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Abstract: Stripe noise removal continues to be an active field of research for remote image processing.
Most existing approaches are prone to generating artifacts in extreme areas and removing the
stripe-like details. In this paper, a weighted double sparsity unidirectional variation (WDSUV)
model is constructed to reduce this phenomenon. The WDSUV takes advantage of both the spatial
domain and the gradient domain’s sparse property of stripe noise, and processes the heavy stripe
area, extreme area and regular noise corrupted areas using different strategies. The proposed model
consists of two variation terms and two sparsity terms that can well exploit the intrinsic properties
of stripe noise. Then, the alternating direction method of multipliers (ADMM) optimal solver is
employed to solve the optimization model in an alternating minimization scheme. Compared with
the state-of-the-art approaches, the experimental results on both the synthetic and real remote sensing
data demonstrate that the proposed model has a better destriping performance in terms of the
preservation of small details, stripe noise estimation and in the mean time for artifacts’ reduction.
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1. Introduction

The remote sensing image plays an important role in environment monitoring, resource
monitoring and military and battlefield situation observations [1–3]. However, the output of sensing
images often suffers from stripe-like noise, which seriously degrades the image’s visual quality
and also yields a negative influence on high-level application, such as target detection and data
classification [4–7]. Due to the inconsistent responses of detectors and the imperfect calibration
of amplifiers, the gain and offset of true signals are various, producing stripe noise on Moderate
Resolution Imaging spectrometer (MODIS) data and hyperspectral images. The MODIS data covers
36 spectral bands ranging in wavelength from 0.41 µm to 14.4 µm. Three typical striped images are
displayed in Figure 1, and the stripe effect is obvious by zooming in. This noise is periodic for 10 pixels
for the detectors’ calibration errors and the charge-coupled device array scanning forward and reverse
across-track [8,9].

In recent decades, a large number of destriping algorithms have been discussed for remote sensing
images and can be grouped into several categories by various mechanisms, such as the filtering-based
methods, statistics-based methods and optimization model-based approaches.

The statistical-based methods include a moment matching algorithm [8,10,11] and midway
equalization algorithm [12]. Moment matching techniques assume that the sensors’ outputs have
the same statistical characteristics including mean and deviation, and they set all sensors’ output
to a reference one. In [11], the authors proposed a piece-wise approach to remove the irregular
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stripes by local statistical information. The midway equalization method supposes that the histogram
distribution between neighbouring columns is similar and a local midway histogram is computed for
the current column. The performance of these methods is limited to the hypothesis, which does not
always hold, that when a structure exists along the stripe direction, the statistics between neighbouring
columns are distinct.

(a) (b) (c)

Figure 1. Three typical stripe images of MODIS data. (a) Regular stripes in Terra MODIS data band 27;
(b) Irregular stripes in Terra MODIS data band 34; (c) Stripes in Aqua MODIS data band 21.

Filtering-based algorithms remove stripe ingredients by a type of filter in the transformed domain
after discrete Fourier transform [13] or wavelet decomposition [14–16]. A regular periodic stripe
exhibits a particular frequency component, and can be easily identified in the transformed domain.
Unfortunately, blurring effects and artifacts may appear when filter models are not well designed,
and some textures similar to stripe are also prone to be smoothed, as they are likely to be identified as
the noise.

Recently, optimal model-based destriping methods have attracted many endeavours’ interest and
numbers of models have been formulated. People introduce prior knowledge of noise and ideal remote
sensing images into an energy function to recover the latent content. The unidirectional variation model
(UV) was first proposed by Bouali et al. [17]. They formulated a differential optimal model based
on the stripe noise’s direction property that stripe noise only affects the gradient information along
one direction and will not change it in another direction. To overcome several limitations [18] of the
UV model, improvement algorithms were subsequently designed. Zhou et al. [19] designed a hybrid
unidirectional total variation (HUTV) model that combines a l1 data fidelity term and gradient fidelity
term aiming to remove stripe noise of various intensities. To distinguish the noise from the texture and
edge, Zhang et al. [18] proposed a structure guided UV model. Wang et al. [20] utilized difference
curvature to extract the spatial information, and formulated a spatially weighted UV model. The
authors in [21] combined the UV model and framelet regularization to preserve the detail information
while removing the stripe noise. In [22], the UV model was converted to a least square problem by
an iteratively reweighted technique that was easy to implement. Regarding the destriping problem
as an ill-posed inverse problem, the (column) sparsity property and low rank property of the stripe
noise served as a regularization to improve the stripe estimation performance in [23–25]. Chen et al.
[26] combined the group sparsity constraint and total variation regularization to remove the stripe
noise and preserve edge information. Dou et al. [27] proposed a directional l0 sparse model for stripe
noise removal. Some researchers also exploited the high spectral correlation property among the
different bands in hyperspectral data to recover the latent image [28–30]. With the rapid development
of deep learning techniques, the deep convolutional networks based destriping methods [31] were
proposed and showed a competitive stripe noise removal ability in the infrared image. However, their
framework was designed for weak stripe noise only, and could not be suitable to the strong stripe
noise.

In summary, most existing methods can recover clean images directly or indirectly from degraded
images based on the stripe noise property, such as gradient information and sparsity characteristics.
However, a common problem existing in recent research efforts is that the details or structure along the
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stripe direction can not be recognized well and probably get confused with the stripe noise, resulting
in an oversmoothing effect. In addition, once the data are corrupted by serious stripe noise, the output
can not recover the scene well and often suffers from stripe artifacts. We in this paper attempt to
alleviate the two problems. The sparsity property not only exists in the spatial domain, but also exists
in the gradient domain. Thus, we here present an optimization framework that utilizes a double
sparsity counting scheme to estimate the stripe noise more completely to protect the details from
being destroyed during the destriping process. A region separated processed strategy is adopted
here. Specifically, for the heavy stripe corrupted area, we utilized the texture diffusion method only
on the direction across the track to inpaint them. Extreme dark or extreme bright areas were kept
the same as the original. For the normal stripe noise corrupted area, the noise was estimated by the
stripe’s characteristics.

The remainder of this paper is organized as follows: Section 2 introduces some properties of
stripe noise. Section 3 presents the proposed weighted double sparse destriping model. Section 4
discusses the experimental results and comparison analysis. Section 5 presents some discussions about
the proposed model. Finally, conclusions are provided in Section 6.

2. Stripe Noise Properties Analysis

2.1. Stripe Variation Property

In most model-based destriping methods, the output of a noisy image is formulated as an additive
noise formulation [21,24,32], as follows:

Yu,v = Xu,v + Su,v, (1)

where X and Y denote the unknown desired image and observed degraded image, respectively.
S represents the stripe noise and (u, v) is the spatial coordinate in an image. The purpose of a destriping
technique is to estimate a clean image X from Equation (1). It is a typical ill-posed inverse problem
and some additional regulations are desired to constrain the solutions. In this paper, we assume the
stripe direction is along the u-axis.

Stripe noise obscures image details and sometimes even destroys the texture, which poses quite
a challenge to recover the real signal, as shown in Figure 1. Fortunately, this type of noise has a good
directional property, for it usually only appears along one direction, resulting in the gradient across
the stripe direction being far greater than that along the stripe, as illustrated in Figure 2. This property
can be expressed by :

∂Y
∂u
� ∂Y

∂v
. (2)

Based on this property, the unidirectional variation (UV) energy model [9] is formulated as:

E(X) = TVu(Y− X) + λTVv(X), (3)

in which TVu(X) =
∫
Ω
(| ∂X

∂u |)dudv is the total variation of X along the u-axis, and λ is the regularization

parameter to determine the smooth degree on the v-axis. The UV model (3) attempts to keep the
variance of the destriped image X along the u-axis with that of the corrupted image, while reducing the
variance across the stripe direction on the v-axis. It seems reasonable, yet there are two shortcomings
with the UV model. First, it is prone to producing artifacts when the noise intensity is so serious that it
damages some texture structure. Second, certain small details are easily prone to be smoothed out
during the iterative procedure when λ is set to be large.
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(a) (b) (c)

Figure 2. Gradient properties in MODIS data. (a) original stripe noise image; (b) gradient image
vertical to the stripe; (c) gradient image along stripe.

2.2. Stripe Structure Property

Stripe noise presents a particular structure in which there are many zero elements in stripe-free
regions, as different from random noise. In view of this fact, the authors in [24] adopted the l0 norm as
a regulation to constrain the noise matrix S:

R1(S) = ‖S‖0. (4)

Although l0 norm provides more zero elements in S, the nonzero elements are distributed
randomly, according to the definition of l0 norm. As a result, the non-stripe ingredients are also
probably to be treated as noise, causing the details’ smoothing affects. Furthermore, in case of a
great proportion of stripe noise, the l0 norm constraint is unreliable. Observing the noise matrix,
we discover that the gradient of S along the stripe direction u also exhibits significant sparsity
characteristics, no matter the proportion of noise. The regular stripe noise particularly exhibits
this property in evidence, i.e., all zeros in matrix ∇uS, regardless of noise levels and proportion.
Accordingly, a unidirectional gradient sparsity regulation is expressed by:

R2(S) = ‖∇uS‖0. (5)

3. Methodology

Based on the above analysis, we first present the double sparse UV model (DSUV), which is
also introduced within the variation framework. Taking advantage of the double sparsity feature of
stripe noise, i.e., the signal sparsity and unidirectional gradient sparsity, combined with the variation
property, the DSUV model is formulated as follows:

J(S) = ‖OuS‖1 + λ1‖Ov(Y− S)‖1 + λ2‖S‖0 + λ3‖OuS‖0 (6)

in which O denotes the gradient operator, ‖ · ‖0 is the l0-norm counting the number of non-zeros in
a matrix, and ‖ · ‖1 is the l1-norm, which summarizes all elements’ absolute values. In model (6),
the front part is the UV minimization. The rear part measures the global sparsity of stripe noise S
and the unidirectional gradient. The variable λ1 stands for the variance parameter and λ2, λ3 are the
sparse counting parameters. The three regularization parameters balance the four constraint terms
together. After S is estimated from model (6), the desired image X will be obtained by subtracting S
from degraded image Y. The WDUV extracts the stripe component from the whole image. However,
distinct areas with different features should be processed separately, and we analyse it next.
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3.1. Region Separation

Many destriping techniques assume that stripe noise presents in the whole column on an image,
which is not always true. In some extremely dark or too bright areas, stripe noise is saturated and noise
in these regions is almost zero. Therefore, it is not necessary to further estimate noise in these areas.
Nevertheless, if an area’s extreme values were generated by a strong stripe, we should recover these
elements. Here, we name these areas strong stripe area (SSA), also called the extreme stripe area.
Therefore, distinct extreme area (EA) and SSA are necessary. An example of SSA and EA is illustrated
in Figure 3.

Extreme area

Extreme stripe

Normal stripe

Figure 3. Illustration of Extreme Stripe and Extreme Area.

In this subsection, a simple and effective method for detecting and distinguishing EA and SSA’s
method is proposed. It is based on the stripe noise’s property. Take the extremely dark area detection,
for example. In both the SSA and EA, grey values are all close to zero and can be detected by some
thresholds. Then, we should separate the dark area from the strong stripe noise. An important and
significant factor that discriminates the two areas is the fact that the stripe noise is only along one
direction with the width usually smaller than some values, two lines in MODIS data, for example.
Thus, once a pixel’s neighbour extreme number across stripe direction exceeds a given value, it belongs
to EA. Figure 4 displays an example of detecting extremely dark areas and SSA in MODIS data.
Figure 4a is an original stripe noise corrupted subimage cropped from Terra MODIS data band 27.
Figure 4b displays the extreme dark area detection result in which the neighbouring zero values
exceed 2 lines in the vertical direction. Then, the horizontal extreme area is calculated similarly in
Figure 4c. Figure 4d is the dark extreme stripe obtained by subtracting the extreme area (b) from the
horizon dark area (c). However, there are some small fragments in Figure 4d because the detected
dark area and horizon dark area are not perfectly coincident. To remove these fragment stripes,
we employed morphological operations, i.e., dilation and erosion operators, on Figure 4d, and a final
refined extreme dark stripe is obtained in Figure 4e. Thus, the dark extreme stripe area and dark
extreme area are separated, and detecting extreme bright areas and extreme bright stripe can be done
in the same manner.
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(a) (b) (c)

(d) (e)

Figure 4. Illustration of extremely dark area and extremely dark stripe detection. (a) original subimage
extracted from Terra data; (b) extreme area in vertical; (c) extreme area in horizonal; (d) initial extreme
dark stripe; (e) refined extreme dark stripe.

3.2. Proposed Weighted Double Sparse UV Model

As analysed in the last subsection, EA and SSA should be processed separately. Here, we denote
the extreme area as Ψe and let the strong stripe area be Ψs. To address Ψs, the texture in these areas are
badly corrupted, and some inpainting methods can recover the corrupted contents [33–35]. However,
they usually need a large clean region around the missing content or utilize multichannel data.
In addition, these methods usually involve heavy computation. Here, an optional strategy is adopted
in which two indicative factors are designed that aim to handle the special areas while removing the
normal stripe noise. The indicative factor for badly corrupted elements SSA is defined as:

Ws(u, v) =

{
0, if (u, v)∈ Ψs,

1, otherwise.
(7)

For these areas, we prefer to update them only across the stripe direction. Similarly, an indicative
function for EA is expressed by:

We(u, v) =

{
0, if (u, v)∈ Ψe,

1, otherwise.
(8)
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Combining the DSUV model, strong stripe factor Ws and extreme area factor We, a more robust
adaptive version of DSUV, the weighted DSUV model (WDSUV), is finally formulated as follows:

J(S) = ‖WuOu(S)‖1 + λ1‖WeOv(Y− S)‖1 + λ2‖S‖0 + λ3‖OuS‖0, (9)

in which Wu = Ws ·We denotes various changing levels of S along the stripe direction u, and We is the
weight of the recovered data across the stripe direction. From Equation (9), we can see that the EA in
original image remains original, and the SSA updates only across the stripe direction. According to
Equation (9), our WDSUV model is a general variational framework of the UV and SUV. The UV is
a particular case of WDSUV when Wu = 1, Ws = 1, λ2 = 0 and λ3 = 0. Our model converts to SUV
when Wu = 1, Ws = 1 and λ3 = 0. Note that model in Equation (9) is similar to the direction sparse
l0 model in [27] to some extent, since they employ the l0 norm to directional ∇S as well. However,
they enforce l1 norm to S, whereas our model employs l0 norm to S. The l0 norm is prone to generate
more regular S than l1 norm. Moreover, the directional sparse l0 model estimates the noise without
considering these special areas and may generate artifacts in the SSA and EA. With the introduction of
double sparsity norm of S, our model can yield an estimated stripe more regularly. Figure 5 illustrates
the proposed model flow.

Region separation

( ) ( )1 2 31 0 01u u e v uJ S W S W Y S S Sλ λ λ= ∇ + ∇ − + + ∇

Extreme AreaExtreme Stripe Normal Area

Striped data Destriped data

Unidirectional gradient sparsity

Stripe property :

Global sparsity

Figure 5. Flow chart of the proposed method.

3.3. Model Optimization

In this subsection, we estimate stripe noise S from the optimization model in Equation (9). The l0
regulation is more difficult to solve than the l2 norm for it is not differential and not convex; utilizing
a trivial manner, such as gradient descend strategy, can not obtain its solution. Here, we adopt the
alternating direction method of multipliers (ADMM) optimization technique [36,37], which is based on
introducing auxiliary variables and updating them iteratively to solve the original optimization for its
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fast convergency and stability [21]. By introducing variables d1, d2 and d3, unconstrained optimization
in Equation (9) converts to a constrained problem, as:

S = argmin
S
{‖Wud1‖1 + λ1‖Wed2‖1 + λ2‖d3‖0 + λ3‖d1‖0},

s.t.d1 = OuS,

d2 = Ov(Y− S),

d3 = S.

(10)

Then, using the Lagrangian multiplier method model, Equation (10) can be converted to
an unconstrained minimization by using a penalty function, expressed by:

S = arg min
S,d1,d2,d3

{‖Wud1‖1 + pT
1 (∇uS− d1) +

β1

2
‖d1 −∇uS‖2

2+

λ1‖Wed2‖1 + pT
2 (∇v(Y− S)− d2) +

β2

2
‖d2 −∇v(Y− S)‖2

2+

λ2‖d3‖0 + pT
3 (S− d3) +

β3

2
‖d3 − S‖2

2 + λ3‖d1‖0}

(11)

in which β1, β2 and β3 are penalization parameters, and p1, p2 and p3 are the Lagrange multipliers.
Now, in Equation (11), the unknown variables are split, and four subminimization problems can be
iteratively solved for S, d1, d2 and d3.

First, the d1 related subproblem is given by:

argmin
d1
{‖Wud1‖1 + pT

1 (∇uS− d1) +
β1

2
‖d1 −∇uS‖2

2 + λ3‖d1‖0}. (12)

There are both l0 and l1 norms for d1, and the solution can be computed by the
following expression:

d(k+1)
1 = cshrink(∇u(S(k)) +

p(k)1
β1

,
Wu

β1
,

√
2λ3

β1
), (13)

where cshrink(X, θ,4θ) is calculated as:

X =


X− θ, if X > θ +4θ,

0, if |X| ≤ θ +4θ,

X + θ, if X < −θ −4θ,

(14)

and k denotes the iteration times.
Then, we solve d2 by following the minimization extracted from Equation (11):

argmin
d2
{λ1‖Wed2‖1 + pT

2 (∇v(Y− S)− d2) +
β2

2
‖d2 −∇v(Y− S)‖2

2}. (15)

The solution for minimization Equation (15) can be obtained by the soft-threshold shrinkage
operator [38]:

d(k+1)
2 = so f tshrink(∇v(Y− S)(k) +

p(k)2
β2

,
λ1We

β2
) (16)

in which so f tshrink(r, θ) = r
|r| ∗max(|r| − θ, 0).
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Similarly, the d3 related subproblem is writen by:

argmin
d3
{λ2‖d3‖0 + pT

3 (S− d3) +
β3

2
‖d3 − S‖2

2}. (17)

Based on a hard thresholding operator for l0 norm [39], we can then update d(k+1)
3 as follows:

d(k+1)
3 = hardshrink(S(k) +

p(k)3
β3

,

√
2λ2

β3
) (18)

in which hardshrink(φ, θ) = φ ∗ (|φ| > θ).
Followingly, the S related subproblem is formulated as:

S =argmin
S
{pT

1 (∇uS− d1) +
β1

2
‖d1 −∇uS‖2

2+

pT
2 (∇v(Y− S)− d2) +

β2

2
‖∇v(Y− S)− d2‖2

2+

pT
3 (S− d3) +

β3

2
‖S− d3‖2

2}.

(19)

The minimization expression in Equation (19) is a quadratic optimal formulation. It is
differentiable and the optimal S can be solved by the Euler–Lagrange equation:(

β1∇T
x∇x + β2∇T

y∇y

)
S + β3S = β1∇T

x

(
d1 −

p1

β1

)
+

β2∇T
y

(
∇yY− d2 +

p2

β2

)
+ β3

(
d3 −

p3

β3

) (20)

and a close-form solution via 2D fast Fourier transform (FFT) is given by

S(k+1) = F−1
(

G
β1F (∇u)∗ ◦ F (∇u) + β2F (∇v)∗ ◦ F (∇v) + β3

)
(21)

in which

G =β1F (∇u)
∗ ◦ F (d(k)1 −

p(k)1
β1

)+

β2F (∇v)
∗ ◦ F (∇vY +

p(k)2
β2
− d(k)2 ) + β3F (d

(k)
3 −

p(k)3
β3

),

(22)

where F and F−1 denote the 2D FFT and inverse 2D FFT, respectively, ◦ represents a component-wise
multiplication operator, and ∗ denotes the complex conjugation operator.

Finally, the Lagrange multipliers p1, p2 and p3 are updated by the following expressions:

p(k+1)
1 = p(k)1 + β1(∇u(S)(k) − d(k)1 ), (23)

p(k+1)
2 = p(k)2 + β2(∇v(Y− S)(k) − d(k)2 ), (24)

p(k+1)
3 = p(k)3 + β3(S(k) − d(k)3 ). (25)

Thus, utilizing the ADMM technique, the original minimization model in Equation (9) can be
solved by four separable subproblems, and the solution of the subproblems can be efficiently obtained
by softshrink operator, hardshrink operator and cshrink operator. This iterative scheme decreases J(s)
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in Equation (9) in each step, and it converges to a local minimum and obtains the estimated noise S.
Algorithm 1 summarizes the proposed model.

Algorithm 1: The proposed WDSUV algorithm
Input: stripe noise image Y
Output: destriped image X
Initialize: Set d(0)1 = d(0)2 = d(0)3 = 0, S(0) = 0, p(0)1 = p(0)2 = p(0)3 = 0, ε = 0.00001, kmax = 150.
Detect extreme area and extreme stripe area.
Calculate weight matrix We and Wu.

While ‖S
(k+1)−S(k)‖

S(k) > ε and k < kmax

update d(k+1)
1 using (13),

update d(k+1)
2 using (16)

update d(k+1)
3 using (18),

update S(k+1) by solving (21),
update p(k+1)

1 , p(k+1)
2 , p(k+1)

3 by (23), (24), (25), k = k + 1.
End while
Destriped image X = Y−S.

4. Experiment Results

In this section, a series of experimental results are presented to verify the destriping property
of the proposed algorithm on stripe noise removal, small details reservation and artifacts’ reduction.
In the experiments, both synthesized images and real noise corrupted remote sensing images were
tested, and we compared the proposed model with several typical state-of-the-art destriping methods,
including the spatial domain filter method based on guided filter (GF-based) [40], the frequency
domain filter method wavelet-Fourier filtering method (WAFT) [15], the unidirectional variational
based models, including the UV method [9], HUTV method [19], sparse UV model (SUV) [24] and
convolutional neural network based method stripe noise removal convolutional neural network
(SNRCNN) [31]. The traditional denoising method block-matching and 3D filtering (BM3D) [41] are
also selected to be compared. To provide an overall evaluation, the performance of the destriping
was verified by both subjective and objective evaluations. For the simulated stripe removal, we
adopted the structural similarity index (SSIM) [42] and peak signal-to-noise ratio (PSNR) to test the
destriping quality, as they are the most common used full-reference indices by modern denoising
algorithms [43–45]. In the real stripe noise image experiments, we selected the mean of inverse
coefficient of variation (MICV) and mean of mean relative deviation (MMRD) [24] indices to validate
the effect of the destriping approaches. We also compared the mean cross-track curve [25] to display
the destriping ability.

Parameter setting: It is difficult to automate the parameters of the proposed model for all
striped images, since a good destriping performance not only depends on the stripe’s type and levels,
but also relates to image content and a combination of parameters. In (9), the regulation coefficient,
λ1, determines the smooth degree across the stripe direction, which is dependent on the dense level of
the stripe component, and we set it empirically in the range [0.05, 0.5]. Parameters λ2 and λ3 constrain
the nonzero counting in S and ∇uS. Generally, a sparser stripe prefers a higher λ2. A regular stripe
corresponds to a large λ3, which is determined by both stripe distribution situations and the image
detail’s property. We have found that λ2 ∈ [0.0001, 0.005] and λ3 ∈ [0.01, 0.2] generally yield good
results in most experiments. The Lagrange multipliers were set as β1 = β2 = β3 = 100λ1 empirically.
The range of degraded images was compressed to [0, 1] in the calculation. The parameters’ estimation
of the proposed model is discussed in more detail in Section 5.1. The parameters of competing methods
were set optimally, according to the original paper’s proposal.
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4.1. Simulated Experiments

To verify the robustness of the proposed model, we chose six typical remote images with various
content in the simulated experiment. Terra MODIS data and Aqua MODIS data can be downloaded
from the official website [46]. Each MODIS data set contains 36 bands. Band 32 with less noise was
selected as the ground truth data. Figure 6a shows a 500× 400 relatively rich texture subimage with
several extreme areas in it and Figure 6b is a relatively smooth 450× 400 subimage that was extracted
from entire swaths. The Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) hyperspectral data
is available from [47]. It contains 220 bands and Figure 6c displays a subimage cropped from band 72
with some stripe-like details. The Washington DC Mall hyperspectral data downloaded from [48] was
used to test the large stripe structure preserving ability, as shown in Figure 6d. It covers roofs, streets
and path types of scenes. Figure 6e shows an Aqua MODIS image with both rich texture and smooth
area in it. In addition, Figure 6f is a complex ground scene that is available from [49]. Before adding
the artificial stripe, the 14-bit high dynamic range of original data was linearly compressed to 8 bits for
display convenience as :

Iout = (2Bout − 1)
Iin

2Bin − 1
(26)

in which Iin and Iout are the input 14-bit data and output 8-bit data, respectively. Bin = 14 and Bout = 8
denote the bit-depth of input data and output data. Then, in our simulation, both periodical and
nonperiodical stripes with various strengths were added on the tested images. In Figure 6, the top row
includes six selected remote sensing data, and the bottom row includes the corresponding degraded
images with artificial stripe. We randomly selected six percent rows in data S1 and added them with
random intensity values. In data S3, stripe is added every ten lines; however, the intensity is randomly
distributed. We generated a bright dark adjacent stripe on data S2 and data S4. The width of synthetic
stripe of S1 to S4 (Figure 6g–j) is set as two lines. To further illustrate the various types of stripe removal
ability of the proposed model, we also simulated the stripe with different strength and different width
on S5 and S6 (Figure 6k,l). In the destriping procedure of WDSUV, the range of the striped data was
compressed to [0, 1] in all experiments.

(a) (c)(b)

(g) (i)(h)

(d)

(j)

(e) (f)

(k) (l)

Figure 6. Simulated stripe. (a) Terra MODIS data S1. (b) Terra MODIS data S2. (c) Airborne Visible
InfraRed Imaging Spectrometer (AVIRIS) hyperspectral data S3. (d) Washington DC Mall hyperspectral
data S4. (e) Aqua MODIS data S5. (f) Washington DC multispectral data S6. (g–l) simulated stripe
images.

Comparisons of the proposed method with competing techniques on simulated stripe remote
data are depicted in Figures 7–14. The superiority of the proposed model can be seen. We analysed
destriping results in three-fold, i.e., extreme stripe estimation, stripe-like structure preservation and
artifacts’ reduction.
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(a) (b) (c)

(e) (f) (g)

(d)

(h)

Figure 7. Results of different methods for simulated stripe MODIS data S1. (a) BM3D; (b) SNRCNN;
(c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.

(a) (b) (c)

(e) (f) (g)

(d)

(h)

Figure 8. Results of comparison methods for simulated stripe Terra MODIS data S2. (a) BM3D;
(b) SNRCNN; (c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.

(a) (b) (c)

(f) (g) (h)

(d)

(e)

Figure 9. Results of different methods for simulated stripe AVIRIS hyperspectral data S3. (a) BM3D;
(b) SNRCNN; (c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.
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(a) (b) (c)

(e) (f) (g)

(d)

(h)

Figure 10. Results of comparison methods for simulated stripe Washington DC Mall hyperspectral
data S4. (a) BM3D; (b) SNRCNN; (c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.

(c) (d)

(e) (f) (g) (h)

(a) (b)

Figure 11. Noise estimation comparison results for simulated stripe Washington DC Mall hyperspectral
data S4. (a) BM3D; (b) SNRCNN; (c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.

First, we analysed the destriping performance of BM3D and SNRCNN methods. There are
plenty of obvious residual stripes existing in the results of BM3D (Figures 7–14a) and SNRCNN
(Figures 7–14b). The strong stripe noise seriously affects the grouping step and collaborative filtering
step in BM3D, resulting in a poor destriping ability. The weak performance of SNRCNN on stripe noise
removal can be attributed to the difference between the training data of SNRCNN and our striped data.
In the training procedure of SNRCNN, the small intensity stripe noise is added on the clean training
data. However, the stripe of various intensity is generated in our simulated data.

Next, we checked the ability of different methods in handling the EA and SSA. The Terra MODIS
data S1 and S2 contain several extreme dark areas and some extreme stripes. Figures 7 and 8 display
the destriping results. In addition to BM3D and SNRCNN, other methods can well eliminate stripe
in normal intensity areas. Nevertheless, the recovery capability for SSA is distinct. Obvious stripe
effects still exist in SSA for the GF-based, WAFT, UV, HUTV and SUV methods, as marked by the
orange yellow rectangle in Figure 7c–g. These extreme stripes increase the variation of stripe along the
stripe direction, which violates the original assumption of UV model. Thus, when we estimate stripe
noise using variation (3), the stripe effect is easily generated in the SSA and EA. Our model can detect
SSAs and inpaint them by a diffusion technique, and achieve better visual results with less undesired
artifacts, as shown in Figures 7h and 8h.

In AVIRIS hyperspectral data (Figure 6c), there are some small horizontal structures that are
very similar to stripe noise. Figure 9 shows the corresponding denoising results. As can be observed,
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unsurprisingly, the UV, HUTV and SUV approaches smooth these details while removing the true stripe
as shown in Figure 9e–g. Because these methods are local variation-based and the small structure’s
property has a high similarity with noise, they are easily treated as stripe noise and removed. As to
the comparison results of data S4 in Figure 10, besides BM3D and SNRCNN, other methods seem
to succeed in preserving the large edge structure. However, the loss of the original image content is
different. Figure 11 presents the stripe noise estimation results, and it can be easily observed that the
GF-based, WAFT and HUTV methods wrongly remove some scene structures, as in Figure 11c,d,f.
By introducing the gradient sparse regulation, little superfluous and unwanted content exists in
Figure 11h, indicating that our model shows better texture preservation capabilities and distinguishes
more structure from the stripe noise. Although the GF-based method has a good preservation
of stripe details capability in Figure 9c, it may fail when extreme dark areas exist as depicted in
Figures 7c and 8c.

Figures 12 and 14 display the complex stripe noise removal comparisons for S5 and S6. In Figure 12,
the stripe noise in the smooth area almost vanishes for GF based method, WAFT, UV, HUTV, SUV and
WDSUV. However, some weak stripe trace still can be sensed from GF based and WAFT, as in
Figure 12c,d. Moreover, the GF based, WAFT and UV methods smooth some details in the complex
area of S5, which can be inferred from the stripe estimation in Figure 13c–e.

Table 1 lists the PSNR and SSIM results of different techniques for six simulated data. Our method
outperforms the other techniques in both measures, indicating that the proposed model is robust
for various kinds of stripes. The BM3D method even generates worse results than degraded images,
indicating that the BM3D is not well suitable to the stripe noise removal problem.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 12. Comparison results for simulated stripe Aqua MODIS data S5. (a) BM3D; (b) SNRCNN;
(c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.

Table 1. Quantitative assessment of six simulated data.

Images Index Degrade BM3D SNRCNN GF-Based WAFT UV HUTV SUV WDSUV

Terra MODIS PSNR 26.0840 25.5200 27.2117 32.0181 31.0007 32.6417 31.7010 38.3245 41.0911
data S1 SSIM 0.7324 0.5870 0.7703 0.8918 0.8890 0.8878 0.8806 0.9786 0.9848

Terra MODIS PSNR 23.4022 23.3515 24.5212 39.3852 40.8607 40.9761 36.2624 46.7106 48.2076
data S2 SSIM 0.4382 0.3484 0.4270 0.9472 0.9498 0.9567 0.8924 0.9842 0.9904

AVIRIS hyperspectral PSNR 26.2208 25.7951 27.3176 35.5988 33.6703 34.2757 31.8994 39.5019 47.1249
data S3 SSIM 0.6409 0.4165 0.6849 0.9540 0.9104 0.9077 0.8734 0.9389 0.9856

Washington DC PSNR 24.2427 24.1440 25.6211 34.6449 32.4722 33.9846 29.4783 37.9291 43.9164
Mall S4 SSIM 0.6750 0.6392 0.7008 0.9481 0.9060 0.9237 0.8304 0.9700 0.9883

Aqua MODIS PSNR 22.3573 22.3398 23.3799 30.6260 28.4963 27.5805 28.6585 35.2163 36.4584
data S5 SSIM 0.5670 0.4939 0.5951 0.7893 0.7902 0.8502 0.8070 0.9681 0.9832

Washington DC PSNR 25.0689 24.9520 26.1792 33.0079 31.4577 31.2565 31.8940 32.6320 36.9800
multispectral S6 SSIM 0.6135 0.4813 0.6322 0.8858 0.8611 0.8720 0.8587 0.9120 0.9547
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Noise estimation comparison results for simulated stripe Aqua MODIS data S5. (a) BM3D;
(b) SNRCNN; (c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Comparison results for simulated stripe Washington DC multispectral data S6. (a) BM3D;
(b) SNRCNN; (c) GF-based; (d) WAFT; (e) UV; (f) HUTV; (g) SUV; (h) WDSUV.
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In addition, we adopted the mean cross-track index to measure the destriping performance of
the proposed method. Figures 15 and 16 display the mean cross-track profile of different methods
on the simulated data S3 and S4. The horizonal axis stands for the row number, and the vertical
axis denotes the mean value of each row. We can observe a lot mild burrs in the curves of BM3D
(Figures 15 and 16a) and SNRCNN (Figures 15 and 16b), indicating that obvious stripe still existed.
In Figure 15, the output of the GF-based, WAFT, UV, and HUTV methods deviate significantly from the
ground truth. To a great extent, this is because the stripe structure is also removed as noise. The curves
of the SUV and WDSUV fluctuate around the clean image’s data, whereas the result of the WDSUV
is more coherent with truth than the SUV. In Figure 16, the WAFT and UV exhibit over-smoothing
curves, which means that some useful details are lost. Among these outputs, the WDSUV also has the
best agreement with the original, demonstrating the perfect performance of the proposed model.

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

Figure 15. Mean cross-track profiles of comparison methods for simulated stripe Hyperion data S3.
(a) striped data; (b) BM3D; (c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV;
(i) WDSUV.
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(a) (b) (c)

(d) (e) (f)

(g)

(g) (h) (i)

Figure 16. Mean cross-track profiles of comparison methods for simulated stripe Washington DC
Mall hyperspectral data S4. (a) striped data; (b) BM3D; (c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV;
(g) HUTV; (h) SUV; (i) WDSUV.

To further illustrate the robustness of the proposed model, we also added both periodical stripe
and nonperiodical stripe with different intensities and different proportions on images S1 to S4 in
simulated experiments. The quantitative indices PSNR and SSIM values of eight comparison methods
are presented in Tables 2 and 3, respectively. We simulated the striped images in the same way as [25]
and the simulated stripe generating code can be download from [50]. In the tables, r denotes the
proportion of stripe noise in an image and the intensity means the mean absolute value of the simulated
stripe lines. In the simulated data, if the gray values exceeded the range [0, 255], they were cut off.
The highest PNSR and SSIM values are highlighted in bold. In general, the destriping performance of
each method reduces as the noise levels increases and the proportion enlarges. With the increasing
stripe intensity, the original content along the entire rows may be destroyed, which make it more
difficult to recover the underlying image. Tables 2 and 3 show that the proposed WDSUV model
achieves the highest PSNR and SSIM values than the state-of-the-art method in most cases. It should
be noted that the GF-based method, WAFT, UV and HUTV output for S4 got lower PSNR and SSIM
values than the degraded images when r = 0.1 and intensity = 10, as denoted by cyan color, can be
attributed to these methods removing too much stripe like structure in S4 images.
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Table 2. Peak signal-to-noise ratio (PSNR) index results of different methods on simulated data under various noise levels.

Image Method

r = 0.1 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity

10 30 50 80 10 30 50 80 10 30 50 80 10 30 50 80

MODIS data S1
periodical stripe

Degrade 38.3636 28.9416 24.6571 20.9765 32.3406 22.9182 18.6465 14.9819 30.5788 21.1535 16.8783 13.2156 29.3288 19.9101 15.6230 11.9539
BM3D 37.9730 28.7184 24.1826 20.5160 32.2882 22.8704 18.5387 14.8898 30.5463 21.1186 16.8067 13.1609 29.3075 19.8858 15.5710 11.9200

SNRCNN 39.4908 31.8395 26.3301 21.8917 37.0035 25.2144 19.6972 15.4788 35.3156 23.1266 17.6214 13.4484 34.6232 21.3435 16.2456 12.1758
GF-based 39.0138 37.9688 36.2370 30.0010 38.3812 34.3600 30.4248 26.1004 37.7721 32.2284 28.8698 24.0200 37.6521 31.7981 27.4815 22.3266

WAFT 42.4278 37.0602 30.6437 30.1540 39.4671 34.9552 29.2543 27.0905 38.9408 33.5375 28.1855 25.1431 38.6607 32.7633 27.2272 23.5700
UV 38.4699 35.6250 34.8370 33.8500 38.2752 33.8801 32.3190 28.6162 37.9590 32.3228 29.6661 24.8966 37.9119 32.0520 28.9193 24.1231

HUTV 39.5704 36.2796 34.2204 30.4702 38.7103 33.8595 30.5498 26.6128 37.3328 28.6134 27.4082 23.3219 38.0095 31.4505 26.2719 23.0960
SUV 48.4850 44.9149 43.0147 38.0228 41.0528 39.9256 35.8973 33.3458 35.7053 37.4478 32.9375 27.0810 34.7791 35.5368 30.9388 26.2138

WDSUV 50.2697 45.3239 44.2248 42.2322 43.2668 40.0832 39.4022 36.1014 39.1392 38.9162 36.8020 32.3301 39.7454 39.4813 35.7192 30.3441

MODIS data S1
nonperiodical stripe

Degrade 38.4219 28.9951 24.7108 21.0400 32.3184 22.9023 18.6161 14.9338 30.5989 21.1907 16.9180 13.2833 29.3416 19.9244 15.6378 11.9716
BM3D 37.9733 28.7510 24.2181 20.5611 32.2694 22.8528 18.5077 14.8385 30.5693 21.1577 16.8473 13.2296 29.3240 19.8993 15.5856 11.9358

SNRCNN 39.3618 31.3672 26.0140 21.7015 36.5788 24.9534 19.5394 15.3081 34.7035 22.8145 17.6132 13.5403 33.5670 21.2727 16.1483 12.1258
GF-based 38.9359 36.6797 34.0862 29.7559 38.0441 33.5266 28.6602 25.4274 36.6564 29.9535 26.7176 23.0023 36.2714 29.6554 26.1259 21.8469

WAFT 41.8208 35.7550 31.5855 27.1679 40.1222 33.6273 29.4164 25.1599 36.2671 30.0575 26.0868 23.7940 36.2781 29.1690 25.5951 26.0789
UV 38.4710 36.5816 33.6151 30.8673 38.0733 34.3455 30.6966 26.8573 37.4262 31.0819 26.7207 22.7429 37.0838 30.4512 25.8733 21.6048

HUTV 39.5271 35.3252 32.5130 30.3248 38.4048 33.4225 29.1997 26.6952 36.6916 29.2569 26.8509 22.2469 36.4255 28.3136 25.3522 20.7944
SUV 46.0676 44.3400 38.9258 37.7311 38.7371 39.6975 35.2263 31.9187 34.2789 31.5409 27.8705 23.3751 31.5149 29.8870 26.1507 21.5511

WDSUV 47.0051 47.0919 43.4787 41.7685 40.9192 40.4263 38.2084 33.3118 38.1593 34.0324 30.7349 26.0789 34.8083 32.5101 30.1833 24.5578

MODIS data S2
periodical stripe

Degrade 38.1441 28.6469 24.2530 20.2865 32.1235 22.6300 18.2398 14.2714 30.3622 20.8668 16.4764 12.5067 29.1128 19.6175 15.2292 11.2611
BM3D 37.6601 28.5117 24.1461 20.2234 32.0130 22.5990 18.2129 14.2588 30.2816 20.8425 16.4587 12.4992 29.0472 19.5990 15.2163 11.2565

SNRCNN 42.9764 32.4129 26.1812 21.2479 39.9476 25.1809 19.3562 14.7615 37.4029 23.0149 17.2241 12.6765 36.7278 21.0633 15.8601 11.4613
GF-based 45.6167 43.3258 41.5718 37.6521 44.3715 40.0237 37.8644 32.5072 43.2628 39.3043 35.9049 29.4985 44.6783 38.8118 34.0477 27.3518

WAFT 47.2401 42.8725 37.1036 36.8526 43.4684 41.3821 35.8032 33.5217 43.1177 39.9001 34.7649 31.5304 43.4207 40.6491 34.7274 30.5963
UV 43.4176 43.2263 43.0491 42.2975 43.1667 41.5545 40.1779 36.6793 42.9954 40.1732 37.9465 31.1208 43.3713 40.7350 37.9465 31.7282

HUTV 44.1750 39.2730 38.8229 35.0612 43.3081 38.6896 34.7521 30.6133 41.4480 36.7318 32.5494 30.1304 43.0293 37.4793 31.6226 30.2447
SUV 55.2534 52.6987 51.4506 47.8067 44.8470 44.5794 43.9645 39.8285 40.5483 43.1501 39.9061 34.3684 40.0209 40.1130 39.5030 34.7828

WDSUV 54.7737 53.4641 47.4867 45.7451 46.4718 44.6292 44.9953 41.3835 43.2174 46.3007 41.4233 38.3327 41.5090 41.0232 39.9654 36.4712

MODIS data S2
nonperiodical stripe

Degrade 38.1462 28.6688 24.2906 20.3206 32.1241 22.6317 18.2447 14.2745 30.3607 20.8547 16.4605 12.4907 29.1120 19.6114 15.2223 11.2544
BM3D 37.6041 28.5296 24.1831 20.2541 32.0126 22.6000 18.2186 14.2614 30.2843 20.8317 16.4432 12.4833 29.0511 19.5934 15.2093 11.2493

SNRCNN 42.2972 31.7122 25.8306 21.0435 39.3622 24.8819 19.2232 14.6275 36.3498 22.5742 17.1694 12.7137 35.1416 21.0001 15.7317 11.3596
GF-based 44.3271 39.5764 36.9224 34.6063 43.7647 37.0518 34.6596 30.4640 39.8603 33.3486 29.5833 25.0746 39.9661 35.2912 29.6666 25.5680

WAFT 45.5348 38.9978 36.4346 34.4136 43.1718 37.0130 34.0479 29.3317 39.1531 30.9575 30.5014 27.7590 39.7103 33.6935 31.3340 28.4894
UV 43.1941 40.7837 38.1597 34.5783 42.8765 38.9708 35.5971 31.3830 40.4867 32.9775 28.4004 23.9095 41.4360 34.6748 29.8098 24.6459

HUTV 44.4063 37.8306 35.0888 33.3301 42.9837 37.0956 33.5024 31.6250 39.1709 32.5503 29.5291 24.8175 39.5229 32.5002 28.9732 23.8722
SUV 53.3067 51.7171 46.3221 46.1404 46.5165 46.7954 42.6519 40.8579 36.9867 35.7377 30.4483 25.0203 33.8652 34.7488 29.8671 25.1922

WDSUV 57.7296 53.3637 48.7888 50.0378 47.2587 46.8928 45.6753 42.4041 41.0117 36.4808 32.0655 26.8727 36.9841 36.9584 34.1676 28.5905
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Table 2. Cont.

Image Method

r = 0.1 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity

10 30 50 80 10 30 50 80 10 30 50 80 10 30 50 80

Hyperspectral data S3
periodical stripe

Degrade 38.1319 28.5903 24.2106 20.9388 32.1110 22.5704 18.1923 14.9239 30.3499 20.8081 16.4339 13.1754 29.1004 19.5592 15.1807 11.9043
BM3D 37.4299 28.3034 23.8879 20.7112 31.9536 22.5020 18.1119 14.8803 30.2482 20.7593 16.3793 13.1497 29.0179 19.5218 15.1392 11.8848

SNRCNN 39.0079 31.7377 26.0553 21.9460 37.3156 24.9018 19.3512 15.5074 35.7618 22.8175 17.2138 13.4562 34.9288 21.0031 15.9262 12.2672
GF-based 42.5060 41.2574 40.8444 37.1256 42.3063 40.7073 39.4821 31.5140 41.7498 39.8682 38.1542 28.8929 42.0426 40.4338 36.8492 26.7469

WAFT 42.1924 39.1589 35.2671 34.5917 39.8006 38.6106 34.7035 30.9176 39.6123 38.0180 34.2849 29.3421 39.7383 39.1095 34.7673 28.1147
UV 40.8155 38.3434 38.2253 36.8282 40.6768 37.6610 36.9930 32.0192 40.5251 36.7676 35.2858 27.9936 40.8458 37.9764 36.7563 27.9281

HUTV 39.1680 37.5216 36.0298 33.4295 38.7537 35.8826 34.2408 30.6096 37.8728 32.2482 32.0498 27.6395 38.4658 35.4814 31.2428 27.8749
SUV 51.9430 46.5639 45.6472 41.4831 42.8934 45.0270 43.0221 36.4940 38.3094 43.6120 40.9821 31.5260 36.9397 42.1857 39.1560 31.2246

WDSUV 52.4407 50.1288 40.3177 36.2103 48.1432 47.2473 39.7532 34.9969 45.8231 45.5917 37.2981 32.8550 44.4537 43.5823 32.3576 29.1048

Hyperspectral data S3
nonperiodical stripe

Degrade 38.1308 28.5897 24.2027 20.9204 32.1107 22.5698 18.1960 14.9065 30.3496 20.8086 16.4317 13.1732 29.1007 19.5598 15.1899 11.9409
BM3D 37.3848 28.2907 23.8749 20.6880 31.9603 22.5008 18.1143 14.8589 30.2458 20.7606 16.3766 13.1439 29.0211 19.5228 15.1459 11.9203

SNRCNN 38.7845 30.9571 25.5719 21.6554 36.7569 24.7794 19.2770 15.4183 35.3986 22.5178 17.2044 13.5205 33.5486 20.8901 15.7624 12.1881
GF-based 42.2991 39.7528 37.9501 34.7591 40.7576 36.6630 33.6928 28.9421 40.2180 35.3194 33.0864 26.9983 37.7981 31.7956 29.7875 24.2069

WAFT 41.7831 37.7890 35.4026 33.4041 39.2474 34.2986 31.8598 28.4658 38.3109 33.0572 32.1086 28.4944 36.4695 30.6235 30.6457 25.6458
UV 40.7916 39.4278 36.1542 32.8773 39.8204 35.5633 31.1753 27.6026 39.5813 34.4219 30.1753 25.8380 38.0463 30.7917 26.3328 22.1651

HUTV 39.3207 36.8817 35.1384 33.2775 37.8767 33.4628 30.0189 28.9225 37.9971 32.5308 30.0652 25.8394 36.0397 29.0336 27.1285 20.5277
SUV 47.6830 46.4302 40.2209 38.8257 39.4676 39.4614 38.3263 32.1460 36.4566 37.3494 33.5141 26.1144 30.6345 31.0487 26.7216 20.4176

WDSUV 50.6259 50.5892 45.9726 43.1071 44.0476 46.2188 42.4513 35.8632 44.3317 41.5655 33.9083 28.0227 39.7249 35.8832 30.5793 25.0109

Hyperspectral data S4
periodical stripe

Degrade 38.3081 28.7657 24.4384 21.0540 32.2875 22.7453 18.4232 15.0411 30.5267 20.9842 16.6662 13.2752 29.2773 19.7348 15.4126 12.0143
BM3D 37.7608 28.5314 24.0485 20.6537 32.1885 22.6851 18.3337 14.9621 30.4644 20.9403 16.6086 13.2282 29.2339 19.7007 15.3722 11.9862

SNRCNN 38.3191 31.2693 26.0951 21.9826 36.1631 24.8326 19.4969 15.5880 34.6511 22.8072 17.4050 13.5335 33.8092 21.0800 16.0903 12.3224
GF-based 35.4574 35.4402 35.4038 31.9845 34.5255 34.1008 33.9158 28.8678 34.4463 33.9952 33.2673 26.9497 34.4388 34.0353 33.0103 25.4585

WAFT 35.5012 32.4622 29.1166 28.8143 33.0202 32.3641 28.9810 27.5259 33.0025 32.1794 28.8702 25.8683 33.0308 32.4567 28.9425 25.2356
UV 34.6952 31.8635 31.6717 30.9389 34.6984 31.6092 31.3027 28.2991 34.6677 31.2433 30.6359 25.7582 34.6379 31.7924 30.9559 25.7389

HUTV 34.8731 32.6289 32.0435 28.6424 34.7107 31.8426 29.7554 26.9722 34.2293 29.5224 27.9733 25.3840 34.7866 30.8774 27.2127 25.2576
SUV 45.8325 37.9881 37.8021 32.6007 37.4824 37.5948 36.9134 30.5562 33.0448 36.8791 32.5475 27.9168 32.8909 36.4694 32.2048 27.3382

WDSUV 47.4231 42.7254 38.0800 34.0489 42.4871 41.4536 37.1274 32.4728 40.9252 39.6583 34.6712 30.5732 40.7620 39.8275 33.6095 28.3756

Hyperspectral data S4
nonperiodical stripe

Degrade 38.1308 28.5884 24.2417 20.8247 32.1102 22.5678 18.2484 14.8619 30.3494 20.8070 16.4906 13.1183 29.1000 19.5576 15.2422 11.8480
BM3D 37.5847 28.3488 23.8618 20.4240 32.0228 22.5114 18.1630 14.7838 30.2945 20.7653 16.4354 13.0743 29.0606 19.5250 15.2006 11.8110

SNRCNN 38.2193 30.7263 25.5635 21.5607 35.5068 24.5464 19.2753 15.3704 34.3556 22.3848 17.2245 13.4406 33.1192 20.8728 15.7966 12.0450
GF-based 35.3150 34.2430 32.9393 31.2654 35.0389 32.4143 31.1472 27.2521 34.1816 32.6377 31.2622 26.0432 34.0332 32.1975 30.1290 24.2097

WAFT 35.3527 31.8039 29.8337 29.0496 34.7215 31.2300 28.5766 25.7183 32.7093 30.3576 28.2436 25.9449 32.6929 30.2041 28.0116 25.0329
UV 34.6023 33.2470 30.6498 28.5669 34.3881 32.1598 29.0409 25.8483 34.3881 31.9343 28.5941 24.6804 34.2568 31.3453 27.8425 23.4028

HUTV 34.7922 32.3350 30.4412 28.2654 34.1625 31.1241 27.7662 26.0231 34.3461 29.6436 27.7787 24.6458 34.0478 28.0687 26.4209 22.0203
SUV 42.4435 38.0209 33.3810 32.5933 36.5716 37.4128 32.3467 28.0938 33.8128 32.9177 31.4965 25.5164 30.9471 31.2761 27.7703 22.6486

WDSUV 46.4176 45.4022 36.8808 36.5418 42.7482 42.7082 32.2437 30.0206 41.6863 39.5000 33.5065 28.5151 39.0474 33.6656 31.1113 25.3288



Remote Sens. 2018, 10, 998 20 of 35

Table 3. Structural similarity index (SSIM) index results of different methods on simulated data under various noise levels.

Image Method

r = 0.1 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity

10 30 50 80 10 30 50 80 10 30 50 80 10 30 50 80

MODIS data S1
periodical stripe

Degrade 0.9117 0.7689 0.6737 0.5932 0.7748 0.4430 0.2898 0.1745 0.7192 0.3633 0.2067 0.1078 0.6572 0.2800 0.1426 0.0665
BM3D 0.8885 0.7157 0.5286 0.3559 0.7571 0.4117 0.2240 0.1027 0.7035 0.3360 0.1580 0.0609 0.6422 0.2585 0.1092 0.0382

SNRCNN 0.9294 0.8076 0.6857 0.5844 0.8857 0.5505 0.3336 0.1890 0.8674 0.4595 0.2364 0.1148 0.8273 0.3320 0.1574 0.0692
GF-based 0.9238 0.9109 0.8939 0.8656 0.9130 0.8733 0.8148 0.7469 0.9075 0.8454 0.8054 0.6668 0.8996 0.8257 0.7678 0.5675

WAFT 0.9291 0.9072 0.8805 0.8654 0.9120 0.8827 0.8382 0.7885 0.9090 0.8690 0.8202 0.7479 0.9053 0.8591 0.8026 0.7105
UV 0.9187 0.9020 0.8969 0.8849 0.9109 0.8794 0.8634 0.8059 0.9066 0.8609 0.8271 0.7169 0.9042 0.8536 0.8150 0.7050

HUTV 0.9203 0.8988 0.8831 0.8185 0.9107 0.8759 0.8188 0.6720 0.9030 0.7609 0.7531 0.6151 0.9026 0.8460 0.6742 0.5601
SUV 0.9955 0.9927 0.9892 0.9770 0.9837 0.9737 0.9591 0.9221 0.9542 0.9578 0.9203 0.7652 0.9450 0.9359 0.8502 0.7367

WDSUV 0.9962 0.9941 0.9910 0.9859 0.9845 0.9800 0.9735 0.9485 0.9884 0.9719 0.9728 0.9402 0.9925 0.9687 0.9396 0.8902

MODIS data S1
nonperiodical stripe

Degrade 0.9261 0.8009 0.7181 0.6489 0.7660 0.4441 0.2801 0.1671 0.7252 0.3758 0.2169 0.1169 0.6756 0.3052 0.1596 0.0758
BM3D 0.9003 0.7438 0.5654 0.4008 0.7497 0.4120 0.2154 0.0952 0.7094 0.3481 0.1662 0.0670 0.6605 0.2818 0.1216 0.0436

SNRCNN 0.9325 0.8289 0.7241 0.6392 0.8807 0.5382 0.3183 0.1788 0.8640 0.4564 0.2448 0.1234 0.8294 0.3652 0.1750 0.0782
GF-based 0.9245 0.8960 0.8883 0.8667 0.9138 0.8657 0.8292 0.7461 0.9078 0.8518 0.7975 0.6653 0.9024 0.8346 0.7666 0.5769

WAFT 0.9292 0.9058 0.8913 0.8458 0.9164 0.8769 0.8410 0.7837 0.9026 0.8592 0.8114 0.7386 0.8994 0.8373 0.7951 0.7020
UV 0.9191 0.9099 0.8942 0.8671 0.9114 0.8841 0.8563 0.7969 0.9067 0.8666 0.8210 0.7247 0.9026 0.8521 0.7848 0.6579

HUTV 0.9207 0.8975 0.8724 0.8262 0.9106 0.8751 0.8034 0.7336 0.9039 0.8405 0.7913 0.6378 0.8981 0.8079 0.7519 0.4897
SUV 0.9961 0.9938 0.9850 0.9770 0.9808 0.9745 0.9557 0.9113 0.9459 0.9246 0.8807 0.7459 0.9171 0.8743 0.7973 0.6599

WDSUV 0.9953 0.9949 0.9920 0.9866 0.9934 0.9782 0.9703 0.9370 0.9890 0.9774 0.9349 0.8657 0.9825 0.9660 0.9100 0.8187

MODIS data S2
periodical stripe

Degrade 0.7780 0.5538 0.4683 0.4096 0.4661 0.1396 0.0651 0.0308 0.3872 0.0970 0.0406 0.0169 0.3035 0.0624 0.0248 0.0098
BM3D 0.6868 0.4476 0.3275 0.2438 0.4151 0.1126 0.0428 0.0157 0.3449 0.0780 0.0267 0.0087 0.2702 0.0504 0.0166 0.0051

SNRCNN 0.9078 0.6096 0.4681 0.3919 0.8217 0.2269 0.0854 0.0374 0.7746 0.1505 0.0500 0.0183 0.6371 0.0805 0.0282 0.0104
GF-based 0.9698 0.9550 0.9059 0.9221 0.9588 0.9316 0.8831 0.6338 0.9470 0.9314 0.8148 0.4661 0.9593 0.9110 0.7185 0.3084

WAFT 0.9656 0.9530 0.9143 0.9098 0.9595 0.9454 0.9034 0.8843 0.9578 0.9374 0.8950 0.8648 0.9583 0.9389 0.8931 0.8577
UV 0.9637 0.9595 0.9613 0.9580 0.9620 0.9510 0.9488 0.9286 0.9606 0.9427 0.9340 0.8050 0.9618 0.9429 0.9370 0.8797

HUTV 0.9531 0.9082 0.8978 0.7903 0.9460 0.8935 0.7997 0.5670 0.9380 0.8630 0.7290 0.4315 0.9407 0.8575 0.5210 0.3616
SUV 0.9957 0.9947 0.9927 0.9890 0.9882 0.9846 0.9802 0.9679 0.9754 0.9748 0.9645 0.9099 0.9622 0.9578 0.9359 0.8876

WDSUV 0.9986 0.9954 0.9970 0.9925 0.9899 0.9880 0.9865 0.9813 0.9959 0.9841 0.9768 0.9538 0.9947 0.9729 0.9609 0.9329
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Table 3. Cont.

Image Method

r = 0.1 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity

10 30 50 80 10 30 50 80 10 30 50 80 10 30 50 80

MODIS data S2
nonperiodical stripe

Degrade 0.8019 0.6048 0.5321 0.4838 0.4669 0.1459 0.0706 0.0347 0.3926 0.0998 0.0419 0.0170 0.3275 0.0714 0.0282 0.0109
BM3D 0.7061 0.4880 0.3747 0.2937 0.4163 0.1183 0.0477 0.0192 0.3490 0.0798 0.0272 0.0084 0.2908 0.0569 0.0182 0.0053

SNRCNN 0.9080 0.6415 0.5233 0.4605 0.8183 0.2150 0.0870 0.0386 0.7499 0.1467 0.0507 0.0183 0.6561 0.0962 0.0319 0.0112
GF-based 0.9668 0.9483 0.9409 0.9090 0.9638 0.9231 0.8795 0.6440 0.9514 0.8842 0.8020 0.4692 0.9457 0.9052 0.7217 0.3296

WAFT 0.9668 0.9430 0.9252 0.9145 0.9522 0.9313 0.9105 0.8692 0.9491 0.8746 0.8699 0.8550 0.9477 0.8968 0.8651 0.8437
UV 0.9636 0.9582 0.9518 0.9336 0.9633 0.9498 0.9394 0.9042 0.9595 0.9237 0.8725 0.7702 0.9596 0.9219 0.8605 0.7199

HUTV 0.9579 0.9059 0.8586 0.7686 0.9503 0.8932 0.8004 0.6863 0.9359 0.8441 0.7152 0.5715 0.9291 0.8178 0.7036 0.4286
SUV 0.9966 0.9947 0.9893 0.9877 0.9895 0.9848 0.9754 0.9628 0.9423 0.9510 0.9007 0.7473 0.9124 0.9137 0.8696 0.6503

WDSUV 0.9982 0.9965 0.9934 0.9941 0.9972 0.9875 0.9860 0.9772 0.9946 0.9635 0.9843 0.9599 0.9911 0.9534 0.9832 0.9608

Hyperspectral data S3
periodical stripe

Degrade 0.8730 0.6499 0.5345 0.4711 0.6414 0.2375 0.1097 0.0548 0.5652 0.1661 0.0736 0.0304 0.4652 0.1152 0.0388 0.0114
BM3D 0.8165 0.5396 0.3183 0.1931 0.5973 0.1898 0.0569 0.0156 0.5250 0.1304 0.0397 0.0105 0.4278 0.0913 0.0177 0.0007

SNRCNN 0.8876 0.6882 0.5256 0.4439 0.8456 0.3394 0.1397 0.0658 0.8267 0.2410 0.0894 0.0337 0.7293 0.1428 0.0452 0.0128
GF-based 0.9591 0.9614 0.9537 0.9066 0.9584 0.9557 0.9260 0.7191 0.9563 0.9420 0.8969 0.5936 0.9563 0.9502 0.8354 0.4289

WAFT 0.9500 0.9239 0.8561 0.8305 0.9369 0.9230 0.8470 0.7250 0.9323 0.9226 0.8402 0.6873 0.9323 0.9237 0.8369 0.6312
UV 0.9403 0.9139 0.9128 0.8859 0.9405 0.9104 0.8999 0.7741 0.9404 0.9049 0.8844 0.6396 0.9406 0.9112 0.8868 0.6278

HUTV 0.9199 0.8952 0.8750 0.7698 0.9177 0.8779 0.7889 0.5602 0.9119 0.8352 0.7178 0.5032 0.9127 0.8576 0.6043 0.4058
SUV 0.9954 0.9852 0.9818 0.9191 0.9717 0.9782 0.9638 0.8278 0.9194 0.9706 0.9454 0.6888 0.9051 0.9616 0.9242 0.6142

WDSUV 0.9955 0.9926 0.9872 0.9579 0.9953 0.9855 0.9681 0.8982 0.9933 0.9791 0.9714 0.9119 0.9912 0.9707 0.9587 0.8711

Hyperspectral data S3
nonperiodical stripe

Degrade 0.8845 0.6818 0.5884 0.5363 0.6408 0.2301 0.1068 0.0512 0.5524 0.1599 0.0656 0.0248 0.5172 0.1451 0.0587 0.0205
BM3D 0.8272 0.5655 0.3600 0.2327 0.5963 0.1820 0.0548 0.0140 0.5120 0.1251 0.0325 0.0057 0.4791 0.1158 0.0325 0.0078

SNRCNN 0.8844 0.6945 0.5650 0.4992 0.8478 0.3239 0.1322 0.0578 0.7923 0.2178 0.0784 0.0277 0.7556 0.1871 0.0669 0.0222
GF-based 0.9595 0.9591 0.9545 0.9046 0.9573 0.9510 0.9205 0.7174 0.9564 0.9442 0.8859 0.5820 0.9533 0.9319 0.8448 0.4633

WAFT 0.9516 0.9221 0.8885 0.8591 0.9386 0.9125 0.8719 0.7416 0.9296 0.9087 0.8378 0.6814 0.9280 0.8465 0.8276 0.6128
UV 0.9408 0.9385 0.9107 0.8558 0.9403 0.9326 0.8834 0.7410 0.9398 0.9303 0.8711 0.6576 0.9376 0.9099 0.8134 0.5254

HUTV 0.9216 0.8947 0.8639 0.7749 0.9153 0.8742 0.7572 0.6200 0.9142 0.8415 0.7490 0.4768 0.9085 0.7947 0.7095 0.3061
SUV 0.9932 0.9858 0.9434 0.9206 0.9615 0.9331 0.9176 0.7922 0.9378 0.9216 0.8903 0.6224 0.8985 0.8609 0.7900 0.4566

WDSUV 0.9980 0.9936 0.9822 0.9702 0.9920 0.9853 0.9618 0.9432 0.9909 0.9698 0.9663 0.8991 0.9857 0.9829 0.9579 0.8471
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Table 3. Cont.

Image Method

r = 0.1 r = 0.4 r = 0.6 r = 0.8

Intensity Intensity Intensity Intensity

10 30 50 80 10 30 50 80 10 30 50 80 10 30 50 80

Hyperspectral data S4
periodical stripe

Degrade 0.9584 0.8199 0.7163 0.6317 0.8601 0.5260 0.3422 0.2195 0.8169 0.4390 0.2551 0.1391 0.7571 0.3476 0.1849 0.0948
BM3D 0.9460 0.7821 0.6095 0.4384 0.8475 0.4969 0.2836 0.1353 0.8044 0.4136 0.2087 0.0809 0.7443 0.3263 0.1495 0.0525

SNRCNN 0.9559 0.8602 0.7398 0.6365 0.9380 0.6237 0.3919 0.2439 0.9286 0.5309 0.2867 0.1476 0.8921 0.3987 0.2016 0.0986
GF-based 0.9480 0.9473 0.9486 0.9181 0.9381 0.9474 0.9369 0.8234 0.9375 0.9462 0.9272 0.7548 0.9380 0.9407 0.9122 0.6662

WAFT 0.9394 0.9061 0.8459 0.8293 0.9153 0.9060 0.8401 0.7740 0.9153 0.9055 0.8358 0.7199 0.9154 0.9059 0.8326 0.6822
UV 0.9298 0.8910 0.8887 0.8706 0.9299 0.8888 0.8795 0.7893 0.9298 0.8857 0.8691 0.7197 0.9296 0.8900 0.8696 0.6976

HUTV 0.9249 0.9035 0.8971 0.8135 0.9247 0.8984 0.8366 0.7085 0.9221 0.8533 0.7874 0.6494 0.9253 0.8771 0.7096 0.5733
SUV 0.9935 0.9726 0.9701 0.9085 0.9666 0.9680 0.9567 0.8418 0.9184 0.9635 0.9025 0.7573 0.9140 0.9586 0.8936 0.7114

WDSUV 0.9952 0.9876 0.9803 0.9575 0.9912 0.9831 0.9688 0.9204 0.9893 0.9785 0.9452 0.8773 0.9886 0.9756 0.9337 0.8802

Hyperspectral data S4
nonperiodical stripe

Degrade 0.9561 0.8204 0.7227 0.6475 0.8559 0.5061 0.3098 0.1748 0.8040 0.4095 0.2266 0.1113 0.7621 0.3436 0.1737 0.0746
BM3D 0.9440 0.7837 0.6174 0.4525 0.8441 0.4784 0.2568 0.1076 0.7915 0.3855 0.1874 0.0680 0.7494 0.3226 0.1420 0.0428

SNRCNN 0.9569 0.8559 0.7412 0.6524 0.9377 0.6050 0.3570 0.1925 0.9149 0.4877 0.2546 0.1185 0.8930 0.4047 0.1905 0.0776
GF-based 0.9478 0.9458 0.9438 0.9166 0.9474 0.9443 0.9308 0.8142 0.9374 0.9431 0.9228 0.7403 0.9377 0.9446 0.9089 0.6613

WAFT 0.9392 0.9047 0.8725 0.8543 0.9366 0.9033 0.8625 0.7609 0.9144 0.8995 0.8334 0.7219 0.9147 0.9003 0.8288 0.6813
UV 0.9296 0.9220 0.8860 0.8407 0.9296 0.9196 0.8727 0.7674 0.9293 0.9191 0.8652 0.7142 0.9292 0.9178 0.8572 0.6605

HUTV 0.9253 0.9041 0.8779 0.8052 0.9220 0.8978 0.8183 0.7265 0.9233 0.8708 0.8336 0.6308 0.9207 0.8259 0.7959 0.5198
SUV 0.9865 0.9714 0.9263 0.9098 0.9598 0.9223 0.9075 0.8129 0.9473 0.9168 0.8966 0.7156 0.9201 0.9072 0.8709 0.6324

WDSUV 0.9955 0.9911 0.9660 0.9611 0.9720 0.9848 0.9392 0.9313 0.9900 0.9812 0.9585 0.9084 0.9881 0.9545 0.9458 0.8550
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4.2. Real Experiments

Here, we conducted some experimental comparisons on real stripe noise contaminated remote
sensing images. Four Terra MODIS data and two Hyperion data [51] were chosen with various extents
of stripe noise. Figures 17a and 18a are two subimages from Terra MODIS data band 27. There are
some EAs in Figure 17a and many SSAs in Figure 18a. The two images are seriously contaminated
by detector-to-detector periodical stripe noise. In addition, two other MODIS data with a moderate
level of stripe noise were selected. Figure 20a is a subimage cropped from Terra MODIS data band 28
with nonperiodical stripe and Figure 19a is degraded by periodical stripe that is cropped from band 30.
Two Hyperion data with nonperiodical stripe are shown in Figures 21a and 22a, respectively.

4.2.1. Visual Comparison

First, we tested the heavy stripe removal ability of the comparison methods. The visual quality
of MODIS data R1 and R2 by the comparison techniques are provided in Figures 17 and 18. As seen,
the BM3D and SNRCNN do not show a proper destriping performance. The GF-based method also
exhibits a poor destriping performance with some obvious residual stripes in Figures 17d and 18d
because these stripes are so serious that they will not totally be separated when the GF is first used.
Thus, some stripes are left and then are present in the final results. The visual effect of the HUTV
method could be acceptable; most stripes vanish. Nevertheless, some small-scale details are also
removed, as denoted by the orange yellow ellipse in Figure 17g, making the resulting image look flat.
It appears to be difficult with the WAFT approach to keep the extreme dark domain, as pointed
out in Figure 17e, because the latent noise is saturated by an extreme area, and artifacts appear
when there is an extremely estimated stripe in these areas. In the SSAs, stripe effect is generated
in most of the state-of-the-art methods, including the SUV, as presented in the zoomed patches in
Figures 17 and 18. On the other hand, the proposed WDSUV model eliminates most stripe noise with
a faithful details’ preservation property. Moreover, due to a rational weight was designed for the EA
and SSA, the proposed model contains less artifacts in these special regions than compared approaches,
as displayed in Figures 17i and 18i.

Figures 19 and 20 display the moderate level stripe estimation comparison. In each method’s
result, the top part is the destriping result, and the bottom part is the corresponding stripe noise
estimation. To provide a better visualization, these estimated stripes are linearly stretched to range
[0, 255]. Generally, besides BM3D, most noise is removed by most methods. However, the blur degree
and noise estimation ability of these methods vary. Some tiny stripes remain in the GF-based method,
as marked in the orange yellow ellipsoid in Figure 20d. For the UV and HUTV methods, the blur effect
appears in the structure similar to stripe, as in Figures 19f,g and 20f,g. The SUV model can estimate the
most stripe noise. Unfortunately, some tiny horizontal details are also removed, resulting in details loss,
as displayed in Figures 19h and 20h. Observing the estimated stripe noise in Figures 19 and 20, we can
discover that our WDSUV model generates a more regular stripe image than the other state-of-the-art
methods, demonstrating that the proposed model has a better stripe noise estimation ability.

Furthermore, we tested the performance of proposed model on Hyperion data corrupted by
various nonperiodical stripe noise. Figure 21a is a subimage of Hyperion data band 35 with few stripes
corrupted, while relatively many stripes exist in band 135, as displayed in Figure 22a. Figures 21 and 22
display two comparisons by the different methods. As seen, in addition to BM3D and SNRCNN,
most methods can remove the stripe noise in Figure 21a. Unfortunately, some image context is removed
by the GF-based, WAFT and UV methods, as denoted in Figure 21d–f. Obviously, the SUV and our
WDSUV’s estimation for data R5 are much cleaner and more sparse than other techniques. However,
the SUV cannot recognize the stripe-like structure and smooth them as noise, as denoted in Figure 21h.
The excessive estimation also exists in the GF-based, WAFT, UV and HUTV methods for second
Hyperion data R6, as shown in Figure 22d–g.
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(a) (d) (e)

(f) (g) (h) (i)

(b) (c)

Figure 17. Results of different methods on MODIS data band 27 R1. (a) original; (b) BM3D;
(c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV. Zoom in for
better visualization.

(a) (b) (c)

(f) (g) (h) (i)

(d) (e)

Figure 18. Results of different methods on Terra MODIS data band 27 R2. (a) original; (b) BM3D;
(c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV.
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(a)

(f) (g) (h) (i)

(b) (c) (d) (e)

Figure 19. Results of different methods on Terra MODIS data band 30 R3. (a) original; (b) BM3D;
(c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV. Zoom in for better
visualization. In each result, the top part is the destriping result, and the bottom part is the
corresponding stripe noise estimation.
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(a)

(b) (c) (d)

(g) (h) (i)

(e)

(f)

Figure 20. Results of different methods on Terra MODIS data band 28 R4. (a) original; (b) BM3D;
(c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV. In each result, the top
part is the destriping result, and the bottom part is the corresponding stripe noise estimation.
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(a)

(d) (e)

(f) (h) (i)

(b) (c)

(g)

Figure 21. Results of different methods on Hyperion data band 35 R5. (a) original; (b) BM3D;
(c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV. In each result, the
top part is the destriping result, and the bottom part is the corresponding stripe noise estimation.

(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 22. Results of different methods on Hyperion data band 135 R6. (a) original; (b) BM3D;
(c) SNRCNN; (d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV. In each result, the top
part is the destriping result, and the bottom part is the corresponding stripe noise estimation.
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4.2.2. Qualitative Analysis

In this subsection, the qualitative analysis for real-world striped images is illustrated. There is
no clean image as a baseline, and we here adopt three nonreference indices, i.e., the MICV, the
MMRD [24,28] and the mean cross-track profile in real data experiments. The index MRD measures
the relative distortion of original subarea, expressed as:

MRD =
1

MN

M

∑
u=1

N

∑
v=1

|Y(u, v)− X(u, v)|
Y(u, v)

, (27)

where Y(u, v) stands for original subarea pixel value at (u, v) and X(u, v) denotes the destriping result
pixel value at (u, v). Then, the MMRD is the mean of some subareas’ MRD values. Usually, the small
patch that contains a sharp edge is selected to calculate an MRD index. The ICV index measures the
smoothness of a homogenous region, written as:

ICV =
M(X)

Std(X)
(28)

in which X denotes a small region after destriping. M(X) is the mean of X and Std(X) is the standard
deviation of window X. MMRD denotes the mean of MRD values of some patches. Generally, the larger
MICV index and the smaller MMRD index mean a better destriping performance. Table 4 lists the
MICV and MMRD results of comparison methods for the six real data experiments. The best values are
highlighted in bold. As shown in Table 4, the proposed WDSUV model achieves the smallest MMRD
values all images except R3. The WDSUV doesn’t obtain all the largest MICV values. It is lower than
HUTV for images R1, R4 and R5. This phenomenon can be mainly attributed to the oversmoothing
effect of HUTV, which can be inferred in Figures 17g and 20g. The oversmoothing effect also exists
in BM3D, resulting in the largest MICV values for images R5 and R6. Although SNRCNN obtains
larger MICV values for images R4 and R5, and smaller MMRD value for image R3 than WDSUV,
there are obvious residual stripes in SNRCNN, as seen in Figures 19c, 20c and 21c. Both the SUV
and WDSUV can estimate the few stripes in Hyperion data R5, resulting in the same MICV and
MMRD values. However, the SUV may lose some stripe-like structures, as pointed out in Figure 21h.

Figures 23–25 display three examples of mean cross-track profiles for Terra MODIS data R1, R3
and R4. The horizontal axis denotes the row number and the vertical axis represents the mean value of
each row. As can been seen, the BM3D and SNRCNN show a weak destripng ability that the results’
curves are similar to the original degraded images’. In Figure 23, the WAFT shows an oversmoothing
profile in Figure 23e, which means that many underlying details are lost. Some obvious fluctuation
in the GF-based method (Figure 23d) and the HUTV curve (Figure 23g) indicates that some residual
stripes still exist. On the other hand, the profile of the proposed method (Figure 23i) can smooth the
huge fluctuation and keep the underlying details. In Figures 24 and 25, the GF-based, WAFT, UV and
HUTV methods all exhibit oversmoothing profiles, which means that some useful details are also
removed. The difference of the mean cross-track profiles between the SUV and the WDSUV, such as
in Figure 24h,i, is not obvious. It is mainly attributed to the fact that the mean of the overestimated
structure by the SUV is too small to be sensed.
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Table 4. Quantitative assessment of real data.

Images Index BM3D SNRCNN GF Based WAFT UV HUTV SUV WDSUV

MODIS data
band 27 R1

MICV 4.3145 4.7477 30.7270 36.5294 35.5363 40.6438 36.4977 37.1580
MMRD 0.3794 0.4570 9.8935 4.5328 2.6238 9.6883 0.4078 0.3357

MODIS data MICV 4.8430 4.9733 32.7694 49.7900 44.1401 50.0661 43.5883 52.2439
band 27 R2 MMRD 0.4644 0.1537 0.8864 0.8394 0.9264 0.7710 0.5938 0.1482

MODIS data MICV 16.2057 18.7728 27.4309 27.0622 17.0865 29.0929 28.3908 29.1068
band 30 R3 MMRD 0.0699 0.0266 0.1017 0.1677 0.0860 0.0786 0.0631 0.0367

MODIS data MICV 32.7398 86.8249 68.4269 67.2392 79.0380 82.3611 77.5485 76.2834
band 28 R4 MMRD 0.2426 0.3595 0.5278 0.1922 0.4178 0.2082 0.0723 0.0631

Hyperion data MICV 67.8933 42.0641 33.7644 29.0568 33.2571 39.5301 33.7672 33.7672
band 35 R5 MMRD 0.0802 0.0218 0.0274 0.0377 0.0284 0.0296 0 0

Hyperion data MICV 26.3375 26.1986 23.0954 19.7025 23.3781 23.1603 23.7723 23.5074
band 135 R6 MMRD 0.0474 0.0281 0.0370 0.0330 0.0419 0.0414 0.0245 0.0224

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

Figure 23. Mean cross-track profiles of Terra MODIS data R1. (a) original; (b) BM3D; (c) SNRCNN;
(d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV.
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(a)

(d) (e) (f)

(g) (h) (i)

(a) (b) (c)

Figure 24. Mean cross-track profiles of Terra MODIS data R3. (a) original; (b) BM3D; (c) SNRCNN;
(d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV.

(a)

(d) (e) (f)

(g) (h) (i)

(b) (c)

Figure 25. Mean cross-track profiles of Terra MODIS data R4. (a) original; (b) BM3D; (c) SNRCNN;
(d) GF-based; (e) WAFT; (f) UV; (g) HUTV; (h) SUV; (i) WDSUV.
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5. Discussion

5.1. Analysis of Parameters

For a destriping optimal model, it is difficult to set the unify parameters to handle all types of
stripe noise. Researchers usually turn the parameters empirically according to the stripe level and
image content. In this paper, there are mainly three regularization parameters in the proposed WDSUV
destriping model (9): λ1, λ2 and λ3. Generally, strong stripes prefer a large λ1. The regular stripes
need a large λ3. If stripes are dense, the λ2 should be small. Moreover, the interaction among the three
parameters should not be ignored, and a combination of parameters will provide a satisfied result.
However, determining the relationship between the parameters and the result is not an easy task,
and may need many calculations. Here, we adopt the same strategy in [26] that tunes one parameter
while others are fixed to analyse the relationship. We evaluate the PSNR values as a function of λ1

when λ2 and λ3 are fixed. Then, we adjust parameters λ2 and λ3 in the same manner.
In the experiment, a clean subimage was cropped from MODIS data. After adding the artificial

stripe noise, we calculated the PSNR values while tuning the three parameters, respectively. Figure 26
shows the experimental results. The PSNR values of the WDSUV model corresponding to λ1, λ2

and λ3 are presented in Figure 26a–c, respectively. In terms of λ1, the PSNR has a rising trend in
interval [0.05, 0.1]. However, it is much reduced when λ1 increases further. In Figure 26b, the PSNR
increases slightly when λ2 increases from 0.0005 to 0.002, then reduces dramatically in [0.002, 0.0045],
and presents a gentle decline in [0.0045, 0.01]. Figure 26c shows that the PSNR curve rises slightly
when λ3 is in [0.01, 0.05], and it nearly converges to 50.8 as λ3 increases to 0.2. Thus, we empirically set
the three parameters as follows: λ1 ∈ [0.05, 0.5], λ2 ∈ [0.001, 0.05] and λ3 ∈ [0.01, 0.2]. The range of
the three parameters are larger than the best performance, as displayed in Figure 26, to tackle more
various types of stripe noise.

(a) (b) (c)

Figure 26. PSNR curves of regulation parameters. (a) PSNR curve of parameter λ1 (λ2 = 0.001, λ3 = 0.05);
(b) PSNR curve of parameter λ2 (λ1 = 0.15, λ3 = 0.05); (c) PSNR curve of parameter λ3 (λ1 = 0.15,
λ2 = 0.001).

5.2. Limitation

In this paper, we have designed double sparsity regulations to distinguish (stripe) texture from
stripe noise. It proved to retain some small scale structure, whereas the small scale stripe noise are also
prone to be kept in the destriping result. One failure example is shown in Figure 27. An optional way to
reduce this disadvantage is to reduce the value of parameter λ3 in (9). However, how to distinguish the
tiny stripes noise and small details similar to the stripe still needs to be solved, and we will endeavour
this task in the future.
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(a) (b)

Figure 27. Limitations. An example of proposed model failure to remove fragile stripe. (a) original
striped MODIS data; (b) the output of WDSUV.

6. Conclusions

In this paper, we presented a new model for the remote sensing images stripe noise removal
problem. It incorporates the double sparsity property, i.e., the global sparsity and the unidirectional
gradient sparsity, of stripe noise into a unidirectional variation framework. Furthermore, to reduce
artifacts in the extreme area and extreme stripe, a rational weight was designed in different regions.
The efficient ADMM algorithm was employed to solve the optimal model in an iterative procedure.
We simulated types of stripes on clean data with various content. In particular, some images contain
structures similar to stripe and extreme areas. We also collected some real typical striped remote sensing
images with complicated structures to testify the performance of the proposed model. Both subjective
and objective quantitative measures were employed to compare the destriping ability of the different
methods. Experimental results of both simulation data and real noise corrupted data demonstrate
that the proposed model achieves a better destriping performance than the state-of-the-art methods,
in terms of noise removal, small structure preservation and less undesired artifacts introduced.
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experiments. Y.W. analyzed the results and revised the manuscript.
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Abbreviations

The following abbreviations are used in this manuscript:

ADMM alternating direction method of multipliers
MODIS Moderate resolution imaging spectrometer
AVIRIS Airborne Visible InfraRed Imaging Spectrometer
SSA Strong stripe area
EA Extreme area
SSIM Structural similarity
PSNR Peak signal-to-noise ratio
MICV Mean of inverse coefficient of variation
MMRD Mean of mean relative deviation
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