information is retained in a quality mask associated with the final
LSWT product.
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Figure 3. Schematic representation of the LSWT processing as used for this work.

The pre-processing of the AVHRR data used for this study is described in Hiisler et al. [20] and
provides georeferenced AVHRR scenes, as well as the associated cloud mask after Musial et al. [21].
The coefficients used for this study are time-independent and lake-specific coefficients, empirically
matched to radiative transfer model results as described in Lieberherr et al. [22]. The details of the
final LSWT retrieval is described within the following subchapters.

3.1.1. Georeferencing Test

Even on well geocoded AVHRR scenes, the accuracy of the geolocation can vary within the
same scene. Thus, an additional georeferencing test was added to the pre-processing described in
Hiisler et al. [20]. During the extractions of the sub-sets from the scene, an algorithm verifies and
adjusts the local geocoding for each target location. The test is basically an edge detection and matching
algorithm. First, an edge detection with a Laplace filter is applied to the subset of the scene, and to
the subset of a reference image. Then, the correlation for each possible positioning of the AVHRR
subset within the reference subset is computed, resulting in a correlation map. In the case of a correct
georeferenced image, a correlation peak is found in the center of the correlation map. Otherwise,
depending on the position of the correlation peak, a latitude and/or longitude shift is performed before
the subset of the lake is extracted. To determine if the correlation maximum corresponds to the correct
location, it is tested if the correlation peak is unique and of significant amplitude. The geolocation
check is performed with AVHRR Band 2 data for daytime scenes, and with AVHRR Band 4 data for
night-time scenes.

3.1.2. The LSWT Retrieval

A state-of-the-art split-window method was used to retrieve surface water temperature for
this study. The idea is to make use of the different absorption characteristics of water vapor within
differential spectral windows of the thermal infrared [23]. Two algorithms are currently used in various
applications: the Multichannel Sea Surface Temperature (MCSST) algorithm [24] assumes a linear
relationship between the atmospheric transmittance of the signal and the difference in absorption of
the two channels. In contrast, the Non-Linear Sea Surface Temperature (NLSST) algorithm introduced
in 1990 for NOAA SST products takes the nonlinear nature of atmospheric absorption into account,
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which increases the accuracy especially for daytime measurements [25,26]. Recent publications show
no significant improvement when using the NLSST instead of the MCSST for LSWT retrieval [27-29].
Therefore, here the MCSST approach described by Equation (1) with empirically determined split
window coefficients is used to derive LSWT from AVHRR data.

LSWT = ag + a1 BTy + ap(BT4 — BTs) + az(1 — sec0) (BT, — BTs) 1)

49,123 Split-window coefficients
BT,5 Brightness temperature from AVHRR band 4 and 5
6 Satellite view zenith angle

The coefficients where derived for each location (lake specific) and satellite, based on the findings
of Lieberherr et al. [22]. It was assumed that the use of matchup data from a 2-year period is sufficient
to obtain the infinite temporal validity of the coefficients. The used matchup data was generated with
a radiative transfer model, RTTOV-11 [30], using atmospheric profiles of water vapor and temperature
from the ERA-INTERIM [31] dataset.

3.1.3. Non-Water Pixels Elimination

Cloud and land masking is crucial for satellite-based temperature retrievals of surface lake water.
Clouds are opaque to thermal infrared radiation, and even a slightly cloud-contaminated signal
(sub-pixel sized clouds) can result in a considerably colder measurement of the temperature. Also, for
land contaminated pixels, the signal can be biased, as the land surface temperature sometimes differs
by several degrees from the water temperature. Therefore, strict cloud and land masking are necessary
to eliminate affected pixels. On the other hand, this reduces the amount of available data to be used for
further processing. An ideal cloud and land masking would eliminate all affected pixels without any
false positives. As, of course, this is not feasible, a good trade-off tailored to the application must be
found. For the cloud detection within this study, the probability cloud mask developed by [21] is used.
Additionally, in order to improve the performance over inland-waterbodies and during night-time,
some additional tests are performed. These additional tests are described in [32]. The masking of land
pixels is done by applying a land-water mask (LWM).

The LWM is derived from freely available Open Street Map (OSM) data, which was found to be
more accurate in geolocation than several other land classification datasets. The accuracy of OSM
data was the subject of various studies, e.g., [33] reported an accuracy of +3 m (SD) in an urban
area in Germany, and [34] found an RMSE of 15 m in a remote rural area in Portugal. Further, the
reliability of OSM data is considered good, since it is based on in-situ GPS measurements and is
verified and reviewed by the OSM community. For easily accessible and frequently visited objects such
as Lake Constance, the community is very active, and the data is highly reliable. When rasterizing the
OSM-shapefile to the AVHRR pixel grid, the LWM is extended by 500 m (~1/2 pixel) into the lake to
exclude lake pixels where the signal is potentially land contaminated. The low number of lakes (26)
allowed us to check the thematic and geographic accuracy manually during the generation of the
LWM raster files from the OSM water shapes.

3.1.4. Quality Levels

The reliability of each measurement (pixel) is expressed by a quality score reaching from QO
to Q6; Table 3 recapitulates the six quality levels. The tests for the quality levels are cumulative,
meaning that for each level, the tests of the previous quality levels have been passed too. Pixels
with physically inconsistent values (LSWT > 35 °C or LSWT < —5 °C), as well as isolated pixels, are
assigned to QO; all other clear-sky pixels and water pixels are classified at least QPixels with a low
spatial standard deviation (similarity to surrounding pixels) get QPixels outside the potential sun
glint zone are assigned QQ4 and Q5 are achieved if the view zenith angle (VZA) is lower than 55° or
45°, respectively. Q6 is assigned if the georeferentiation is considered highly reliable. This means that
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during the georeferencing test, the feature (lake) must be detected with certainty. The results showed
that at Q5 and Q6 (VZA < 45 and the enhanced georeferentiation test), the available pixels decrease
strongly without considerably reducing the uncertainty. Finally, Q4 was used for the trend analysis
during this study, as it was considered to be the best tradeoff between accuracy and data availability.

Table 3. The six quality levels indicate which additional tests are passed. The levels are cumulative
(e.g., Q4 means Q3 AND VZA < 55). The average data availability (compared to Q1) and the average
standard deviation during the validation are shown for the different quality levels.

Quality Level Perc. N (%) Stddev
Q1 valid pixels * 100.0% 1.399
Q2 SSDEV < 3 99.9% 1.395
Q3 no Sun glint 95.9% 1.390
Q4 VZA <55 89.7% 1.362
Q5 VZA <45 83.7% 1.344
Q6 feature detection passed ** 66.4% 1.333

* Cloud and land mask applied, and physical inconsistency removed; ** passed if the detection of the feature is
confirmed (additional georeferentiation test).

3.2. Time Series Generation

Once all the AVHRR scenes are processed, the 1D temperature timeseries for each specific target
point are extracted from the 2D LSWT product. For each target point, pixels within a radius of 3 km are
extracted. All invalid pixels and all pixels with a quality below the aimed quality level are removed.
If at least 3 pixels remain within the 3 km radius around the target, the average of the valid pixels is
retained. The thus-sampled temperature value is then integrated into the raw time series with the
timestamp of the satellite scene accorded.

Before using this raw time series for validation and for trend analysis, an outlier detection adapted
for such time-series is applied. The main problem with basic outlier detection on temperature time
series is that the yearly and the diurnal temperature cycle already induces a high amount of variance
in the data. For example, a measurement of 5 °C at Lake Constance in the middle of August should be
detected as an outlier, as it is 10 °C to 20 °C below the expected temperature for August. However,
since temperatures of 5 °C are usual in January, the measurement is not conspicuous when performing
straightforward outlier detection. For robust outlier detection on a temperature time series, the known
temperature cycles such as the yearly temperature cycle (YTC) must be removed first. In our case, this
is done by computing the mean annual curve from the raw time series and then subtracting it from
the respective values of the time-series. The YTC-corrected time series can then be analyzed. For the
outlier detection, we have used a robust outlier detection method described in Leys et al. [35] using
the mean absolute deviation and the median.

For the analysis of trends, the raw time series is not suitable, as neither the data density nor the
overpass-time where the temperature is measured is stable through time. This can induce additional
trends. In Figure 4, one can nicely see the evolving data density through the years: In the 1980s, only
one satellite at the time was available, whereas in 2013 there were five. Also, the heterogeneity of
overpass-times in general, as well as the shift in overpass time due to orbit drift of the individual
satellites, can be also be seen in Figure 4.

To overcome the data density issue, monthly and seasonal averages of the YTC anomaly are
computed. The YTC anomaly is computed with reference to lake-specific YTC issued form the
whole period of available LSWT data (1981-2016). The averaging over months or seasons leads to
a homogeneous distribution of the temperature data suited for trend analysis. By using the YTC
anomaly instead of the LSWT, we aim at removing an eventual bias induced by uneven distribution of
the measurements within the averaging period (month or season).

Finally, to solve the overpass-time problem, a diurnal temperature cycle (DTC) model was used
to adjust each measurement to the daily mean temperature, as described in the following paragraphs.
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Figure 4. Overpass times of all AVHRR scenes in which Lake Geneva is visible. Each dot represents a

scene; the different colors represents different platforms.

3.3. Diurnal Temperature Cycle (DTC) Correction

The NOAA satellites are subject to relatively strong orbit drifts [36,37]. This means that through
the years of operation, the overpass time at the same location is shifted. Figure 4 shows all scenes and
recording times used during this study. One can see that the overpass time of each satellite changes
over the years of operation, leading to shifts of over five hours. As lake surface water temperature is
changing throughout a day, an overpass time at 1 p.m. would lead to higher average temperatures
than an overpass time at 8 am. Therefore, drifting orbit leads to an artificial trend in long-time records
when looking at only one platform. When it comes to time series over several platforms, as is the
case here, the impact is hard to predict. Some authors claimed that the impact is negligible (e.g., [32]);
others correct for the DTC (e.g., [38]).

For this study, we used a DTC correction based on the DTC model described in Equations (2)—(5)
after Duan et al. [39]. The model was first developed by Inamdar et al. [40] for land surface temperature
(LST) and tested against in-situ data with various land cover types, including water (Lake Tahoe).
Duan et al. [39] improved the model by deducing the width w (Equation (4)) over the half-period of
the cosine term from the thermal diffusion equation. This model was successfully implemented and
used for daytime LSWT retrieval by Pareeth et al. (e.g., [38]).

T4 (t) = Ty + Tacos(Z(t — tw)), t <ts

@
TI(t) = Ty + 0T + [Tycos(u) — mﬁ, t> t
with s
k== |tan(u)"' - or sin(u) ! (©)]
a
4
w = g(tm - tsr) 4
w= Tt — tn) 5)

T¢ and T! are the day and night time surface temperatures, t is the time, Ty the residual
temperature at sunrise, T; is the temperature amplitude, 4T is the difference in temperature between
Top and T(t o) W is the width over the half-period of the cosine term, t, is the sunrise time, t,, is the
time where daily maximum temperature is reached, ¢; is the time where free attenuation starts, and k
is the attenuation constant.
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During the here-presented study, instead of adjusting the satellite derived LSWT to a temperature
equivalent of a standard acquisition time (12:00 UTC), we adjusted the temperature to the daily average
temperature, computed from the modeled DTC curves. For each lake and for each month, typical DTC
anomaly curves were computed by fitting the model to the available satellite LSWT data. The final LSWT
was then adjusted to the daily average temperature by subtracting the temperature anomaly. The use of
this approach improved the validation results within the here-presented study (see Section 4.2).

3.4. Trend Analysis

The linear trends were computed using the homogenized time series at the 26 locations (Table 1)
described in the previous chapter. Non-parametric trend analysis was performed using the Thiel-Sen
slope to quantify the trend and the Mann-Kendal test to determine its significance.

Several studies do compute only summer trends (e.g., [17]). This has the advantage of not having
to deal with ice onset and breakup cycle. However, Winslow et al. [41] showed that seasonal trends
such as a summer trend do not well represent the effects of climate change on the lakes. During this
study, trends for all four seasons, as well as annual trends, were computed. When it comes to the
definition of the seasons, there are mainly two ways described in literature: (1) summer defined as June,
July, August (JJA), e.g., [42-44]; (2) summer defined as July, August, September (JAS), e.g., [17,32,41,45].
However, in the case of the lakes studied here, the influence of spring warming on the JJA period and
the influence of fall cooling on the JAS period are disproportionately high (see Figure 5). We concluded
that both JAS and JJA were not suitable for “summer only trend” in a restricted sense. For this study,
we overcame this issue by taking the middle way; thus, the periods start and end in the middle of
the months: Summer is defined as the period from 15 June to 14 September (JJAS), autumn as from
15 September to 14 December (SOND), winter from 15 December to 14 March (DJFM), and, finally,
spring from 15 March to 14 June (MAM]). Choosing these periods, the characteristics of the seasons
are more pronounced (spring = warming, fall = cooling, summer = hot, and winter = cold) looking at
the annual temperature cycle (Figure 5).
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Figure 5. Comparison for different season periods (JJA, JJAS, JAS) in the yearly temperature cycle at
lake Constance, Miiritz, and Lake Inari. The middle row, representing the seasonal periods as used
during this study is well adapted to the actual annual cycles, as the summer temperature peak is in the
center of the period.
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4. Results

4.1. Validation of Retrieved Lake Surface Water Temperature

The main performance indicator for the retrieval validation during this study is the standard
deviation (SD), whereas the root mean square error (RMSE) and the bias are considered as secondary
performance indicators. As we are primarily interested in temperature patterns such as temporal trends
or spatial gradients, the uncertainty between two distinct measurements in time or space (SD) needs to
be as small as possible, whereas the systematic part of the uncertainty (bias) is of lower importance.
In fact, the bias affects all measurements in the same way, and therefore does not mask patterns such
as spatial gradients and temporal trends. For the LSWT retrieval, the variable part of the uncertainty
(SD) is mainly induced by variability in atmospheric composition, weather conditions, small-scale lake
dynamic processes, and sensor noise, whereas the systematic part of the uncertainty (bias) is induced
by factors such as skin-bulk temperature difference, in-situ sensor location, or sensor-related issues.

Further, it must be mentioned that during validation, we are comparing two measurements of
a physical quantity against each other. This means that none of the two measurements (in-situ and
satellite) do represent the truth to the full extent. This got even worse when considering the fact that
they technically do not measure exactly the same quantity: The in-situ temperature measurement
deduces the water temperature at a specific point in space (location and depth), whereas the satellite
measurement estimates the temperature of the uppermost skin layer, averaged over a certain spatial
extent, which is defined by its resolution. The exact amount of uncertainty issued from the described
difference in measurement technique and measured quantity could not be determined during this
study. Also, the correction methods for the skin to bulk difference as proposed by Donlon [46] or
Minnet [47] for SST retrieval did not improve the validation performance: The method, applied to
LSWT, only affects the systematic bias and has no effect on the variance of the error.

In Figure 6, one can see the difference when validating the same satellite data with data from
two different in-situ locations close to each other. This relativizes the significance of such validation
results, even though they still give a general indication about how well the retrieval works. However,
it reminds us to be careful with the in-situ data, and to not take it as the finite truth.

Constance Bregenz new Constance Lindau

35T T T T T T 35T T T T R o o e
30F Y= 0.130+0.966X . 30F  Y-=-0.353+0.981X .
[ C-95%: +/- 0.006 ] [ C-95%: +/~0.010 ]
[ Re= 0.981 ] [ Re= 0953 ]
5 25: RMSE = 1.014 o 25: RMSE = 1.530 .
© [ Bias= 0.362+0.948 £ [ Bias= 0.628+1.39 :
£ 200 N=1723 5 £ 200 N=1755 ' S
1) F <1K: 73% ) F <1K: 50% 4
2 b <K 4% 2 [ <2Ki 8% ]
o 157 b c 15_— §
T [ I [ |
> [ > L 1
< [ < L ]
10F ] 10F -
5; ] 5__ n
- a i b
| I '“.
OV b e e e ] (1] 72 T S B SR AR BT
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
bulk [T°C] bulk [T°C]

Figure 6. The validation with hourly averaged measurements at Lake Constance for the station in
Bregenz (a) and for the station in Lindau (b). Both show a good performance and a high number of
matchups despite the in-situ locations close to the shore. However, the correlation with the satellite
data is significantly higher in Bregenz (a) than in Lindau (b). For both validations, the same satellite
data is used.
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Table 4 shows the validation results at all in-situ stations. There seem to be two main factors
influencing the validation performance. First, there is the latitude, as it seems that with higher cloud
cover rate and longer periods of ice cover during the cold season, also the quality of the retrieval
decreases. On the other hand, the data type of the in-situ data seems to play an important role too:
There are three types of in-situ data: daily averaged, hourly averaged, and manually taken instant
measurements. The validation against instant and hourly averaged measurements yields the best
results, as it allows for close temporal matchups between satellite overpass and in-situ measurements
(matchup window +1 h).

Table 4. Validation results for each in-situ station. The data is ordered by latitude from south to
north. The measurement type describes the averaging of the in-situ measurement: daily averaged,
hourly averaged, and instant measurements. Instant measurements are single measurements that were
manually taken during measurement campaigns. As the exact timestamps for the instant measurements
where not known at Lake Balaton (Kesztehly old) and Lake Trichonida, 12:00 local time is assumed.

Location Type Location n Match R RMSE BIAS + SD
Lake Trichonida Instant * 3857°N  21.56°E 16 0.987 1.59 —1.23 +1.04
Geneva INRA daily 46.38°N 6.47°E 2453 0.985 1.08 0.26 £ 1.05
Geneva Buchillon hourly 46.46°N 6.40°E 2373 0.981 1.29 —0.52 £ 1.18
Balaton Kesztehly old Instant * 46.74°N  17.29°E 114 0.982 1.54 —0.57 £1.44
Balaton Keszthely new hourly 46.76°N  17.27°E 1050 0.966 1.45 0.69 +1.27
Balaton Siofok daily 46.90°N 18.05°E 2834 0.985 1.47 —0.54 £ 1.36
Constance Bregenz new hourly 47.51°N 9.74°E 1723 0.990 1.01 0.36 + 0.95
Constance Bregenz old daily 47.51°N 9.74°E 719 0.981 1.37 0.50 +1.28
Constance Lindau hourly 47.54°N 9.68°E 1755 0.976 1.53 0.63 + 1.40
Miiritz instant 53.42°N 12.70°E 66 0.989 0.82 —0.07 £ 0.82
Peipsi Mehikoorma daily 58.24°N  27.48°E 2102 0.984 1.25 044 +1.17
Pyhéjarvi Sakyla daily 61.11°N  22.17°E 1749 0.975 1.26 0.36 +1.21
Péijanne Pé&jdtsalo daily 61.29°N 25.57°E 1017 0.947 2.06 1.28 = 1.61
Paijanne Kalkkinen daily 61.47°N 25.59°E 722 0.964 1.49 —0.61 £1.36
Pyhéselka Joensuu daily 62.60°N  29.77°E 1893 0.962 1.46 0.11 +1.46
Lappajdrvi daily 63.26°N 23.63°E 2044 0.949 1.57 0.25 £ 1.55
Pielinen daily 63.54°N 29.13°E 1707 0.938 1.83 0.45+1.77
Oulujarvi daily 64.40°N  27.17°E 1973 0.926 1.93 0.56 +1.84
Inarijarvi daily 68.90°N  28.10°E 1207 0.896 2.60 1.65 £+ 2.01

* No exact timestamp available (day only). 12 a.m. local time is assumed.

Amongst the instant measurements, the validation at Miiritz yields the best results (SD 4 0.82 K,
Figure 7a), but due to its sporadic sampling frequency only 66 matchups where available.
The performance of the instant measurements at Lake Balaton (SD =+ 1.44 K, Figure 7b) and Lake
Trichonidas (SD =+ 1.04 K) is lower, but at these locations the exact in-situ measurement timestamp
was unknown. The validation with hourly averaged measurements has considerably higher number
of matchups, and the performances reach from +0.95 K (Lake Constance, Bregenz new, Figure 6a)
to £1.40 K (Lake Constance, Lindau, Figure 6b). The validation with daily averaged in-situ data shows,
generally, a lower performance than with instant and hourly measurements. The SD reaches from
very low £1.07 K (Geneva, INRA Figure 8a) to rather increased values of £2.05 K at Lake Inarijarvi
(Figure 8b).
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Figure 7. The validation with sporadic instant measurement at Miiritz (a) and at Lake Balaton (b).
Both in-situ measurements where manually taken in open waters. The bi-monthly sampling frequency
only allows for few matchups per year. Nevertheless, the measurements at Miiritz yield the best
performance thanks to close temporal matchups and the open waters. At Lake Balaton however, the
exact timestamp was unknown (only day). Therefore, 12:00 local time was assumed, which led to less
accurate temporal matchups and lower correlation.
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Figure 8. The validation with daily in-situ measurement at Lake Geneva, INRA (a) and Inarijarvi (b).
The validation at Lake Geneva INRA shows good performance and a high number of matchups through
the whole year. At Inarijarvi, however, the weakest validation performance of all is found. Inarijarvi
is located north of the polar cycle and has a long period of ice cover per year. Further, the in-situ
measurement station is located within a very complex shore geometry with many small islands.

4.2. Validation of the DTC Correction and Trends

For the validation with daily in-situ data, the available satellite LSWT is compiled to daily average
temperatures. To reduce the impact of the daily temperature cycle (DTC), a DTC correction is applied
to the satellite retrievals. The validation with DTC-corrected data results in a decrease of SD by 0% to
15.6% depending on the lakes, and in an average decrease of 6% or 0.11 K, respectively (Table 5).

The trends from the in-situ stations with a period covered of at least 25 years were compared to
the trends computed from LSWT retrievals. This was done for both the DTC-corrected satellite data
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and for the non-adjusted satellite data. Table 6 shows results from this comparison. At three of the six
locations, the DTC adjusted trends are considerably closer to the in-situ trends (Inarijarvi, Lappajérvi,
and Oulujarvi). At two locations (Pyhéselka and Peipsi), the DTC adjustment has almost no effect, and
the LSWT trends remain close to the in-situ trends. At lake Pielinen, however, the DTC adjustment has
a negative effect: the raw trend is in fact closer to the in-situ trend.

Table 5. Impact of the DTC correction on the validation with daily in-situ data. Whereas for Lake
Balaton Siofok, the improvement is neglectable, a considerable performance improvement is observed,
for example, at Lake Constance, Bregenz old.

BIAS 4+ SD
Location SD Change
Raw LSWT DTC Corr.

Balaton Siofok —1.05 +1.37 —0.54 +1.36 —0.1%
Paijanne Pajatsalo 1.11 +1.63 128 +1.61 —1.4%
Peipsi Mehikoorma 0.01 +£1.22 044 +1.17 —3.5%
Pyhajarvi Sakyla 0.12+1.26 0.36+1.21 —4.2%
Pyhéselka Joensuu —0.07 £ 1.52 0.11 £1.46 —4.3%
Paijanne Kalkkinen —0.75 £ 1.42 —0.61 £1.36 —4.7%
Pielinen 0.31 +£1.87 0.45+1.77 —5.1%
Geneva INRA —0.09 £ 1.11 0.26 = 1.05 —5.5%
Lappajdrvi 0.13 £ 1.67 0.25 £ 1.55 —7.5%
Oulyjarvi 0.52 £2.00 0.56 £ 1.84 —7.9%
Inarijarvi 1.59 £2.37 1.65 £2.01 —15.5%
Constance, Bregenz old —0.01 £1.51 0.50 +1.28 —15.6%

Table 6. Comparison of trends from satellite-derived LSWT with trends from in-situ data records. Only
in-situ stations with data covering at least 25 years were used. The difference between DTC-adjusted
trends and in-situ trends, as well as the difference between raw LSWT trends and in-situ trends, is
shown in the last two columns.

. In-Situ Trend DTC Trend RAW Trend Diff. with In-Situ
Locations Yr
senn P senn P senn 14 DTC RAW

Inarijarvi 31 0.42 0.000 0.45 0.000 0.58 0.000 0.03 0.16

Pyhaselka 32 0.58 0.000 0.59 0.000 0.56 0.000 0.00 0.02

Joensuu

Peipsi 26 0.4 0.000 0.44 0.003 045 0.004 0.00 0.01

Mehikoorma

Lappajarvi 31 0.45 0.000 0.50 0.000 0.22 1.000 0.05 0.23

Pielinen 31 0.50 0.000 0.64 0.000 0.53 0.000 0.14 0.03

Oulujarvi 31 0.43 0.000 0.49 0.000 0.59 0.000 0.06 0.15
0.05 0.10

4.3. Trend Analysis

The yearly and seasonal trends at all studied locations are shown in Table 7. Only significant
trends (Kendall p-value < 0.05) were retained for further analysis.
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Table 7. Yearly and seasonal trends at all studied locations ordered from South to North. The covered
period is slightly below the maximum of 36 years, depending on availability of cloud-free scenes at
each location. The grayed-out values are trends (K/dec) in which Kendall p-value > 0.They are not
retained to compute the average trends showed on the last line. The strongest seasonal trend of each
lake is marked with an asterisk. Blank values signify that there were not enough values to compute
trends, mostly due to ice cover during the cold period.

Period Yearly Winter Spring Summer Autumn
Location
Yrs senn P senn p senn r senn P senn p

Djorf Torba 349 0.17 0.03 —-0.08 072 0.07 0.67  047* 0.00 0.20 0.23
Lake Trichonida 35.5 0.21 0.00  040* 0.00 0.18 0.02 0.18 0.00 0.16 0.16
Lake Ohrid 35.5 0.29 0.00  044* 0.00 0.18 0.10 0.32 0.00 0.23 0.03
Lake Bolsena 35.5 0.28 0.00  046* 0.00 0.37 0.00 0.25 0.02 0.09 0.25
Sanguinet 35.4 0.21 0.00 0.11 0.43 0.41*% 0.00 0.22 0.03 0.11 0.37
Lake Yalpuh 35.4 0.36 0.00 0.15 0.55 043 0.05  0.63* 0.00 0.23 0.09
Lake Garda 35.4 0.37 0.00  053* 0.00 0.37 0.00 0.29 0.00 0.30 0.01
Lake Geneva 35.5 0.33 0.00  0.44* 0.00 0.38 0.01 0.26 0.02 0.29 0.03
Lake Balaton 35.4 0.34 0.00 0.17 0.57  0.54* 0.00 0.53 0.00 0.12 0.29

Lake Constance 355 0.39 0.00 0.50 * 0.00 0.36 0.00 0.32 0.00 0.35 0.00
Kiev Reservoir 354 0.30 0.00 0.01 0.66 0.24 0.21 0.45 0.00 0.46* 0.03

Miiritz 354 039 000 010 055 069* 000 030  0.04 038 002
Lough Neagh 354 033 000 040  0.02 045 000 004 083 046*  0.00
Vittern 355 049 000 046 000 057* 0.00 032  0.01 056  0.00
Lake Peipus 353 024 001 054 010 013 053 025 008 032* 005
Vinern 354 042 000 035 003 036 004 031  0.02 054*  0.00
Pyhsjarvi 353 054 000 057 005 047  0.05 057* 0.0 054  0.00
Lake Piijianne 354 047 000 076 018 045 004 050* 0.00 049  0.00
Lake Onega 352 076  0.00 084 000 085* 0.00 063  0.00
Pyhiselka 353 055  0.00 054 0.1 053 001 057* 0.0
Lappajarvi 352 045  0.00 040 016 045 001 057*  0.00
Pielinen 353 048  0.00 039 026 044 001 061*  0.00
Thingvallavatn 353 038  0.00 049*  0.00 035 001 049*  0.00
Oulujarvi 353 053 0.00 052 003 045  0.00 0.68*  0.00
Lokka Reservoir 353 051  0.00 052 000 089*  0.00
Inarijarvi 353 050  0.00 046 001  082*  0.00
AVG (p < 0.05) 0.40 0.44 0.47 0.41 0.51

* Season with the highest trend per lake.

All annual trends where significant and positive, thus indicating a warming of the lakes water
temperature (Table 7). The strongest annual warming trend is observed at Lake Onega with 0.76 K/dec,
whereas the weakest trend is to be found at Djorf Torba Reservoir with 0.17 K/dec. The trend at Lake
Onega is remarkable, as there is no similar trend within the studied lakes; the next highest trend is
0.54 K/dec for lake Pyhdjarvi. The trend at Djorf Torba has to be looked at with care, as there has been
a strong siltation going on since the drought period in the 1990s: The volume loss was estimated at
35% in 2014, with the siltation still going on at a rate of 0.9% per year [48].

Figure 9 shows details of the temperature anomaly in annual resolution of lakes representing
geographical extremes (N-S, W-E). The significance of a long time series including years from 1981
onwards is clearly shown with increased frequency of blue bars during the earlier years (1981-1995)
in comparison to the latest years with higher temperatures. Especially the warm period of the
last five years is obvious, independently of the geographical location of the lakes. However, these
high temperatures are more pronounced in northern and eastern areas, whereas the lake in Iceland
(Thingvallavatn) shows reduced temperature increase, probably due to the oceanic influence. Also,
one of the southern lakes (Trichonida, Figure 9) shows a reduced increase of temperature, which is
probably also influenced by the proximity to the Mediterranean Sea. In all studied lakes, we can
identify spatial gradients of the magnitude of temperature trends: The trends are increasing from south
(Lake Trichonida 0.21 K/decade, Figure 9a) to north (e.g., Inarijarvi 0.50 K/decade, Figure 9b), and
also from west (e.g., Thingvallavatn 0.38 K/decade, Figure 9¢) to east (e.g., Lake Onega 0.76 K/decade,
Figure 9d). The gradient is strongest on the diagonal from the south-west to north-east, whereas the
magnitude of the trends shows a significant correlation with the latitude (R? = 58%, Figure 10a) and a
rather weak correlation with longitude (R? = 24%, Figure 10b).
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Figure 9. Temperature trends of Lake Trichonidas (a), Inarijarvi (b), Thingvallavatn (c), and Lake
Onega (d). Blue bars indicate temperatures below the long-term mean, whereas the red bars show
warmer years. The dashed line shows the linear trend, whereas the solid black line shows the locally
weighted scatterplot smoothing (LOWESS) over a 2-years period. Lake Trichonidas (a) is the lake
with the lowest latitude (except for Djorf Torba), whereas Inarivjarvi (b) is the lake at highest latitude.
The same applies for the longitude where it goes from Thingvallavatn (c) in the west to Lake Onega (d)
in the east.
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Figure 10. South-north gradient (a) and the west—east gradient (b) of the yearly LSWT trend. The red
dashed line is a simple linear model derived with least square regression, and R2 is the coefficient
of determination.

When looking at the strongest seasonal trends in Table 7, one can see that at lower latitudes
the winter trends and some spring trends are dominant. This is typically the case for the subalpine
lakes such as Lake Geneva, Lake Garda, and Lake Constance, which all show dominant winter trends.
When moving north, first the spring (e.g., Balaton, Miiritz, and Vittern) and then the summer trends
(e.g., Pyhdjdrvi, Pédijanne, and Onega) start to dominate. Finally, for the highest latitudes, the autumn
trends are clearly dominating (all lakes north to Lake Onega).

Looking at the north-south gradient of the seasonal trends (Figure 11), we see that winter trends
seem almost unaffected by the latitude in contrast to the other seasonal trends. Especially, autumn
trends are very sensible to latitude: Atlow latitudes, temperature trends in autumn are less pronounced
than winter or spring trends, whereas at northern latitudes they are the strongest seasonal trends.
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Figure 11. South-North gradient of seasonal trends from European lakes. The dashed lines are simple
linear models derived with least square regression of the data points. The reservoirs lakes are excluded
from the graph.
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The West—East gradient of the seasonal trends is less significant, and probably influenced by the
transition from oceanic to continental climate. However, this could not be investigated in more detail
with the available data.

5. Discussion

The validation shows that with careful processing, the difficulties related to the AVHRR sensor
such as orbit drift and small georegistration errors and others could be overcome. The importance of
the in-situ measurements has been emphasized during the validation, and it was shown that the quality
of the in-situ measurement is significantly influencing the performance of the validation. This indicates
that the satellite retrieval has reached an accuracy level at which more accurate in-situ measurements
are needed to further assess the quality of the LSWT retrieval. Also, the derived trends could be well
validated with the in-situ measurements.

Concerning the significance test of the trends, only significant trends (Kendal p-value < 0.05
Table 7) were retained for further analysis. In contrast to the yearly trends, not all seasonal trends
fulfilled this criterion. In the case in which the Kendall p-value is above 0.05, there are two plausible
interpretations: (1) There is a strong trend, but due to elevated variance in the data and/or due to short
periods and low amount of data, the trend cannot be determined with confidence. With this, erroneous
estimates of trends can be detected (e.g., winter trend at Lake Paijidnne Table 7); (2) There is no trend
or a weak trend in the data, and the p-value is increased, because we are close to the null-hypothesis.
In this case, we eliminate a potentially correct value of weak trend close to 0 K/decades such as winter
and autumn trends from lake Sanguinet (Figure 12). Thus, it is important to emphasize that with the
used method, we can detect significant trends, but we cannot detect trends near 0 K/decade with
certitude. This explains the discrepancy when comparing the annual trend with the valid seasonal
trends from Table 7, in which our intuition is that the average of the seasonal trends is more or less
equal to the yearly trend.
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Figure 12. Seasonal trends at Lake Sanguinet, whereas the spring and summer trend are categorized as
‘significant’ (p-value < 0.05); the winter and autumn trends 0.11 K/decade are categorized ‘insignificant’
(p-values > 0.05).

Trends are sensitive to different factors such as the period in which a trend is determined, the
homogenization of the data, and the type of trend (seasonal, yearly, etc.). Therefore, the comparison
with trends from individual lakes in other studies is not meaningful. However, on the other hand,
more general statements can be looked at in detail. For example, Schneider and Hook [17] mention
elevated summer trends in Northern Europe of up to around 0.8 K/dec. Our results suggest the same
tendency of stronger trends in north-east Europe, whereas the strongest trends are rather to be found
in autumn than in summer. The approximatively 0.8 K/dec in summer is only reached in Lake Onega,
whereas at Inarijarvi and at the Lokka Reservoir such elevated trends are occurring during autumn.
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Another observation from Schneider and Hook [17], that lakes in Northern Europe are warming
more rapidly than local air temperature, was confirmed (see e.g., Lake Véttern Figure 13a). According
to our results, this phenomenon is not limited to northern Europe: it can also be observed at some lakes
in central Europe such as Lake Constance (Figure 13b). However, the difference in trends between
local air temperature and LSWT is reduced when moving south towards warmer lakes. Additionally,
for Lake Bolsena (Figure 13c), the air temperature trend tends even to be more pronounced than the
LSWT trends. However, the reasons for the strong LSWT trends compared to local air temperature
were not further investigated here.

The seasonal trends we detected show a high intra-seasonal variability within the same lake
(Table 7), and therefore we can state that none of the seasons are representative for the overall trend
within a lake. This is perfectly aligned with the main statement of Winslow et al. [41], who claim that
summer trends do not fully represent the effects of climate change on lake temperatures. When we
compare the yearly temperature cycle deduced from the first and the last 15-year period of the dataset,
we can observe that the temperature evolution is very heterogeneous over the year, and also very
different from lake to lake. For example, at Lake Bolsena and Lake Constance (Figure 14a,b), we
observe significant warming during winter and spring. However, then there are also some short
periods in which the recent years were colder than the first years of the dataset (mid-summer at Lake
Constance, end of summer and start of autumn at Lake Bolsena). In contrast to this, at Lake Vattern
and Lake Onega (Figure 14c,d), a moderate to significant warming during the whole year is observed,
whereas this is more pronounced in summer and autumn. Lake Onega shows a significantly earlier
and more pronounced warming in spring and during summer, resulting in a remarkable summer
temperature peak that is higher and earlier than in the first years of the dataset.
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Figure 13. Comparison of LSWT trends with local air temperature trends (extracted from ERA
INTERIM) at Lake Vittern (a), Lake Constance (b), and Lake Bolsena (c).
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Figure 14. Comparison of the Yearly Temperature Cycle from two different 15-years-periods at Lake
Bolsena (a), Lake Constance (b), Lake Vittern (c), and Lake Onega (d). The red and the blue lines
represent the yearly cycle of the two periods; the black line is the difference between the two periods.

Further, also within the same water body, trends can change significantly. This result is in
agreement with the results of [16], in which intra-lake heterogeneity of trends was studied in large
lakes. At lake Peipus (Figure 15), the yearly trend in the open waters in the north indicates a warming
of 0.24 K/decade, whereas the warming rate almost doubles (0.44 K/decade) within the narrower part
of the lake around Mehikoorma, in which also an in-situ station is located. This shows that the location
where the temperature is sampled has an impact on the resulting trends. However, the example at lake
Peipus shows us also that trends computed with the data of an in-situ measurement taken at a specific
location are not necessarily representative of the temperature trend of the entire lake.
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Figure 15. Significant difference in trends within Lake Peipus when comparing the trend near the
Mehikoorma in-situ station (see coordinates in Table 2) with the trend in the open waters of the northern
part (see coordinates in Table 1).

6. Conclusions

During this study, we could show that the AVHRR LAC data (1 km) archive at University of Bern
can be used to yield good quality LSWT of an exceptional long-time span of over 35 years. This offers
the possibility to study lake dynamics related to climate change. The quality of the retrieved LSWT
could be confirmed by validation considering in-situ measurements, but it could also be shown that
the quality of the validation data is essential.

A homogeneous LSWT dataset from 26 European lakes covering the period from 1981 to 2016 was
created. With this, we were able to compute LSWT trends and to compare average yearly temperature
cycles of different periods, of different geographic locations.

For all locations, significant LSWT trends indicating a warming were found. A gradient of
increasing warming trends was revealed when moving from the south-west to the north-east of Europe.
Whereas winter trends are not significantly affected, autumn trends are very sensitive to the location
of the lake, especially to the latitude. Looking at the dominant seasonal trends per lake, we observe a
shift from stronger winter trends in the south to dominant autumn trends in northern lakes, passing
by a mixture of strong spring and summer trends in-between.

Generally, the strong interannual heterogeneity of the trends was detected in all lakes, showing
that using only a defined period of the year to determine the temperature trend is not representative.
It could be confirmed that the different seasons contribute unequal to the yearly trends, and that trend
analysis based on summer seasons only does not show the complete reality.

Also, intra-lake heterogeneity of trends was detected. The location of measurements influences
the trend directly, implying that a one-to-one comparison of trends between in-situ and satellite data
has to be handled with care. We could show that temperature trends computed with data from
in-situ measurements from individual stations are not suited to represent trends of an entire lake.
This emphasizes the importance of satellite-based lake monitoring, as it adds significantly to the
understanding of the big picture.

The comparison with local air temperature trends showed that many lakes have a stronger
warming rate than local air temperature. This effect was shown to be more significant in colder lakes



Remote Sens. 2018, 10, 990 22 of 25

and in higher latitudes, e.g., Lake Véattern shows a stronger increase of LSWT than air temperature, but
for Lake Bolsena in Italy the LSWT trend is even slightly weaker than for local air temperature.

The dataset generated within this study will be further investigated, and it has the potential
to reveal further findings about the effects of climate change on European lakes. An extension of
the dataset to more lakes in Europe would also be of great use for further investigations, especially
regarding the east-west gradient of temperature trends, for which evidence was found. Also, a closer
look at the influence on temperature trends of morphologic parameters such as the average depth of
lakes could be the topic of further investigations.

For an extension of the dataset to other lakes in Europe, the size of the lakes is the only limiting
factor, whereas for an extension on a global scale, the availability of AVHRR LAC data would be
limiting. The application of the method to more recent sensors with higher resolution would be
interesting for lake dynamic studies, but it is limited to a more recent time-period due to the availability
of adequate satellite data.

Using open street map data for the generation of the LWM (land water mask) worked well.
However, in the case of a larger number of lakes, and when taking in account the changes in time
of global surface water occurrence, a global water mapping dataset such as presented in Pekel et al.
2016 [49] could be a more robust alternative for the generation of the LWM.
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